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We consider matching with shifts for Gibbsian sequences. We prove that
the maximal overlap behaves as c logn, where c is explicitly identified in
terms of the thermodynamic quantities (pressure) of the underlying potential.
Our approach is based on the analysis of the first and second moment of the
number of overlaps of a given size. We treat both the case of equal sequences
(and nonzero shifts) and independent sequences.

1. Introduction. In sequence alignment one wants to detect significant sim-
ilarities between two (e.g., genetic or protein) sequences. In order to distinguish
“significant” similarities, one has to compute the probability that a similarity of a
certain size occurs for two independent sequences. The symbols in the sequences
are, however, not necessarily occurring independently. From the point of view of
statistical mechanics, it is quite natural to assume that the symbols in the sequence
are generated according to a stationary Gibbs measure: this is the equilibrium mea-
sure which maximizes the entropy under physical constraints such as energy con-
servation. A priori there is no reason to assume that the symbols (bases) in, for
example, a DNA sequence, are i.i.d. or even Markov. It can, however, be plau-
sible to assume that there is an underlying Markov chain of which the symbol
sequence is a reduction: in that case we arrive at a so-called hidden Markov chain,
and it is well known that hidden Markov chains have generically infinite mem-
ory (though the symbol at a particular location only exponentially weakly depends
on symbols far away). Therefore, proposing a Gibbs measure with exponentially
decaying interaction as a model for the sequence seems quite natural. Besides mo-
tivation coming from sequence alignment, also in dynamical systems, [4] one can
ask for the probability of having a large “overlap” in a trajectory of length n, but
without specifying the location of the piece of trajectory that is repeated. It is clear
that this probability is related to the entropy, but not in such a straightforward way
as the return time. In (hyperbolic) dynamical systems, by coding and partitioning,
one again naturally arrives at Gibbs measures with exponentially decaying inter-
actions.

The first nontrivial problem associated with sequence alignment is the compar-
ison of two sequences where it is allowed to shift one sequence w.r.t. the other.
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Remark that this problem is not easy even in the case of independent symbols in
the sequence, because one allows for shifting one sequence w.r.t. the other. The
comparison consists in the simplest case in finding the maximal number of con-
secutive equal symbols. Given two (independent) i.i.d. sequences, in [5] and [6]
it is proved that the maximal overlap, allowing shifts, behaves for large sequence
length as c logn + X, where n is the length of both sequences, c is a constant
depending on the distribution of the sequence, and where X is a random variable
with a Gumbel distribution. The fact that c log(n) is the good scale can be easily
understood intuitively: it corresponds to the maximum of order n weakly depen-
dent variables. However, even in the case of i.i.d. sequences, it is not so easy to
make that intuition rigorous, as we allow shifts. In fact, the results of [5] and [6]
are based on large deviations, together with an analysis of random walk excur-
sions. As the proofs use a form of permutation invariance, they cannot be extended
to non-i.i.d. cases. In [9] the maximal alignment with shift is shown for Markov
sequences, which requires a theory of excursions of random walk with Markovian
increments.

In this paper we focus on the more elementary question of showing that the
maximal overlap allowing shifts behaves as c logn, but now in the context of gen-
eral Gibbsian sequences. We also allow to match a sequence with itself (where
of course we have to restrict to nonzero shifts). The constant c is explicitly iden-
tified and related to thermodynamic quantities associated to the potential of the
underlying Gibbs measure.

Our approach is based on a first and second moment analysis of the random vari-
able N(σ,n, k) that counts the number of shift-matches of size k in a sequence σ

of length n. One easily identifies the scale k = kn = c log(n) which discriminates
the region where the first moment EN(σ,n, kn) goes to zero (as n → ∞) from
the region where EN(σ,n, k) diverges. Via a second moment estimate, we then
prove that this scale also separates the N(σ,n, k) → 0 versus N(σ,n, k) → ∞
(convergence in probability) region.

Our paper is organized as follows: in Section 2 we introduce the basic prelim-
inaries about Gibbs measures, in Section 3 we analyze the first moment of N in
the case of matching a sequence with itself and in Section 4 we study the second
moment. In Section 5 we treat the case of two independent (Gibbsian) sequences
with the same and with different marginal distributions.

2. Definitions and preliminaries. We consider random stationary sequences
[8] σ = {σ(i) : i ∈ Z} on the lattice Z, where σ(i) takes values in a finite set A.
The joint distribution of {σ(i) : i ∈ Z} is denoted by P. We treat the case where
P is a Gibbs measure with exponentially decaying interaction; see Section 2.3
below for details. The configuration space � = AZ is endowed with the product
topology (making it into a compact metric space). The set of finite subsets of Z is
denoted by S. For V,W ∈ S, we put d(V,W) = min{|i − j | : i ∈ V, j ∈ W }. For
V ∈ S, the diameter is defined via diam(V ) = max{|i − j |, i, j ∈ V }. For V ∈ S,
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FV is the sigma-field generated by {σ(i) : i ∈ A}. For V ∈ S, we put �V = AV .
For σ ∈ � and V ∈ S, σV ∈ �V denotes the restriction of σ to V . For i ∈ Z and
σ ∈ �, τiσ denotes the translation of σ by i : τiσ (j) = σ(i + j). For a local event
E ⊆ �, the dependence set of E is defined by the minimal V ∈ S such that E

is FV measurable. We denote 1 for the indicator function.

2.1. Patterns and cylinders. For n ∈ N, n ≥ 1, let Cn = [1, n]∩Z. An element
An ∈ �Cn is called a n-pattern or a pattern of size n. For a pattern An ∈ �Cn , we
define the corresponding cylinder C (An) = {σ ∈ � :σCn = An}. The collection
of all n-cylinders is denoted by Cn = ⋃

An∈�Cn
C (An). Sometimes, to denote the

probability of the cylinder associated to the pattern An, we will use the abbrevia-
tion

P(An) := P(C (An)) = P(σCn = An).(2.1)

For Ak = (σ (1), σ (2), . . . , σ (k)) a k-pattern and 1 ≤ i ≤ j ≤ n, we define the
pattern Ak(i, j) to be the pattern of length j − i + 1 consisting of the symbols
(σ (i), σ (i + 1), . . . , σ (j)). For two patterns Ak , Bl , we define their concatenation
AkBl to be the pattern of length k + l consisting of the k symbols of Ak followed
by the l symbols of Bl . Concatenation of three or more patterns follows obviously
from this.

2.2. Shift-matches. We will study properties of the following basic quantities.

DEFINITION 2.1 (Number of shift-matches). For every configuration σ ∈ �

and for every n ∈ N, k ∈ N, with k ≤ n, we define the number of matches with shift
of length k up to n as

N(σ,n, k) = 1

2

n−k∑
i=0

n−k∑
j=0,j 	=i

1{(τiσ )Ck
= (τjσ )Ck

}

=
n−k∑

i 	=j=0

1
(
σ(i + 1) = σ(j + 1), σ (i + 2) = σ(j + 2), . . . ,(2.2)

σ(i + k) = σ(j + k)
)
.

DEFINITION 2.2 (Maximal shift-matching). For every configuration σ ∈ �

and for every n ∈ N, we define M(σ,n) to be the maximal length of a shift-
matching up to n, that is the maximal k ∈ N (with k ≤ n) such that there exist
i ∈ N and j ∈ N (with 0 ≤ i < j ≤ n − k) satisfying

(τiσ )Ck
= (τjσ )Ck

,(2.3)

where we adopt the convention max(∅) = 0.
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DEFINITION 2.3 (First occurrence of a shift-matching). For every configura-
tion σ ∈ � and for every k ∈ N, we define T (σ, k) to be the first occurrence of a
shift-match, that is, the minimal n ∈ N (with k ≤ n) such that there exist i ∈ N and
j ∈ N (with 0 ≤ i < j ≤ n − k) satisfying

(τiσ )Ck
= (τjσ )Ck

,(2.4)

where we adopt the convention min(∅) = ∞.

The following proposition follows immediately from these definitions.

PROPOSITION 2.4. The probability distributions of the previous quantities are
related by the following “duality” relations:

P
(
N(σ,n, k) = 0

) = P
(
M(σ,n) < k

) = P
(
T (σ, k) > n

)
.(2.5)

2.3. Gibbs measures. We now state our assumptions on P, and recall some
basic facts about Gibbs measures [11]. The reader familiar with this can skip this
section.

We choose for P the unique Gibbs measure corresponding to an exponentially
decaying translation-invariant interaction. In dynamical systems language this cor-
responds to the unique equilibrium measure of a Hölder continuous potential.

2.3.1. Interactions.

DEFINITION 2.5. A translation-invariant interaction is a map

U :S × � → R,(2.6)

such that the following conditions are satisfied:

1. For all A ∈ S, σ 
→ U(A,σ) is FA-measurable.
2. Translation invariance:

U(A + i, τ−iσ ) = U(A,σ) ∀A ∈ S, i ∈ Z, σ ∈ �.(2.7)

3. Exponential decay: there exist γ > 0 such that

‖U‖γ := ∑
A0

eγ diam(A) sup
σ∈�

|U(A,σ)| < ∞.(2.8)

The set of all such interactions is denoted by U. Here are some standard exam-
ples of elements of U:

1. Ising model with magnetic field h :A = {−1,1}, U({i, i + 1}, σ ) = Jσiσi+1,
U({i}, σ ) = hσi and all other U(A,σ) = 0. Here J,h ∈ R. If J < 0, we have
the standard ferromagnetic Ising model.

2. General finite range interactions. An interaction U is called finite-range if there
exists an R > 0 such that U(A,σ) = 0 for all A ∈ S with diam(A) > R.

3. Long range Ising models U({i, j}, σ ) = Jj−iσiσj with |Jk| ≤ e−γ k for some
γ > 0 and U(A,σ) = 0 for all other A ∈ S.
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2.3.2. Hamiltonians. For U ∈ U, ζ ∈ �, � ∈ S, we define the finite-volume
Hamiltonian with boundary condition ζ as

H
ζ
�(σ) = ∑

A∩�	=∅

U(A,σ�ζ�c)(2.9)

and the Hamiltonian with free boundary condition as

H�(σ) = ∑
A⊆�

U(A,σ),(2.10)

which depends only on the spins inside �. In particular, for Ak a pattern, σ ∈
C (Ak), HCk

(σ ) depends only on Ak . We will denote, therefore,

H(C (Ak)) = HCk
(σ )

for σ ∈ C (Ak).
Corresponding to the Hamiltonian in (2.9), we have the finite-volume Gibbs

measures P
U,ζ
� , � ∈ S, defined on � by

∫
f (ξ) dP

U,ζ
� (ξ) = ∑

σ�∈��

f (σ�ζ�c)
e−H

ζ
�(σ)

Z
ζ
�

,(2.11)

where f is any continuous function and Z
ζ
� denotes the partition function normal-

izing P
U,ζ
� to a probability measure:

Z
ζ
� = ∑

σ�∈��

e−H
ζ
�(σ).(2.12)

2.3.3. Gibbs measures with given interaction. For a probability measure P

on �, we denote by P
ζ
� the conditional probability distribution of σ(i), i ∈ �,

given σ�c = ζ�c . Of course, this object is only defined on a set of P-measure one.
For � ∈ S,	 ∈ S and � ⊆ 	, we denote by P	(σ�|ζ ) the conditional probability
to find σ� inside �, given that ζ occurs in 	 \ �.

DEFINITION 2.6. For U ∈ U, we call P a Gibbs measure with interaction U

if its conditional probabilities coincide with the ones prescribed in (2.11), that is,
if

P
ζ
� = P

U,ζ
� P-a.s. � ∈ S, ζ ∈ �.(2.13)

In our situation, with U ∈ U, the Gibbs measure P corresponding to U is
unique. Moreover, it satisfies the following strong mixing condition: for all V ,
W ∈ S and all events A ∈ FV , B ∈ FW ,∣∣∣∣P(A ∩ B)

P(B)
− P(A)

∣∣∣∣ ≤ e−c d(V,W),(2.14)

where c > 0 depends of course on the interaction U .
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2.4. Thermodynamic quantities. We now recall some definitions of basic im-
portant statistical mechanics quantities.

DEFINITION 2.7. The pressure p(U) of the Gibbs measure P associated with
the interaction U is defined as

p(U) = lim
n→∞

1

n
logZn,(2.15)

where

Zn = ∑
σCn∈�Cn

exp
(
− ∑

A⊆Cn

U(A,σ)

)

is the partition function with the free boundary conditions.

DEFINITION 2.8. The entropy s(U) of the Gibbs measure P associated with
the interaction U is defined as

s(U) = lim
n→∞−1

n

∑
An∈�Cn

P(C (An)) log P(C (An)).(2.16)

In terms of the interaction U , we have the following basic thermodynamic rela-
tion between pressure, entropy and the Gibbs measure P corresponding to U :

s(U) = p(U) +
∫

fU dP,(2.17)

where

fU(σ) = ∑
A0

U(A,σ)

|A|
denotes the average internal energy per site.

We also have the following relation between fU and the Hamiltonian:

H
ξ
�(σ) = ∑

i∈�

τifU(σ ) + O(1),(2.18)

where O(1) is a quantity which is uniformly bounded in �,σ, ξ .
The function fU is what is called the potential in the dynamical systems lit-

erature. An exponentially decaying interaction U then corresponds to a Hölder
continuous potential fU .

The following is a standard property of (one-dimensional) Gibbs measures with
interaction U ∈ U. For the proof, see [3], page 7. See also [7], pages 164–165 for
properties of one-dimensional Gibbs measures.
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PROPOSITION 2.9. For the unique Gibbs measure P with interaction U , there
exists a constant γ > 1 such that, for any configuration σ ∈ � and for any pattern
Ak ∈ �Ck

, we have

γ −1e−kp(U)e−H(C (Ak)) ≤ P(C (Ak)) ≤ γ e−kp(U)e−H(C (Ak)).(2.19)

Two other well-known properties of Gibbs measures in d = 1, which will be
used often, are listed below.

PROPOSITION 2.10. For the unique Gibbs measure P corresponding to the
interaction U ∈ U, there are constants ρ < 1 and c > 0, such that, for all Ak ∈
�Ck

and for all η ∈ �,

P(σCk
= Ak) ≤ ρk(2.20)

and

c−1P(σCk
= Ak) ≤ P(σCk

= Ak|ηZ\Ck
) ≤ P(σCk

= Ak)c.(2.21)

PROOF. Inequality (2.20) follows from the finite-energy property, that is, there
exists δ > 0 such that, for all σ ,

0 < δ < P
(
σi = αi |σZ\{i}

)
< (1 − δ).

This in turn follows from

P
(
σi = αi |σZ\{i}

) = exp(−Hσ{i}(αi))∑
α∈A exp(−Hσ{i}(α))

and

sup
σ,αi

Hσ{i}(αi) < ∞

by the exponential decay condition (2.8).
Therefore,

P(σCk
= Ak) ≤ ∏

i∈Ck

sup
σZ\{i}

P
(
σi = αi |σZ\{i}

) ≤ (1 − δ)k.

Inequalities (2.21) are proved in [7], Proposition 8.38 and Theorem 8.39. �

2.5. Useful lemmas. In the proofs of our theorems we will frequently make
use of the following results.

LEMMA 2.11. For q ≥ 0, the function p(qU)
q

is nonincreasing.
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PROOF. From the definition of p(U) and s(U) and from the thermodynamic
relation (2.17), which is equivalent to s = p − q

dp
dq

, it follows immediately

d

dq

(
p(qU)

q

)
= −s(qU)

q2 .

The claim is then a consequence of the positivity of the entropy. �

In order to state the next lemma, we need the following notation which will be
used throughout the paper.

DEFINITION 2.12. Let ak and bk be two sequences of positive numbers. Then
we write

ak ≈ bk,

if log(ak) − log(bk) is a bounded sequence and

ak � bk,

if

ak ≤ ck

with ck ≈ bk .

Note that we have that ≈ and � “behave” as ordinary equalities and inequal-
ities and are “compatible” with usual equalities and inequalities. For example, if
ak � bk and bk ≈ ck , then ak � ck , if ak ≈ bk and bk ≤ ck , then ak � ck , etc.

LEMMA 2.13. Define

α = p(U) − p(2U)

2
.(2.22)

We have α > 0 and ∑
Ak∈�Ck

[P(σCk
= Ak)]2 ≈ e−2kα,(2.23)

while, for s > 2, ∑
Ak∈�Ck

[P(σCk
= Ak)]s � e−skα.(2.24)

PROOF. The positivity of α follows from Lemma 2.11. From Proposition 2.9
we obtain ∑

Ak∈�Ck

[P(σCk
= Ak)]2 ≈ ∑

Ak∈�Ck

e−2kp(U)e−2H(C (Ak))

≈ e−2k[p(U)−p(2U)/2] = e−2αk.
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For s > 2, we have∑
Ak∈�Ck

P(σCk
= Ak)

s ≈ ∑
Ak∈�Ck

e−skp(U)e−sH(C (Ak))

≈ e−sk[p(U)−p(sU)/s] ≤ e−sαk,

where in the last inequality we have used the monotonicity property of Lem-
ma 2.11. �

3. The average number of shift matches. We will focus on the quantity
N(σ,n, k) of Definition 2.1 and we will study how the number of shift-matchings
behaves when the size of the matching, k, is varied as a function of the string
length, n. It is clear that when k = k(n) is very large (say, of the order of n),
then there will be no matching of size k with probability close to one, in the limit
n → ∞. On the other hand, if k = k(n) is too small, then the number of shift-
matchings will be very large with probability close to one. We want to identify a
scale k∗(n) such that N(σ,n, k∗(n)) will have a nontrivial distribution. Our first
result concerns the average of N(σ,n, k). Define

k∗(n) = lnn

α
(3.1)

with α as in (2.22). For sequences k′(n) and k(n), we write k(n) � k′(n) if k(n)−
k′(n) → ∞ as n → ∞.

Then we have the following result.

THEOREM 3.1. Let {k(n)}n∈N be a sequence of integers. Then we have the
following:

1. If k∗(n) � k(n), then limn→∞ E(N(σ,n, k(n))) = ∞.
2. If k(n) � k∗(n), then limn→∞ E(N(σ,n, k(n))) = 0.
3. If k(n) − k∗(n) is a bounded sequence, then we have

0 < lim inf
n→∞ E(N(σ,n, k(n))) ≤ lim sup

n→∞
E(N(σ,n, k(n))) < ∞.(3.2)

PROOF. We will assume (without loss of generality) that the sequence is such
that

lim
n→∞

k(n)

n
= 0.

We may rewrite N(σ,n, k) by summing over all possible patterns of length k:

N(σ,n, k) =
n−k∑
i=0

n−k∑
j=i+1

∑
Ak∈�Ck

1{(τiσ )Ck
= (τjσ )Ck

= Ak}.
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We split the above sum into two sums, one (S0) corresponding to absence of over-
lap between (τiσ )Ck

and (τjσ )Ck
(i.e., the indices i and j are more than k far

apart) and one (S1) where there is overlap:

S0 =
n−2k∑
i=0

n−k∑
j=i+1+k

∑
Ak∈�Ck

1{(τiσ )Ck
= (τjσ )Ck

= Ak},

S1 =
n−k∑
i=0

i+k∑
j=i+1

∑
Ak∈�Ck

1{(τiσ )Ck
= (τjσ )Ck

= Ak}.

We have of course E(N(σ,n, k)) = E(S0)+E(S1). In order to prove the first state-
ment of the theorem, it suffices to show that E(S0) diverges under the hypothesis
k∗(n) � k(n). Using translation-invariance, one has

E(S0) =
n−k∑
l=k

(n − k + 1 − l)
∑

Ak∈�Ck

P
(
σCk

= (τlσ )Ck
= Ak

)

=
n−k∑
l=k

(n − k + 1 − l)
∑

Ak∈�Ck

P(σCk
= Ak)P

(
(τlσ )Ck

= Ak|σCk
= Ak

)
.

Because of the mixing conditions (2.14), we have

E(S0) =
n−k∑
l=k

(n − k + 1 − l)
∑

Ak∈�Ck

[P(σCk
= Ak)]2 + �(n, k),(3.3)

where the error �(n, k) is bounded by

|�(n, k)| ≤ O(1)

n−k∑
l=k

(n − k + 1 − l)
∑

Ak∈�Ck

P(σCk
= Ak)

2e−c(l−k).

Using the mixing property (2.14) and Lemma 2.13, the error can be bounded by

|�(n, k)| ≤ O(1)e−2αk
n−2k∑
m=0

(n − 2k − m + 1)e−cm ≤ O(1)e−2αk.(3.4)

On the other hand, applying Lemma 2.13, we have that

n−k∑
l=k+1

(n − k + 1 − l)
∑
Ak

P(Ak)
2 ≈ (n − 2k)2e−2αk.(3.5)

Combining together (3.3), (3.4) and (3.5), we obtain

(n − 2k)2e−2αk � E(N(σ,n, k)),(3.6)

which proves statement 1 of the theorem.
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To prove statement 2, we have to control E(S1), which is the contribution to
E(N(σ,n, k) due to self-overlapping cylinders. Using translation-invariance, we
have

E(S1) =
k−1∑
l=1

(n − k + 1 − l)
∑

Ak∈�Ck

P
(
σCk

= (τlσ )Ck
= Ak

)
.

We further split this in two sums, namely, E(S1) = E(S′
1) + E(S′′

1 ) with

E(S′
1) =

�k/2�∑
l=1

(n − k + 1 − l)
∑

Ak∈�Ck

P
(
σCk

= (τlσ )Ck
= Ak

)
,(3.7)

E(S′′
1 ) =

k−1∑
l=�k/2�+1

(n − k + 1 − l)
∑

Ak∈�Ck

P
(
σCk

= (τlσ )Ck
= Ak

)
.(3.8)

Let us consider first E(S′′
1 ), that is, �k/2� < l < k. In this case the overlap between

Ck and τlCk imposes that the sum over cylinders of length k can be reduced to a
sum over cylinders of length l. In the notation of Section 2.1, we have the following
inequality:

1
(
σCk

= (τlσ )Ck
= Ak

)
(3.9)

≤ 1
(
σCl+k

= Ak(1, l)Ak(1, l)Ak(1, k − l)
)
.

In fact, if the pattern Ak is such that the set {σ ∈ � :σCk
= (τlσ )Ck

= Ak} is not
empty, then we have equality in (3.9). Hence,∑

Ak∈�k

P
(
σCk

= (τlσ )Ck
= Ak

)

= ∑
Al

∑
Bk−l

P
(
σCk

= AlBk−l , (τlσ )Ck
= AlBk−l

)
(3.10)

≤ ∑
Al

P
(
σCl+k

= AlAlAl(1, k − l)
)

� ∑
Al

P(Al)
2P

(
Al(1, k − l)

)
,

where in the first inequality we used the fact that contributions with Bk−l 	=
Al(1, k − l) are zero. Therefore, using Proposition 2.10, we obtain

E(S′′
1 ) �

k∑
l=�k/2�+1

(n − k − l)
∑
Al

P(Al)
2ρk−l .
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From this we deduce, thanks to Lemma 2.13,

E(S′′
1 ) � (n − k)

k∑
l=�k/2�+1

e−2lαρk−l

≤ (n − k)e−kα
k∑

l=�k/2�+1

ρk−l

(3.11)

≤ (n − k)e−kα
∞∑

x=0

ρx

≈ (n − k)e−kα.

We now treat E(S′
1), that is, the case with 1 ≤ l ≤ �k/2�. Write k = rl + q with

r and s integers, r ≥ 2, 0 ≤ q ≤ l − 1. If the set {σ :σCk
= (τlσ )Ck

= Ak} is not
empty, then the pattern Ak has to consist of r + 1 repetitions of the subpattern
Ak(1, l) followed by a subpattern Ak(1, q), where q is such that (r + 1)l + q =
k + l. Hence,

1
(
σCk

= (τlσ )Ck
= Ak

) ≤ 1
(
σCk+l

= Ak(1, l) · · ·Ak(1, l)︸ ︷︷ ︸
r+1 times

Ak(1, q)
)
.(3.12)

At this stage one could repeat the same approach as in the previous estimate for
E(S′′

1 ) by immediately employing Proposition 2.10. However, this approach would
not work because the repeating blocks are two small. To circumvent this, we ob-
serve that in the pattern [Ak(1, l)]r+1Ak(1, q) there exists a piece of length �k/2�
which occurs at least two times, and the remaining l symbols are fixed by that
piece. Therefore, using Proposition 2.10,∑

Ak∈�k

P
(
σCk

= (τlσ )Ck
= Ak

) ≤ ∑
B�k/2�

P
(
B�k/2�

)2
ρl.(3.13)

By inserting (3.13) in (3.7) and using Lemma 2.13, we finally have

E(S′
1) � (n − k)e−kα.(3.14)

Combining together the estimates (3.5), (3.11) and (3.14), we obtain so far

E(N(σ,n, k)) � (n − k)e−kα + (n − 2k)2e−2kα(3.15)

from which statement 2 of the theorem follows.
Finally, combining (3.6) and (3.15) gives statement 3 of the theorem. �

4. Second moment estimate. In this section we will show that the random
variable N(σ,n, k(n)) converges in probability to +∞ in the regime where k(n) �
k∗(n), while it converges to 0 in the opposite regime k(n) � k∗(n). Finally, if the
difference k(n) − k∗(n) is bounded, then we show that N(σ,n, k(n)) is tight and
does not converge to zero in distribution. These results will follow as an application
of the method of first moment and second moment, respectively.
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THEOREM 4.1. Let {k(n)}n∈N be a sequence of integers. For every positive
m ∈ N:

1. If k∗(n) � k(n), then limn→∞ P(N(σ,n, k(n)) ≤ m) = 0.
2. If k(n) � k∗(n), then limn→∞ P(N(σ,n, k(n)) ≥ m) = 0.
3. If k(n)− k∗(n) is bounded, then N(σ,n, k(n)) is tight and does not converge to

zero in distribution. More precisely, we have that there exists a constant C > 0
such that

lim sup
n→∞

P
(
N(σ,n, k(n)) > m

) ≤ C/m(4.1)

and

lim inf
n→∞ P

(
N(σ,n, k(n)) > 0

)
> 0.(4.2)

PROOF. We will assume, once more, without loss of generality that

lim
n→∞

k(n)

n
= 0.

Statement 2 and (4.1) follow from Theorem 3.1 and the Markov inequality. To
prove statement 1 and (4.2), we use the Paley–Zygmund inequality [10] (which is
an easy consequence of the Cauchy–Schwarz inequality), which gives that for all
0 ≤ a ≤ 1

P
(
N ≥ aE(N)

) ≥ (1 − a)2 E(N)2

E(N2)
.(4.3)

We fix now a sequence kn ↑ ∞ such that k∗
n � kn. Consider the auxiliary ran-

dom variable

Nn :=
n−kn∑

i,j=0,|i−j |>2kn

1
(
(τiσ )Ckn

= (τjσ )Ckn

)
.(4.4)

Clearly, to obtain statement 1, it is sufficient that Nn goes to infinity with proba-
bility one. On the other hand, using the first moment computations of the previous
section, we have

E(Nn) ≈ n2e−2αkn.(4.5)

So, in order to use the Paley–Zygmund inequality, it is sufficient to show that

E(N 2
n ) � ξ4

n ,(4.6)

where we introduced the notation

ξn := ne−αkn.(4.7)

Remark that ξn → ∞ for our choice of kn (as in statement 1).
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Indeed, if we have (4.6) in the regime k∗(n) � k(n), then the ratio

E(N 2)

(E(N ))2

remains bounded from above as n → ∞, and hence, using (4.3), Nn diverges with
probability at least δ > 0. Therefore, in that case, by ergodicity, N(σ,n, kn) ≥ Nn

goes to infinity with probability one, since the set of σ ’s such that N(σ,n, kn) goes
to infinity is translation-invariant, and hence has measure zero or one.

To see how statement (4.2) follows from (4.6) in the regime where k(n)− k∗(n)

is bounded, use the (more classical) second moment inequality

P(N > 0) ≥ (E(N ))2

E(N 2)

combined with

N(σ,n, k(n)) ≥ N .

We now proceed with the proof of (4.6). We have

E(N 2
n ) = ∑

i,j,r,s,|i−j |>2kn,|r−s|>2kn

∑
Akn,Bkn

P((Akn)i(Akn)j (Bkn)r (Bkn)s),(4.8)

where we use the abbreviate notation (Akn)i for the event (τiσ )Ckn
= Akn . Simi-

larly, if we have a word of length l, say, consisting of p symbols of Ap followed by
l −p symbols of Bl−p , we write (ApBl−p)i for the event that this word appears at
location i, that is, the event (τiσ )Cl

= ApBl−p .
The sum in the right-hand side of (4.8) will be split into different sums, ac-

cording to the amount of overlap in the set of indices {i, j, r, s}. By this we mean
the following: we say that there is overlap between two indices i, j if |i − j | < kn.
The number of overlaps of a set of indices {i, j, r, s} is denoted by θ(i, j, r, s) and
is the number of unordered pairs of indices which have overlap. Since we restrict
in the sum (4.8) to |i − j | > 2kn, |r − s| > 2kn, it follows from the triangular in-
equality that in that case θ(i, j, r, s) ≤ 2. Therefore, we split the sum into three
cases ∑

i,j,r,s,|i−j |>2kn,|r−s|>2kn

∑
Akn,Bkn

P((Akn)i(Akn)j (Bkn)r (Bkn)s)(4.9)

= S0 + S1 + S2,

where

Sp = ∑
(i,j,r,s)∈Kk,p

∑
A,B

P((Akn)i(Akn)j (Bkn)r (Bkn)s),(4.10)

where we abbreviated

Kkn,p = {(i, j, r, s) : |i − j | > 2kn, |r − s| > 2kn, θ(i, j, r, s) = p}(4.11)
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to be the set of indices such that the overlap is p.
1. Zero overlap: S0.
We use Lemma 2.13, and notation (4.7):

S0 � ∑
i,j,r,s

∑
Akn,Bkn

P(Akn)
2P(Bkn)

2 � ξ4
n .(4.12)

2. One overlap: S1.
We treat the case |i − r| < kn, i < r < j < s. The other cases are treated in

exactly the same way. Put Akn = [a1, a2, . . . , akn], Bkn = [b1, b2, . . . , bkn]. The in-
tersection (Akn)i ∩ (Bkn)r is nonempty if and only if ar = b1, ar+1 = b2, . . . , akn =
bkn−r+1, that is, the last kn − r + 1 symbols of Akn are equal to the first kn − r + 1
symbols of Bkn .

Therefore, we obtain that the sum over the patterns Akn,Bkn in S1 equals∑
Akn,Bkn

P((Akn)i(Akn)j (Bkn)r (Bkn)s)

= ∑
Akn,Bkn

P
((

AknBkn(kn − r, kn)
)
i (Akn)j

(
Akn(r, kn)Bkn(kn − r, kn)

)
s

)
(4.13)

� ∑
Akn,Bkn

P(Akn(r, kn))
3P

(
Akn(1, r − 1)

)2
P

(
Bkn(kn − r, kn)

)2

� e−3(kn−r)αe−2rαe−2rα.

Summing over the indices (i, j, r, s) ∈ K(kn,1) then gives

S1 � n3e−3αkn
∑
r≤kn

e−rα � ξ3
n .(4.14)

3. Two overlaps: S2.
We treat the case i < r < j < s and r − i < kn, s − j < kn. Other cases are

treated in the same way. Put l1 := i + kn − r + 1,p1 = j + kn − s + 1. We sup-
pose l1 > p1. Then the last l1 symbols of Akn have to equal the first l1 symbols
of Bkn , otherwise the intersection (Akn)i(Akn)j (Bkn)r (Bkn)s is empty. Therefore,
we obtain that the sum over the patterns Akn,Bkn in S2 equals∑

Akn,Bkn

P((Akn)i(Akn)j (Bkn)r (Bkn)s)

= ∑
Akn,Bkn

P((AknBkn−l1)i(AknBkn−p1)j )

(4.15)
� ∑

Akn,Bkn

P(Akn)
2P(Bkn−l1)

2ρl1−p1

� e−2kαe−2(k−l1)αρl1−p1 .
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Summing over the indices in K(k,2) then gives

S2 � n2e−2knα
∑

l1<kn

e−2α(kn−l1)
∑

p1<l1

ρl1−p1 � ξ2
n .(4.16)

Using the bounds (4.12), (4.14) and (4.16) in (4.8) and (4.9), we deduce (4.6)
and then, as explained below, statement 1 of the theorem follows from the Paley–
Zygmund inequality. This completes the proof. �

The following result relates Theorem 4.1 and the behavior of the maximal shift-
matching, and is the analogue of Theorem 1 in [6] (which is, however, convergence
almost surely for more general comparison of sequences based on scores, but for
independent sequences).

PROPOSITION 4.2. Let M(σ,n) be defined as in Definition 2.2. Recall

α = p(U) − p(2U)

2
.

Then we have that

M(σ,n)

n
→ α,

where the convergence is in probability.

PROOF. Use the relations of Proposition 2.4. We have

P

(
M(σ,n)

α logn
≥ (1 + ε)

)
≤ P

(
N

(
σ,n, �α(1 + ε) logn�) ≥ 1

)
and

P

(
M(σ,n)

α logn
< (1 − ε)

)
≤ P

(
N

(
σ,n, �α(1 − ε) logn�) = 0

)
.

So the result follows from Theorem 4.1. �

5. Two independent strings. In this section we study the number of matches
with shift when two independent sequences σ and η are considered. The mar-
ginal distributions of σ and η are denoted with P and Q, which are chosen to
be Gibbs measure with exponentially decaying translation-invariant interactions
U(X,σ) and V (X,η), respectively. We assume the two strings belong to the same
alphabet A. In analogy with the case of one string, we give the following defini-
tion.
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DEFINITION 5.1 (Number of shift-matches for 2 strings). For every couple of
configurations σ,η ∈ � × � and for every n ∈ N, k ∈ N, with k < n, we define the
number of matches with shift of length k as

N(σ,η,n, k) =
n−k∑
i=0

n−k∑
j=0,j 	=i

1{(τiσ )Ck
= (τjη)Ck

}.(5.1)

Of course, in the case σ = η we recover (up to a factor 2) the previous Defini-
tion 2.1, that is, N(σ,σ,n, k) = 2N(σ,n, k).

5.1. Identical marginal distribution. We treat here the case Q = P, that is,
the two sequences σ and η are chosen independently from the same Gibbs dis-
tribution P with interaction U(X,σ). Then the results of the previous section are
generalized as follows.

THEOREM 5.2. Let {k(n)}n∈N be a sequence of integers:

1. If k∗(n) � k(n), then limn→∞ EP⊗P[N(σ,η,n, k(n))] = ∞.
2. If k∗(n) � k(n), then limn→∞ EP⊗P[N(σ,η,n, k(n))] = 0.
3. If k(n) − k∗(n) is a bounded sequence, then we have

0 < lim inf
n→∞ EP⊗P(N(σ,η,n, k(n)))

(5.2)
≤ lim sup

n→∞
EP⊗P(N(σ,η,n, k(n))) < ∞.

PROOF. Because of independence, we immediately have

EP⊗P[N(σ,η,n, k)]

=
n−k∑

i 	=j=0

∑
Ak∈�k

P
(
(τiσ )Ck

= Ak

)
P

(
(τjη)Ck

= Ak

)
(5.3)

= (n − k)2
∑

Ak∈�Ck

P(Ak)
2

≈ (n − k)2e−2kα. �

THEOREM 5.3. Let {k(n)}n∈N be a sequence of integers. For every positive
m ∈ N:

1. If k∗(n) � k(n), then limn→∞ P ⊗ P[N(σ,η,n, k(n)) ≤ ε] = 0.
2. If k∗(n) � k(n), then limn→∞ P ⊗ P[N(σ,η,n, k(n)) ≥ ε] = 0.
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3. If k(n) − k∗(n) is bounded, then N(σ,η,n, k(n)) is tight and does not con-
verge to zero in distribution. More precisely, we have that there exists a constant
C > 0 such that

lim sup
n→∞

P ⊗ P
(
N(σ,η,n, k(n)) > m

) ≤ C/m(5.4)

and

lim inf
n→∞ P ⊗ P

(
N(σ,η,n, k(n)) > 0

)
> 0.(5.5)

PROOF. The strategy of the proof is as in Theorem 4.1. Thus, we need to
control the second moment to show that E(N2) ≈ (E(N))2. We start from

EP⊗P(N2(σ, η,n, k))

=
n−k∑

i1,j1,i2,j2=1

∑
Ak,Bk∈�k

P
(
(τi1σ)Ck

= Ak, (τi2σ)Ck
= Bk

)
(5.6)

× P
(
(τj1η)Ck

= Ak, (τj2η)Ck
= Bk

)
.

Using translation-invariance and defining new indices l1 = i2 − i1 and l2 = j2 −j1,
we have

EP⊗P(N2(σ, η,n, k))

= ∑
Ak,Bk∈�k

(
n−k∑
l1=1

(n − k + 1 − l1)P
(
σCk

= Ak, (τl1σ)Ck
= Bk

)

×
n−k∑
l2=1

(n − k + 1 − l2)P
(
ηCk

= Ak, (τl2η)Ck
= Bk

))
.

We have to distinguish three kinds of contributions in the previous sums:

1. Zero overlap, that is, l1 > k, l2 > k. Then

∑
Ak,Bk∈�k

(
n−k∑

l1=k+1

(n − k + 1 − l1)P
(
σCk

= Ak, (τl1σ)Ck
= Bk

)

×
n−k∑

l2=k+1

(n − k + 1 − l2)P
(
ηCk

= Ak, (τl2η)Ck
= Bk

))
(5.7)

≈ (n − k)4
∑

Ak,Bk∈�k

P(Ak)
2P(Bk)

2

≈ (n − k)4e−4kα.
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2. One overlap. We treat the case l1 ≤ k and l2 > k (other cases are treated simi-
larly). We have

∑
Ak,Bk∈�k

(
k∑

l1=1

(n − k + 1 − l1)P
(
σCk

= Ak, (τl1σ)Ck
= Bk

)

×
n−k∑

l2=k+1

(n − k + 1 − l2)P
(
ηCk

= Ak, (τl2η)Ck
= Bk

))

≈ (n − k)3
k∑

l1=1

∑
Dl1 ,Ek−l1 ,Fl1

P(Dl1Ek−l1Fl1)P(Dl1Ek−l1)P(Ek−l1Fl1)

(5.8)

≈ (n − k)3
k∑

l1=1

∑
Dl1 ,Ek−l1 ,Fl1

P(Dl1)
2P(Ek−l1)

3P(Fl1)
2

� (n − k)3
k∑

l1=1

e−2l1αe−2l1αe−3(k−l1)α

≤ (n − k)3e−3kα.

3. Two overlaps. We treat the case l1 < l2 ≤ k (other cases are treated similarly).
We have∑

Ak,Bk∈�k

(
k∑

l1=1

(n − k + 1 − l1)P
(
σCk

= Ak, (τl1σ)Ck
= Bk

)

×
k∑

l2=1

(n − k + 1 − l2)P
(
ηCk

= Ak, (τl2η)Ck
= Bk

))

≈ (n − k)2
k∑

l1,l2=1

∑
Dl1 ,El2−l1 ,Fk−l2 ,Gl1 ,Hl2−l1

P(Dl1El2−l1Fk−l2Gl1)

× P(Dl1El2−l1Fk−l2Gl1Hl2−l1)
(5.9)

≈ (n − k)2
k∑

l1,l2=1

∑
Dl1

P(Dl1)
2

∑
El2−l1

P(El2−l1)
2

∑
Fk−l2

P(Fk−l2)
2

× ∑
Gl1

P(Gl1)
2

∑
Hl2−l1

P(Hl2−l1)

� (n − k)2
k∑

l1,l2=1

e−2l1αe−2(l2−l1)αe−2(k−l2)αe−2l1α

≤ (n − k)2e−2kα.
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Combining together (5.7), (5.8) and (5.9) and similar expression for other cases
with one and two overlaps, we obtain the second moment condition E(N2) �
(E(N))2. �

5.2. Different marginal distributions. In the case P 	= Q, the first moment is
controlled in an analogous way, but the second moment analysis is different, and,
in fact, as we will show in an example, it can happen for some scale kn → ∞ that:

1. EP⊗Q(N(σ, η,n, kn)) → ∞ as n → ∞,
2. P ⊗ Q(N(σ, η,n, kn) = 0) > e−δ for some δ > 0 independent of n.

This means that in order to decide whether N(σ,η,n, kn) goes to infinity P ⊗ Q

almost surely, it is not sufficient to have EP⊗Q(N(σ, η,n, kn)) → ∞.
We start with the case P and Q Gibbs measures with potentials U,V , respec-

tively, and define

α̃ = 1
2p(U) + 1

2p(V ) − 1
2p(U + V ) > 0(5.10)

and

k̃∗ = logn

α̃
,(5.11)

then we have the following:

THEOREM 5.4. Let {k(n)}n∈N be a sequence of integers.

1. If k̃∗(n) � k(n), then limn→∞ EP⊗Q(N(σ,η,n, k(n))) = ∞.
2. If k̃∗(n) � k(n), then limn→∞ EP⊗Q(N(σ,η,n, k(n))) = 0.
3. If k(n) − k̃∗(n) is a bounded sequence, then we have

0 < lim inf
n→∞ EP⊗Q(N(σ,η,n, k(n)))

(5.12)
≤ lim sup

n→∞
EP⊗Q(N(σ,η,n, k(n))) < ∞.

PROOF. Start by rewriting

N(σ,η,n, k) =
n−k∑
i=0

n−k∑
j=0,j 	=i

∑
Ak∈�k

1{(τiσ )Ck
= Ak, (τjη)Ck

= Ak}.

Taking into account the independence of the measures P and Q, we obtain

EP⊗Q(N(σ, η,n, k))

=
n−k∑

i 	=j=0

∑
Ak∈�k

P
(
(τiσ )Ck

= Ak

)
Q

(
(τjη)Ck

= Ak

)
(5.13)
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≈ (n − k)2
∑

Ak∈�Ck

e−kp(U)e−kHU(C (Ak))e−kp(V )e−kHV (C (Ak))

≈ (n − k)2e−k[p(U)+p(V )−p(U+V )]

= (n − k)2e−2kα̃,

where in the second line we made use of translation-invariance and Proposition 2.9.
�

In case 1 of Theorem 5.4, we will not in general be able to conclude that
N(σ,η,n, k(n)) goes to infinity almost surely as n → ∞. Indeed, if we compute
the second moment, we find terms analogous to the case P = Q, of which now we
have to take the P ⊗ Q expectation. In particular, the one overlap contribution will
contain a term of the order

(n − k)3
∑
Ek

P(Ek)Q(Ek)
2.

If P 	= Q, this term may however not be dominated by n4e−4kα̃ . Indeed, the in-
equality

∑
Ek

P(Ek)Q(Ek)
2 ≤

(∑
Ek

P(Ek)Q(Ek)

)3/2

is not valid in general. In particular, if P gives uniform measure to cylinders Ek

and Q concentrates on one particular cylinder, then this inequality will be violated.
As an example, inspired by this, we choose P to be a Gibbs measure with po-

tential U , and Q = δa , where δa denotes the Dirac measure concentrating on the
configuration η(x) = a for all x ∈ Z (which is strictly speaking not a Gibbs mea-
sure, but a limit of Gibbs measures). In that case P ⊗ Q almost surely,

N(σ,η,n, k(n)) = n

n−k∑
i=1

1
(
(τiσ )Ck

= [a]k),
where [a]k denotes a block of k successive a’s. Therefore,

P ⊗ Q
(
N(σ,η,n, k(n)) = 0

) = P
(
�[a]k (σ ) ≥ n − k

)
,

where

�[a]k (σ ) = inf{j > 0 :σj = a,σj+1 = a, . . . , σj+k−1 = a}
is the hitting time of the pattern [a]k in the configuration σ . For this hitting time
we have the exponential law [1, 2] which gives

P
(
�[a]k (σ ) ≥ n

) ≥ e−λP([a]k)n

with λ a positive constant not depending on n. Now we choose the scale kn such
that the first moment of N(σ,η,n, k(n)) diverges as n → ∞, that is, such that

n2P([a]kn) → ∞.



1602 P. COLLET, C. GIARDINA AND F. REDIG

Furthermore, we impose that

P([a]kn)n ≤ δ

for all n. In that case

P
(
�[a]kn (σ ) ≥ n

) ≥ e−λP([a]kn ))n ≥ e−λδ,

which implies N(σ,η,n, kn) does not go to infinity P ⊗ Q almost surely.

Acknowledgment. We thank the anonymous referee for helpful remarks and
a careful reading.
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