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Abstract

We propose a theoretical model for a quantum sensor that can determine in a very simple way whether
the intensity of an electric field has an assigned value or not. It is based on the fact that when an exact
crossing of the imaginary parts of the resonances occurs in a double-well quantum system subject to
an external DC electric field, a damped beating phenomenon occurs, which is absent if there is no such
acrossing. This result is then tested numerically on an explicit one-dimensional model.

Introduction

Quantum sensors are devices that measure physical quantities, such as electric or magnetic fields, using the laws
of Quantum Mechanics. The first devices with these characteristics include the Ramsey interferometer [1], based
on a two-level system. Currently, many other quantum sensors have been developed, from those based on
silicon carbide to those based on nitrogen-vacancy (NV) centers in nanodiamonds, with numerous applications,
from rechargeable batteries to biomedical devices (see [2—5] and references therein).

The typical model of a quantum sensor consists of an Hamiltonian H = H; 4+ V,, where H;is the internal (or
unperturbed) Hamiltonian, and V, is an external potential to be measured or that represents an element of
control used to set the quantum sensor appropriately [6]. For example, in some quantum sensors the external
field is a DC electric field, and V,(x) represents a linear Stark potential.

Assume that H;is a two-level system with energy levels E; < E,, and thatw = E, — E is the transition
frequency between the two states; therefore, in the case where w == 0, an interference effect generates a periodic
beating motion with period T = 27/w. The basic idea is that the effect of the perturbation dues to V, is to
produce a shift in energy levels, and a change in the transition frequency w; therefore, a periodic beating motion
of the quantum system described by H is still observed, but with a modified period. A relationship is then
established between the period of the beating motion and the external field that can be used to obtain an estimate
of the intensity of the perturbation V.. The protocol of such a quantum sensor is essentially based on two steps:
in the first step, it is necessary to measure the period of the beating motion with sufficient precision and then, in
the second step, to calculate the electric field strength as a function of the measured period.

In this paper we propose a theoretical model for a quantum sensor with an asymmetrical double-well
internal Hamiltonian H;. In this case it is well known [7] that two energy levels of the fundamental states E; and
E, become quantum resonances and have a crossing/avoided crossing behaviour when the the strength of the
external electric field varies. The novelty of our analysis consists in applying a criterion to establish the kind of
crossing and, furthermore, in showing that some quantum observables, e.g. the survival amplitude, exhibits a
beating motion only when the imaginary part of the two quantum resonances cross each other. This fact makes it
easier to check whether or not the strength of an external DC electric field is close to a predefined value simply by
observing the presence or absence of a beating motion, without the need to measure its period and without
performing any calculations. The advantage of such a device is its simplicity and speed of response; on the other
hand, with this method, it is not possible to determine exactly the value of the electric field strength, but only to
verify whether it is within a given range.
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In this way, it is possible to check very quickly and easily whether, for example, the charge value of a nano-
battery [8] becomes lower (or higher, during battery charging) than a predetermined threshold. Also in medical
diagnostics, this device could have applications in ultra-dense Electric Field Encephalography [9] in order to
monitor the presence/absence of electrical activity in a certain area of the scalp surface.

Such a device can be made with double-well nano-heterostructures presenting essentially one-dimensional
features. For example, the analytical study of the behaviour of bound states (when a confining external potential
is present) as the electric field strength varies was analysed for a 200 AGaAl,_As/60 A GaAs/ 60 A
Ga,Al,_As/50 A GaAs /200 A Ga,Al; _ As heterostructure with s = 0.8 (see section 3.13 [7]); [10] also performed
asimilar analysis in the case of double-well heterostructures with s = 0.3. We also mention the paper [11] where
adetailed analysis of the resonance states was carried out in the case of double-well heterostructures with
s=10.33. Finally, we would like to point out that experimental investigations on electron transport in
asymmetrical double-barrier heterostructures have recently been carried out, see [12] and references therein; the
techniques are therefore ready to realise a similar device in which there is a double-well instead of a double-
barrier.

An essentially one-dimensional double-well potential can also be obtained in Bose—Einstein condensates by
superimposing a three-dimensional harmonic trapping potential on a one-dimensional optical lattice, strongly
confining along the direction perpendicular to the optical lattice [13]; if the boson scattering length is rather
small and if the optical lattice is directed along the vertical axis, the same theoretical model is obtained in which,
in this case, the linear potential is due to gravity.

Finally, we emphasise that the above-mentioned devices have essentially one-dimensional characteristics.
This fact is very important because in this case the analytical calculation can be carried out with relative ease. The
case where the dimension is greater than one can nevertheless, at least in principle, be dealt with even though, as
explained in the conclusions, several technical problems arise.

Interference effect at the resonances crossing point. Let the internal one-dimensional Hamiltonian
H = - %22 + V; be associated with an asymmetrical double-well potential V;, and let the external potential be a
linear Stark potential V,(x) = — Fx, where Fis the DC electric field strength. If we consider the ground state of a
single well, e.g. the left-hand-side (L.h.s.) one, the effect of the second well is to slightly perturb it, and we denote
by E, the corresponding energy; similarly, let us denote by E, the energy of the ground state of the right-hand-
side (r.h.s.) well treating the L.h.s. well as a perturbation. The two-level system consists by restricting H; to these
two states, and the effect of the linear Stark potential V, is, in the first instance, to change the splitting w as
described above.

We can observe, however, that a second effect, associated with the crossing of energy levels, is generated for
an appropriate choice of parameters. In fact, if the Lh.s. well of V; is deeper than the r.h.s. well, then, for F = 0,
the energy level E; is less than the energy level E,. As Fincreases, these two levels will come closer until they
almost cross each other for a critical value of F, and we denote by E their (almost) common value. Since in
dimension one the energy levels are always non-degenerate, exact crossing is not possible, and so we have an
avoided-crossing picture.

At this (almost) common E value of the two levels at the avoided crossing point, the two wells are separated
by an inner barrier, where ‘classical motion’ is forbidden since the potential V(x) = Vi(x) + V.(x) exceeds the
energy level E; furthermore, there is an outer barrier (see figure 1). We can measure the length of these barriers by

means of Agmon’s metric, which in dimension one is simply p, = fXX3 JV(x) — E dx, for the inner barrier,
2
and p, = fXXS JV(x) — E dx that of the outer barrier.
4

In fact, for any F > 0 the stationary states become metastable states associated to quantum resonances E; (F)
and E,(F) depending on F and with negative imaginary part, and in the complex plane the crossing phenomenon
between these two levels may be of:

—type I crossing when there is an exact crossing of their imaginary parts JE; (F) and JE, (F), and an avoided-
crossing of their real parts RE, (F) and SRE, (F) (see, e.g. figure 2), which occurs when p; < 2p,;

—type Il crossing when there is an exact crossing of their real parts, and an avoided-crossing of their
imaginary parts (see, e.g. figure 3), which occurs when p; > 2p,.

Crossing phenomenon of resonances was analyzed as early as Avron’s work in 1982 [14], and was later taken
up by [15-17] providing the above criterion for determining the type of crossing. This theoretical result is valid
in the semiclassical limit, which in the present context means that the parameter F and the depth of the two wells
(i.e. vy and v, in the toy model (1)) are very large in absolute value so that the two resonances are very narrow,
that is their imaginary parts are very small in absolute value. However, from a practical point of view, we will see
in a numerical experiment that this criterion is already useful even if these parameters are not excessively large.

2
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Figure 1. Asymmetrical double-well model with potential V = V; 4 V.. The abscissa axis represents the spatial variable x, while the
ordinate axis represents the energy E. For a given value of E we may have, as in the figure, two wells, one between X; and X, and the
other one between X3 and X}, and two barriers, the inner barrier with Agmon length p; is between X, and X5, and the outer barrier with
Agmon length p, is between X, and X;. There are no stable states for H, but metastable ones.
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Figure 2. Type I crossing for the model (1) where a = 5, a; = — 2.8,and a, = — 2. In the Lh.s. panel we plot the real part of E; (F) (full

line) and E,(F) (broken line); in the r.h.s. panel we plot the imaginary part of E; (F) (full line) and E,(F) (broken line).

We should mention that the question of resonances crossing is of great interest both in a general context [18, 19],
and even in experimental applications [20, 21]; furthermore, it has also been analyzed in the case of symmetric
double-well potential [22]. Here we extend these studies by considering the criterion based on the Agmon
distances p; and p, to determine whether the resonance crossing is of type I or II. This improvement allows us to
tune the parameters of the double-well model to design a quantum sensor for DC electric fields.

Indeed, when the imaginary parts of the two resonances E;(F) and E,(F) are sufficiently different from each
other then the lifetimes of the two metastable states are quite different, and the phenomenon of interference will
not be triggered because one of the two metastable states decays much faster than the other one. In fact, a very
slight beating effect can be observed for small times, as pointed out by [23], but it quickly disappears and only the
exponential decay associated with the narrowest resonance remains as the dominant term.

On the other side, this picture changes markedly at values of model parameters for which the imaginary parts
of the two resonances coincide JE; (F) = JE,(F); in this case, which can occur only in the case of type I crossing,
the interference effect is triggered, and thus we observe a damped beating effect with (pseudo-)period
T = 2w /(R(E,) — R(E))) for large time intervals.

In this way, we have a theoretical model for a quantum sensor that makes it possible to verify whether the
intensity F of the external field assumes the specific value for which type I crossing and beating effect occur; we
observe that this specific value can be appropriately selected by adjusting the value of the parameters of the
internal double-well potential V.
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Figure 3. Type II crossing for the model (1) wherea = 5, oy = — 3.2,and o, = — 2. In the Lh.s. panel we plot the real part of E;(F)

(fullline) and E,(F) (broken line); in the r.h.s. panel we plot the imaginary part of E,(F) (full line) and E,(F) (broken line).

Quantitative analysis. To verify this idea on an explicit one-dimensional toy model, we consider the double-
well potential with two attractive singular interactions due to two Dirac’s 6,

Vi(x) = 16y + @205, 61 < 2, oy < 3 < 0, (D

where 6, is such that fR b, f (x)dx = f (y). The idea of using Dirac’s § to model wells or barriers goes back to
Enrico Fermi [24], and in this context it has been extensively used for the study of the Stark effect on both a single
well [25-30], and on double-well [22, 23, 31, 32] cases.

The spectrum of H is purely continuous and it coincides with the entire real axis. Therefore, no stable states
are possible. Itis possible, however, to have resonances E associated with metastable states ¢ such that Hy) = Ey
where ) satisfies the outgoing conditions [22] 1/ (x) = C;"(x) for x > a, where C,-i(x) = B;(x) £ iA;(x),A;and
B; being the two Airy functions. Resonances of H can be equivalently defined as the complex poles of the analytic
continuation of the kernel of the resolvent operator [H — z]~! from the upper half-plane Jz > 0 to the lower
half-plane Jz < 0 (see [32] and references therein). If we denote by K, = Koi, if £3z > 0, the kernel of the

2
resolvent operator [Hy — z]~!, where Hy = —% — Fx, then it is known that

. Fy +z [ Fx+z
| _ <
- Cl( PR )Az( PR ),x\y

Ki(x, y52) = —= ) 2
0% ¥5 2) F/3 Cit Fx +z Fy +z &
s ) UTTEs ) e
The kernel K = K=, if +3z > 0, of the resolvent operator [H — z]~! can be obtained by Koi as follows [33]:
RE(x, y; 2)
K*(x, y; 2) = K (x, y; 2) + ——> 2227 3
(& ¥ 2) = Ko (%, y5 2) DY) 3
where
2
RE, y32) = Y Ky (%, X 2)M,y (D) Ko (Xms 15 2)s 4)
n,m=1
and where, adopting the shortcut notation k]-j)}(z) = Koi(x]-, Xz; 2),
1 ki 1+ ki
pi(e) = LT IO 06O _ s ko), )
(6518
and
1
—+ kiz)  —ki5(2)
M*z) =" (6)

I .
—k(2)  — + ki)
(&3]
Then resonances z for H are the zeros such that Jz < 0 of the analytic continuation of the function D™ (2)
from the upper half-plane Jz > 0 to the lower half-plane Jz < 0, and it is possible to compute them
numerically once parameter values F, o, oy, x7 and x, are assigned.

4
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The two resonances have respectively real parts close to the values of the two single-well ground states:

RE, ~ —aj/4and RE, ~ —a3/4 — Fa, where ~means the asymptotic value for large |, »|, and where we set,
to fix the ideas and without losing in generality, x; = 0 and x, = a > 0. Thus, crossing phenomenon occurs when
Fis close to the critical value
2 2
Fon 822, @)
4a

and for these values we have that the Agmon lengths of the inner and outer barriers are given by
p; ~ (a3 — a3)/12Fcand p, ~ a3/12F. Thusatype I crossing occurs when 3/3 2> a;/a,, and type Il when
/oy 2 /3. Actually, this theoretical result, which holds true exactly only in the semiclassical limit in which
|y 5| and | F| go to infinity, retains good validity even when the parameters are finite. For example, for a = 5,
oy = — 2.8,and a,, = — 2,atype crossing is observed in figure 2; from the semiclassical result (7), it turns out
that the theoretical value of Fis 0.192, and this result is in good agreement with the numerical experiment in
which Fc takes the value 0of 0.190(2). For a = 5, o; = — 3.2,and a,, = — 2 a type Il cross is observed in figure 3,
and again there is good agreement between (7) and the result of the numerical experiment.

An important remark concerns the fact that from the type of crossing will follow a different behaviour of
observables. Let us consider, for example, the survival amplitude A(f) = (1),|t),) where 1), is the wave function of
the initial state, and where ¢, = e~ ), is the wave function of the state at instant . In absence of stable states the
survival amplitude decreases in time [32]. This decay is, for a generic Hamiltonian without stable states, the
contribution of two terms: one of exponential type that is dominant for intermediate time intervals, and one of
power type that instead becomes dominant for longer times; see [34] where it was numerically conjectured thata
transition effect between the two different types of decay starts around a certain instant f, see also [35-42] for
rigorous results, and [43] for the experimental evidence of the deviation from exponential decay. However, in
our model the power law decay does not play any role because the spectrum of H is not bounded from below
[44], and thus we expect to observe only the exponential decay. In particular, since there are only two narrow
resonances E,(F) and E,(F) having small imaginary part then from the residue theorem it follows that the
dominant term of the survival amplitude is given by [27]

ww%wm+§QWW% ®)
=
where
¢ = R; il M, (Ej(F)) Q5 )
and
0= [ KiGo i B () o) de (10)
Py = [ K Gem 33 E(E) o)y (11)

and where R;is the value of the residue of the function 1/ Dt (z)atz= Ej(F). The evolution operator e hisan
integral operator with kernel [45]

exp{g[(";—t”z — <P 4 tF(x + y)] }
Uo(x, 5 1) = o= , (12)
iy

and the term (¢)|e~"*foq)y)) decays more rapidly than the exponential e 175"l in the case of narrow resonances.
Then, the asymptotic behaviour of A(#) is governed only by the contributions given by the two resonances. If we
are in the type II crossing case, where e.g., | JE; (F)| < |JE,(F)|for each value of F as in figure 3, then the
dominant contribution to the exponentially decreasing behaviour of |A(#)| is given by |gle~17F1®)1, If, on the
other hand, we are in the case of type I crossing, and if we call F-the value of Fat which JE,(F) = JE,(F), then
we still observe an exponentially decreasing behaviour given by |¢jle~"IEi®)l, where j = 1if F < Fc,and j = 2 if
F > Fcasin figure 2; eventually, only for F close to Fthere is a damped oscillating behaviour due to the
interference between the two resonances, and in this case the dominant behaviour of |A(#)| is given by:

e—t|jE1(FC)||C1 + Cze_th]) (13)

with pseudo-period T = 27 /wwhere w = RE,(Fc) — RE; (F).
We consider a numerical experiment where 9/ is a normalized wavefunction localized on the L.h.s. well
corresponding to x = 0; for argument’s sake let us assume that ¢ is the Gaussian function

5



10P Publishing

Phys. Scr. 99 (2024) 105124 A Sacchetti
2 0 o e . —— —
0,81
0,67
|A(T) |
0,4+
0,2
100 5000 10000
t

Figure 4. In the case of type I crossing correspondingtoa = 5, a; = — 2.8,and a, = — 2, we can observe in the interval t € [10%,10°],
a damped beating behaviour (full line) of |A(#)| when Fis close to the critical value F = 0.190(2) for which we have exact crossing of
the imaginary parts of the two resonances; if F = 0.17 < Fc (broken line) or F = 0.21 > F(dotline) no significant oscillation is
observed.

Table 1. Table of values of the resonances Ej and of the coefficients ¢;, j =1, 2,

for different values of F; wherea = 5, «; = — 2.8,and o, = — 2 correspond
toatypel crossing.

F=0.17 < F¢ F=Fc=0.190(2) F=021>Fc
RE, —1.96(3) —1.97(0) —2.06(6)
JE, —0.35(1) - 1078 —0.36(8) - 10~ —0.13(7) - 102
RE, —1.86(0) —1.95(7) —1.96(3)
JE, —0.32(9) - 1072 —0.36(8) - 107> —0.14(6) - 107*
R 0.41(0) - 1072 0.44(8) 0.96(5)
Jq 0.85(1)- 1077 —0.027(6) 0.13(0) - 107>
Ro, 0.96(6) 0.52(1) 0.34(9) - 1072
Jo —0.11(2) - 107* 0.027(5) —0.14(4) - 10

Yo(x) = o) 1/4e>"/4" where o = 1/2, (14)

and we go on to study the behaviour of A(¢) for ¢ € [10%,10°] and for some F < F., F > F, and for F = F. For
a=>5,a; =—2.8,and a, = — 2, we have a type I crossing when F takes the value Fc = 0.190(2); for the values of
the resonances Ej, and of the coefficients cj, j = 1,2, see table 1. As expected, in figure 4 (full line) a damped
oscillating behaviour is observed for |A(#)| when the intensity F of the external field is close to F. On the other
hand, when Fis different from this value a damping without significant oscillations is observed (see figure 4 -
broken lines) because one of the two metastable states decays much faster than the other one, and therefore it is
not possible to have along times interference phenomenon. In this case the damping effect is slower than in the
first case, because one of the two resonances is much narrower than those obtained when F = F..

We remark that the critical value F- does not depend on the initial state; instead, as the parameters «, o, and
avary, one can tune the critical value Fc as desired.

As a consequence of this numerical experiment, it can be stated that for this choice of parameters significant
oscillations of the survival probability are observed when Fis close to the predetermined value F, while for F
outside the range [Fc — p, Fc + 0r], where the measurement tolerance 6is less that the 10% of F, the
imaginary parts of the two resonances are substantially different and therefore no significant oscillations occur.

Conclusions. In conclusion, this paper analyses in detail the time evolution of the survival amplitude for a
Schrodinger operator with an asymmetrical double-well potential under the effect of a Stark perturbation. Itis
verified in a numerical experiment that this is a useful theoretical model for designing a quantum sensor for
which the response to an external DC electric field has two distinctly different behaviours depending on whether
the field strength is close to or different from a predetermined value Fc of the external field strength, with a
precision on the order of 10% of the value F. By means of (7) the value F can be chosen by tuning the internal
potential parameters.
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The novelty is that it is possible to verify a specific value of the DC electric field simply by observing whether
or not significant oscillations of the survival probability are present, regardless of their period. In some ways we
have a phenomenological analogy with RLC electrical circuits that resonate at a specific external frequency; in
our model, similarly, only at a specific value of the DC electric field strength does a long-term interference
between two metastable states occur, producing a periodic beating effect.

Future research may be directed towards addressing the following problems:

— Experimental validation of the theoretical model can be considered in the case where the double-well
potential is realised by means of heterostructures instead of two Dirac é. In fact, although in this case the
formulas (8)—(11) cannot simply be applied since the kernel of the resolvent operator is not easy to deal
with, the resonances can be calculated by applying the outgoing boundary conditions and the numerical
calculation of the survival amplitude can be performed, for example, by the spectral splitting method.

— Extension of the model to 2D or 3D devices. We must emphasise that in this case a rather serious technical
problem arises, since in dimension greater than one the calculation of Agmon distances p; and p, becomes
difficult, and the evaluation of the ratio p;/ p, is essential to decide whether the resonance crossing is of type
TorlIl
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