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Abstract
Wepropose a theoreticalmodel for a quantum sensor that can determine in a very simplewaywhether
the intensity of an electricfield has an assigned value or not. It is based on the fact that when an exact
crossing of the imaginary parts of the resonances occurs in a double-well quantum system subject to
an external DC electricfield, a damped beating phenomenon occurs, which is absent if there is no such
a crossing. This result is then tested numerically on an explicit one-dimensionalmodel.

Introduction

Quantum sensors are devices thatmeasure physical quantities, such as electric ormagnetic fields, using the laws
ofQuantumMechanics. Thefirst devices with these characteristics include the Ramsey interferometer [1], based
on a two-level system.Currently,many other quantum sensors have been developed, from those based on
silicon carbide to those based on nitrogen-vacancy (NV) centers in nanodiamonds, with numerous applications,
from rechargeable batteries to biomedical devices (see [2–5] and references therein).

The typicalmodel of a quantum sensor consists of anHamiltonianH=Hi+ Ve, whereHi is the internal (or
unperturbed)Hamiltonian, andVe is an external potential to bemeasured or that represents an element of
control used to set the quantum sensor appropriately [6]. For example, in some quantum sensors the external
field is aDC electric field, andVe(x) represents a linear Stark potential.

Assume thatHi is a two-level systemwith energy levels E1� E2, and thatω= E2− E1 is the transition
frequency between the two states; therefore, in the case whereω≠ 0, an interference effect generates a periodic
beatingmotionwith periodT= 2π/ω. The basic idea is that the effect of the perturbation dues toVe is to
produce a shift in energy levels, and a change in the transition frequencyω; therefore, a periodic beatingmotion
of the quantum systemdescribed byH is still observed, butwith amodified period. A relationship is then
established between the period of the beatingmotion and the external field that can be used to obtain an estimate
of the intensity of the perturbationVe. The protocol of such a quantum sensor is essentially based on two steps:
in the first step, it is necessary tomeasure the period of the beatingmotionwith sufficient precision and then, in
the second step, to calculate the electric field strength as a function of themeasured period.

In this paperwe propose a theoreticalmodel for a quantum sensorwith an asymmetrical double-well
internalHamiltonianHi. In this case it is well known [7] that two energy levels of the fundamental statesE1 and
E2 become quantum resonances and have a crossing/avoided crossing behaviourwhen the the strength of the
external electric field varies. The novelty of our analysis consists in applying a criterion to establish the kind of
crossing and, furthermore, in showing that some quantumobservables, e.g. the survival amplitude, exhibits a
beatingmotion onlywhen the imaginary part of the two quantum resonances cross each other. This factmakes it
easier to checkwhether or not the strength of an external DC electric field is close to a predefined value simply by
observing the presence or absence of a beatingmotion, without the need tomeasure its period andwithout
performing any calculations. The advantage of such a device is its simplicity and speed of response; on the other
hand, with thismethod, it is not possible to determine exactly the value of the electric field strength, but only to
verify whether it is within a given range.
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In this way, it is possible to check very quickly and easily whether, for example, the charge value of a nano-
battery [8] becomes lower (or higher, during battery charging) than a predetermined threshold. Also inmedical
diagnostics, this device could have applications in ultra-dense Electric Field Encephalography [9] in order to
monitor the presence/absence of electrical activity in a certain area of the scalp surface.

Such a device can bemadewith double-well nano-heterostructures presenting essentially one-dimensional
features. For example, the analytical study of the behaviour of bound states (when a confining external potential
is present) as the electric field strength varies was analysed for a 200 ÅGasAl1−sAs/60 ÅGaAs/ 60 Å
GasAl1−sAs/50 ÅGaAs/200 ÅGasAl1−sAs heterostructure with s= 0.8 (see section 3.13 [7]); [10] also performed
a similar analysis in the case of double-well heterostructures with s= 0.3.We alsomention the paper [11]where
a detailed analysis of the resonance states was carried out in the case of double-well heterostructures with
s= 0.33. Finally, wewould like to point out that experimental investigations on electron transport in
asymmetrical double-barrier heterostructures have recently been carried out, see [12] and references therein; the
techniques are therefore ready to realise a similar device inwhich there is a double-well instead of a double-
barrier.

An essentially one-dimensional double-well potential can also be obtained in Bose–Einstein condensates by
superimposing a three-dimensional harmonic trapping potential on a one-dimensional optical lattice, strongly
confining along the direction perpendicular to the optical lattice [13]; if the boson scattering length is rather
small and if the optical lattice is directed along the vertical axis, the same theoreticalmodel is obtained inwhich,
in this case, the linear potential is due to gravity.

Finally, we emphasise that the above-mentioned devices have essentially one-dimensional characteristics.
This fact is very important because in this case the analytical calculation can be carried out with relative ease. The
case where the dimension is greater than one can nevertheless, at least in principle, be dealt with even though, as
explained in the conclusions, several technical problems arise.

Interference effect at the resonances crossing point. Let the internal one-dimensionalHamiltonian

H Vi
d

dx i
2

2= - + be associatedwith an asymmetrical double-well potentialVi, and let the external potential be a

linear Stark potentialVe(x)=− Fx, where F is theDC electricfield strength. If we consider the ground state of a
single well, e.g. the left-hand-side (l.h.s.) one, the effect of the secondwell is to slightly perturb it, andwe denote
byE1 the corresponding energy; similarly, let us denote by E2 the energy of the ground state of the right-hand-
side (r.h.s.)well treating the l.h.s. well as a perturbation. The two-level system consists by restrictingHi to these
two states, and the effect of the linear Stark potentialVe is, in thefirst instance, to change the splittingω as
described above.

We can observe, however, that a second effect, associatedwith the crossing of energy levels, is generated for
an appropriate choice of parameters. In fact, if the l.h.s. well ofVi is deeper than the r.h.s. well, then, for F= 0,
the energy levelE1 is less than the energy levelE2. As F increases, these two levels will come closer until they
almost cross each other for a critical value of F, andwe denote byE their (almost) common value. Since in
dimension one the energy levels are always non-degenerate, exact crossing is not possible, and sowe have an
avoided-crossing picture.

At this (almost) common E value of the two levels at the avoided crossing point, the twowells are separated
by an inner barrier, where ‘classicalmotion’ is forbidden since the potentialV(x)= Vi(x)+ Ve(x) exceeds the
energy levelE; furthermore, there is an outer barrier (see figure 1).We canmeasure the length of these barriers by

means of Agmon’smetric, which in dimension one is simply V x E dxi X

X

2

3 ( )òr = - , for the inner barrier,

and V x E dxe X

X

4

5 ( )òr = - that of the outer barrier.

In fact, for any F> 0 the stationary states becomemetastable states associated to quantum resonances E1(F)
andE2(F) depending on F andwith negative imaginary part, and in the complex plane the crossing phenomenon
between these two levelsmay be of:

– type I crossingwhen there is an exact crossing of their imaginary parts E F1( )I and E F2( )I , and an avoided-
crossing of their real parts E F1( )R and E F2( )R (see, e.g.figure 2), which occurs when ρi< 2ρe;

– type II crossing when there is an exact crossing of their real parts, and an avoided-crossing of their
imaginary parts (see, e.g.figure 3), which occurs when ρi> 2ρe.

Crossing phenomenon of resonances was analyzed as early as Avron’s work in 1982 [14], andwas later taken
up by [15–17] providing the above criterion for determining the type of crossing. This theoretical result is valid
in the semiclassical limit, which in the present contextmeans that the parameter F and the depth of the twowells
(i.e.α1 andα2 in the toymodel (1)) are very large in absolute value so that the two resonances are very narrow,
that is their imaginary parts are very small in absolute value. However, from a practical point of view, wewill see
in a numerical experiment that this criterion is already useful even if these parameters are not excessively large.
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We shouldmention that the question of resonances crossing is of great interest both in a general context [18, 19],
and even in experimental applications [20, 21]; furthermore, it has also been analyzed in the case of symmetric
double-well potential [22]. Herewe extend these studies by considering the criterion based on the Agmon
distances ρi and ρe to determinewhether the resonance crossing is of type I or II. This improvement allows us to
tune the parameters of the double-wellmodel to design a quantum sensor forDC electric fields.

Indeed, when the imaginary parts of the two resonances E1(F) andE2(F) are sufficiently different from each
other then the lifetimes of the twometastable states are quite different, and the phenomenon of interference will
not be triggered because one of the twometastable states decaysmuch faster than the other one. In fact, a very
slight beating effect can be observed for small times, as pointed out by [23], but it quickly disappears and only the
exponential decay associatedwith the narrowest resonance remains as the dominant term.

On the other side, this picture changesmarkedly at values ofmodel parameters for which the imaginary parts
of the two resonances coincide E F E F ;1 2( ) ( )I I= in this case, which can occur only in the case of type I crossing,
the interference effect is triggered, and thuswe observe a damped beating effect with (pseudo-)period
T E E2 2 1( ( ) ( ))R Rp= - for large time intervals.

In this way, we have a theoreticalmodel for a quantum sensor thatmakes it possible to verify whether the
intensity F of the externalfield assumes the specific value forwhich type I crossing and beating effect occur; we
observe that this specific value can be appropriately selected by adjusting the value of the parameters of the
internal double-well potentialVi.

Figure 1.Asymmetrical double-wellmodel with potentialV = Vi + Ve. The abscissa axis represents the spatial variable x, while the
ordinate axis represents the energy E. For a given value ofEwemay have, as in the figure, twowells, one betweenX1 andX2 and the
other one betweenX3 andX4, and two barriers, the inner barrier withAgmon length ρi is betweenX2 andX3, and the outer barrier with
Agmon length ρe is betweenX4 andX5. There are no stable states forH, butmetastable ones.

Figure 2.Type I crossing for themodel (1)where a = 5,α1 = − 2.8, andα2 = − 2. In the l.h.s. panel we plot the real part ofE1(F) (full
line) andE2(F) (broken line); in the r.h.s. panel we plot the imaginary part of E1(F) (full line) andE2(F) (broken line).
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Quantitative analysis.To verify this idea on an explicit one-dimensional toymodel, we consider the double-
well potential with two attractive singular interactions due to twoDirac’s δ,

V x x x, , 0, 1i x x1 2 1 2 1 21 2( ) ( )a d a d a a= + < < <

where δy is such that f x dx f yy ( ) ( )ò d = . The idea of usingDirac’s δ tomodel wells or barriers goes back to

Enrico Fermi [24], and in this context it has been extensively used for the study of the Stark effect on both a single
well [25–30], and on double-well [22, 23, 31, 32] cases.

The spectrumofH is purely continuous and it coincides with the entire real axis. Therefore, no stable states
are possible. It is possible, however, to have resonances E associatedwithmetastable statesψ such thatHψ= Eψ
whereψ satisfies the outgoing conditions [22] x C xi( ) ( )y = + for x> a, where C x B x iA xi i i( ) ( ) ( )=  ,Ai and
Bi being the twoAiry functions. Resonances ofH can be equivalently defined as the complex poles of the analytic
continuation of the kernel of the resolvent operator H z 1[ ]- - from the upper half-plane z 0I > to the lower
half-plane z 0I < (see [32] and references therein). If we denote by K K0 0= , if z 0I > , the kernel of the

resolvent operator H z0
1[ ]- - , where H Fxd

dx0
2

2= - - , then it is known that
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The kernelK= K±, if z 0I > , of the resolvent operator H z 1[ ]- - can be obtained by K0
 as follows [33]:

K x y z K x y z
R x y z

D z
, ; , ;

, ;
, 30( ) ( ) ( )

( )
( )= + 
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

where
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Then resonances z forH are the zeros such that z 0I < of the analytic continuation of the functionD+(z)
from the upper half-plane z 0I > to the lower half-plane z 0I < , and it is possible to compute them
numerically once parameter values F,α1,α2, x1 and x2 are assigned.

Figure 3.Type II crossing for themodel (1)where a = 5,α1 = − 3.2, andα2 = − 2. In the l.h.s. panel we plot the real part ofE1(F)
(full line) andE2(F) (broken line); in the r.h.s. panel we plot the imaginary part of E1(F) (full line) andE2(F) (broken line).
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The two resonances have respectively real parts close to the values of the two single-well ground states:
E 41 1

2R a~ - and E Fa42 2
2R a~ - - , where∼means the asymptotic value for large |α1,2|, andwherewe set,

tofix the ideas andwithout losing in generality, x1= 0 and x2= a> 0. Thus, crossing phenomenon occurswhen
F is close to the critical value

F
a4

, 7C
1
2

2
2

( )a a
~

-

and for these values we have that the Agmon lengths of the inner and outer barriers are given by
F12i C1

3
2
2( )r a a~ - and F12e C2

3r a~ . Thus a type I crossing occurs when 3 1 2
3 a a , and type II when

31 2
3a a  . Actually, this theoretical result, which holds true exactly only in the semiclassical limit inwhich

|α1,2| and |F| go to infinity, retains good validity evenwhen the parameters arefinite. For example, for a= 5,
α1=− 2.8, andα2=− 2, a type I crossing is observed infigure 2; from the semiclassical result (7), it turns out
that the theoretical value of FC is 0.192, and this result is in good agreementwith the numerical experiment in
which FC takes the value of 0.190(2). For a= 5,α1=− 3.2, andα2=− 2 a type II cross is observed infigure 3,
and again there is good agreement between (7) and the result of the numerical experiment.

An important remark concerns the fact that from the type of crossing will follow a different behaviour of
observables. Let us consider, for example, the survival amplitudeA(t)= 〈ψ0|ψt〉whereψ0 is thewave function of
the initial state, andwhereψt= e− iHtψ0 is thewave function of the state at instant t. In absence of stable states the
survival amplitude decreases in time [32]. This decay is, for a genericHamiltonianwithout stable states, the
contribution of two terms: one of exponential type that is dominant for intermediate time intervals, and one of
power type that instead becomes dominant for longer times; see [34]where it was numerically conjectured that a
transition effect between the two different types of decay starts around a certain instant t, see also [35–42] for
rigorous results, and [43] for the experimental evidence of the deviation from exponential decay.However, in
ourmodel the power law decay does not play any role because the spectrumofH is not bounded frombelow
[44], and thuswe expect to observe only the exponential decay. In particular, since there are only two narrow
resonancesE1(F) andE2(F) having small imaginary part then from the residue theorem it follows that the
dominant termof the survival amplitude is given by [27]

e c e , 8itH

j
j

itE F
0 0

1

2
j0∣ ( )( )åy yá ñ +-

=

-

where

c R M E F q p , 9j j
n m

n m j n j m j
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2

, , ,( ( )) ( )å=
=

+

and

q K x x E F x dx, ; 10n j n j, 0 0( ( )) ¯ ( ) ( )ò y= +



p K x y E F y dy, ; 11m j m j, 0 0( ( )) ( ) ( )ò y= +



andwhereRj is the value of the residue of the function 1/D
+(z) at z= Ej(F). The evolution operator e itH0- is an

integral operatorwith kernel [45]

⎡
⎣

⎤
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and the term e itH
0 0

0∣y yá ñ- decaysmore rapidly than the exponential e t E Fj∣ ( ) ∣I- in the case of narrow resonances.
Then, the asymptotic behaviour ofA(t) is governed only by the contributions given by the two resonances. If we
are in the type II crossing case, where e.g., E F E F1 2∣ ( )∣ ∣ ( )∣I I< for each value of F as infigure 3, then the
dominant contribution to the exponentially decreasing behaviour of |A(t)| is given by c e t E F

1
1∣ ∣ ∣ ( ) ∣I- . If, on the

other hand, we are in the case of type I crossing, and if we call FC the value of F at which E F E F1 2( ) ( )I I= , then
we still observe an exponentially decreasing behaviour given by c ej

t E Fj∣ ∣ ∣ ( ) ∣I- , where j= 1 if F< FC, and j= 2 if
F> FC as infigure 2; eventually, only for F close to FC there is a damped oscillating behaviour due to the
interference between the two resonances, and in this case the dominant behaviour of |A(t)| is given by:

e c c e , 13t E F i t
1 2

C1 ∣ ] ( )∣ ( ) ∣I + w- -

with pseudo-periodT= 2π/ωwhere E F E FC C2 1( ) ( )R Rw = - .
We consider a numerical experiment whereψ0 is a normalizedwavefunction localized on the l.h.s. well

corresponding to x= 0; for argument’s sake let us assume thatψ0 is theGaussian function
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x e2 , where 1 2, 14x
0

2 1 4 42 2( ) ( ) ( )y ps s= =s- -

andwe go on to study the behaviour ofA(t) for t ä [102, 105] and for some F< FC, F> FC, and for F= FC. For
a= 5,α1=− 2.8, andα2=− 2, we have a type I crossingwhen F takes the value FC= 0.190(2); for the values of
the resonancesEj, and of the coefficients cj, j= 1,2, see table 1. As expected, infigure 4 (full line) a damped
oscillating behaviour is observed for |A(t)|when the intensity F of the externalfield is close to FC. On the other
hand, when F is different from this value a dampingwithout significant oscillations is observed (see figure 4 -
broken lines) because one of the twometastable states decaysmuch faster than the other one, and therefore it is
not possible to have a long times interference phenomenon. In this case the damping effect is slower than in the
first case, because one of the two resonances ismuch narrower than those obtainedwhen F= FC.

We remark that the critical value FC does not depend on the initial state; instead, as the parametersα1,α2 and
a vary, one can tune the critical value FC as desired.

As a consequence of this numerical experiment, it can be stated that for this choice of parameters significant
oscillations of the survival probability are observedwhen F is close to the predetermined value FC, while for F
outside the range [FC− δF, FC+ δF], where themeasurement tolerance δF is less that the 10%of FC, the
imaginary parts of the two resonances are substantially different and therefore no significant oscillations occur.

Conclusions. In conclusion, this paper analyses in detail the time evolution of the survival amplitude for a
Schrödinger operator with an asymmetrical double-well potential under the effect of a Stark perturbation. It is
verified in a numerical experiment that this is a useful theoreticalmodel for designing a quantum sensor for
which the response to an external DC electric field has two distinctly different behaviours depending onwhether
thefield strength is close to or different from a predetermined value FC of the externalfield strength, with a
precision on the order of 10%of the value FC. Bymeans of (7) the value FC can be chosen by tuning the internal
potential parameters.

Figure 4. In the case of type I crossing corresponding to a = 5,α1 = − 2.8, andα2 = − 2, we can observe in the interval t ä [102, 105],
a damped beating behaviour (full line) of |A(t)|when F is close to the critical value FC = 0.190(2) for whichwe have exact crossing of
the imaginary parts of the two resonances; if F = 0.17 < FC (broken line) or F = 0.21 > FC (dot line)no significant oscillation is
observed.

Table 1.Table of values of the resonancesEj andof the coefficients cj, j= 1, 2,
for different values ofF; where a = 5,α1 = − 2.8, andα2 = − 2 correspond
to a type I crossing.

F = 0.17 < FC F = FC = 0.190(2) F = 0.21 > FC

E1R −1.96(3) −1.97(0) −2.06(6)
E1I −0.35(1) · 10−8 −0.36(8) · 10−3 −0.13(7) · 10−2

E2R −1.86(0) −1.95(7) −1.96(3)
E2I −0.32(9) · 10−3 −0.36(8) · 10−3 −0.14(6) · 10−4

c1R 0.41(0) · 10−2 0.44(8) 0.96(5)
c1I 0.85(1) · 10−7 −0.027(6) 0.13(0) · 10−3

c2R 0.96(6) 0.52(1) 0.34(9) · 10−2

c2I −0.11(2) · 10−4 0.027(5) −0.14(4) · 10−3
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The novelty is that it is possible to verify a specific value of theDC electric field simply by observing whether
or not significant oscillations of the survival probability are present, regardless of their period. In someways we
have a phenomenological analogywith RLC electrical circuits that resonate at a specific external frequency; in
ourmodel, similarly, only at a specific value of theDC electric field strength does a long-term interference
between twometastable states occur, producing a periodic beating effect.

Future researchmay be directed towards addressing the following problems:

–Experimental validation of the theoreticalmodel can be considered in the case where the double-well
potential is realised bymeans of heterostructures instead of twoDirac δ. In fact, although in this case the
formulas (8)–(11) cannot simply be applied since the kernel of the resolvent operator is not easy to deal
with, the resonances can be calculated by applying the outgoing boundary conditions and the numerical
calculation of the survival amplitude can be performed, for example, by the spectral splittingmethod.

–Extension of themodel to 2Dor 3Ddevices.Wemust emphasise that in this case a rather serious technical
problem arises, since in dimension greater than one the calculation of Agmon distances ρi and ρe becomes
difficult, and the evaluation of the ratio ρi/ρe is essential to decide whether the resonance crossing is of type
I or II.
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