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Abstract
Conventional techniques of measuring thermal transport properties may be unreliable or
unwieldy when applied to nanostructures. However, a simple, all-electrical technique is available
for all samples featuring high-aspect-ratio: the 3ω method. Nonetheless, its usual formulation
relies on simple analytical results which may break down in real experimental conditions. In this
work we clarify these limits and quantify them via adimensional numbers and present a more
accurate, numerical solution to the 3ω problem based on the Finite Element Method (FEM).
Finally, we present a comparison of the two methods on experimental datasets from InAsSb
nanostructures with different thermal transport properties, to stress the crucial need of a FEM
counterpart to 3ω measurements in nanostructures with low thermal conductivity.

Supplementary material for this article is available online

Keywords: 3ω method, finite element analysis, energy harvesting, low K materials,
thermoelectricity, thermal conductivity measurement

(Some figures may appear in colour only in the online journal)

1. Introduction

The urgent need for energy sources in novel devices, such as
wearables or biomedicals, has boosted the interest in the field of
nanostructure development for thermoelectric applications. This
entails the generation of a potential difference arising from a
temperature gradient, which can be used to locally harness
energy to power devices of interest. The thermoelectric perfor-
mance of a specimen can be shown to depend on an

adimensional quantity, named the thermoelectric figure of merit,
which depends on the ratio between the electric and thermal
conductivity of the material chosen for the thermoelectric device.
The recently-demonstrated ability to engineer semiconducting
nanowires (NWs) to lower their thermal conductivity without
affecting their electrical transport properties [1–7]—a promising
feature coming from phonon scattering with the boundaries of
the nanostructure, i.e. the Casimir effect [8]—has made them an
extremely interesting platform to realize high room-temperature
figures of merit, to rival those of more-established industry
standard thermoelectric materials (e.g. Bi2Te3) [9, 10]. Because
of the promising results that have been achieved in this regard, it
is of capital importance to have a simple and reliable method to
measure the thermal transport properties of such nanostructures

Nanotechnology

Nanotechnology 34 (2023) 435403 (10pp) https://doi.org/10.1088/1361-6528/acdc2c

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

0957-4484/23/435403+10$33.00 Printed in the UK © 2023 The Author(s). Published by IOP Publishing Ltd1

https://orcid.org/0000-0002-8044-0924
https://orcid.org/0000-0002-8044-0924
mailto:domenic.prete@sns.it
https://doi.org/10.1088/1361-6528/acdc2c
https://doi.org/10.1088/1361-6528/acdc2c
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6528/acdc2c&domain=pdf&date_stamp=2023-08-08
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6528/acdc2c&domain=pdf&date_stamp=2023-08-08
http://creativecommons.org/licenses/by/4.0


[11, 12]. Among the others, the 3ω method, an all-electrical
measurement technique of the thermal conductivity, has gained
particular interest [13–18]. The particular appeal of this techni-
que resides in its ease of application to a suspended NW, not
requiring the use of optical setups [19, 20] or the use of exter-
nally-applied temperature gradients [21–23].

In this work, we shall discuss the underlying theory to the
3ω method, commenting on the simple analytical solution
presented in [24] obtained under certain approximations. We
shall moreover discuss said approximations, and their break
down in common experimental conditions, e.g. for samples
featuring extremely low thermal conductivities. We then clarify
these limits and easily quantify them via adimensional numbers.
From these observations, we shall detail the need in said cases of
a more accurate, i.e. numerical, treatment of the problem, which
we describe in the form of Finite Element Modelling [25–30].
Finally, we shall employ both methods on experimental data
from InAsSb Nws to show up to a 40% underestimation of the
thermal conductivity when the analytical formula framework is
employed, compared to its numerical counterpart.

We shall stress how all the results derived in this work
are trivially generalised to any high-aspect-ratio nanos-
tructure. Thus, we believe this work provides an extensive
proof of the limits of the conventionally employed 3ω tech-
nique coupled with the analytical model and provides an
effective solution to overcome its limitations, paving the way
for more robust and accurate measurements of the ever-
increasing thermoelectric performance of engineered nanos-
tructures with progressively lower thermal conductivities.

2. Method

The 3ω method is based on the injection of an AC current and
the measurement of the first and third harmonic of the voltage
drop across the NW, hence the name 3ω. A typical setup to
perform this measurement on a NW is depicted in figure 1(a).

The two larger outside pads are used for feeding the AC
current I and double as a thermal anchor for the NW allowing to
minimize any temperature rise owing to the metal/semiconductor
thermal contact resistance thanks to the maximization of the
NW/metal contact area, while the smaller inner contacts act as
voltage probes to measure the voltage drop across the specimen.
The whole NW is suspended to avoid thermal conduction
between the specimen and the substrate, which introduces major
detrimental effects on the measurement of NW thermal con-
ductivity [31]. The system is also in a vacuum, thus thermal
dissipation in the form of convection between the specimen and
the surrounding air shall not be considered in this work.

The first harmonic is used to measure the NW electrical
resistance R0 at the starting temperature T0 according to Ohm’s
Law, while the third harmonic can be related to the thermal
conductivity κ of the NW, as described in the following.

All measurements are generally performed with a Lock-In
amplifier, generating an AC voltage wV tsin0 . As shown in
figure 1(a), a constant injection current is maintained by con-
necting the NW in series with an injection resistance Rinj? R0.
This is required so that the majority of the voltage drop occurs
across Rinj, and the amplitude I0 can be approximated to V0/Rinj,
which is independent of the NW resistance. Noticeably, this
assumption generally holds true for the materials of interest for
the exploitation of thermoelectric effects, i.e. materials featuring
good electrical transport properties coupled with poor thermal
transport properties. Furthermore, a high electrical conductivity
is also auspicial for the 3ω measurement itself, since it allows
for easier measurement of the third harmonic signal.

3. Results

3.1. Theory of the 3ω problem

In the subsequent sections we shall briefly retrace the analy-
tical approach to the 3ω method as presented in [24], to

Figure 1. (a) Typical setup for a 3ω measurement, with a suspended NW connected to a 4-probe setup. An AC injection current ( )wI tsin0 is
forced through the nanostructure via the outer pads, that also serve as thermal anchoring, while the third harmonic of the voltage drop is
measured by a Lock-In amplifier. (b)–(c) Typical measures and best-fit for two InAsSb NWs, one with a single-crystal zincblende crystal
structure (c), the other with an engineered nanostructure to reduce thermal conductivity (b). The model of the best fit and its validity are
discussed at length in section 2. Data taken as described in [2]
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introduce the relevant physical quantities and adimensional
transport numbers. This will allow for a discussion of the
inherent limitations of the often-used analytical treatment, and
highlight the approximations which can be lifted via a Finite
Element Modelling (FEM) approach.

3.2. Analytical model

The core of this nonlinear phenomenon is the dependency of
the NW electrical with temperature, which is in turn raised by
the injection current via the Joule effect. For simplicity of
modelling, we posit that the NW resistance is linear with the
temperature change

( ) ( ) ( )= + ¢ -R T R R T T , 10 0

where we have defined ¢ =R dR

dT
, assumed constant in the

whole range of temperatures of interest. T0 is a fixed reference
temperature at which the system is assumed to be in equili-
brium when unperturbed, and R0= R(T0) is the electrical
resistance of the specimen at T= T0. Considering an injection
current ( ) ( )w=I t I tsin0 , the partial differential equation

(PDE) governing the local NW temperature reads

 



( ) ( )

( ) ( ( ( ) )) ( )

r k

w

¶
¶

- 

= + ¢ -

C
t
T x t T x t

I t

LS
R R T x t T

, ,

sin
, , 2

p
2

0
2 2

0 0

where ρ is the density of the material, Cp it is specific heat at
constant pressure, κ is the thermal conductivity, and L, and S
are the NW length and cross-section respectively.

For ease of future notation during, it is best to define the
current density =j I

S0
0 and the electrical resistivity r = Rel

L

S
,

so that r r¢ =el
d

dT el.
Equation (2), together with the appropriate boundary

conditions, completely describes the physics of our system.
However, it is important here to note that this is still a 3D
problem in


x , which does not possess a simple analytical

solution for the rather complex NW geometry. Nevertheless,
we can easily simplify the treatment by noting that, by virtue
of neglecting gas convection and black-body radiation [32],
as well as suspending the NW to thermally decouple it from
the substrate, there are no physical processes occurring at the

Figure 2. Comparison between the analytical (left) and FEM (right) RMS temperature and voltage profiles in the case of an InAsSb NW with
1 μm length, 35 nm diameter, and k = 1.5 W

mK
. Comparing panels (a)–(b) we can see how the two models are in qualitative agreement, and

predict comparable Δ(x) for low injection currents (legend). At larger currents , however, the low κ makes Θ increase significantly, reaching
Θ= 0.33 for the higher value. Thus, The analytical approach is no longer valid, and it significantly underestimates the peak temperature. This
results in different Voltage profiles, as clear comparing panels (c)–(d). On the FEM simulations, we report also an example of the false-color
solution across the whole mesh, to highlight the translational invariance in ŷ and ẑ .
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surface of the NW. Mathematically, this is equivalent of
saying that, if we define x̂ the direction of the NW axis,

 ( ) ( )= =¶
¶

¶
¶

T x t T x t, , 0
y z

. Thus, the temperature profile
( )T x t, exhibits translational invariance along y and z.
Moreover, equation (2) is linear in T. Therefore, we can

rewrite the PD in terms of Δ(x, t)= T(x, t)− T0, which reads

( ) ( ) ( ) ( )

( ) ( )

a
g

w

g
w

¶
¶

D -
¶
¶

D - D

=
¢

t
x t

x
x t x t t

R
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1

, sin

1
sin , 3

J

J

2

2
2

0 2

with the boundary conditions dictated by the experimental
setup

⎧

⎨
⎩

( )
( )
( )

( )
D =
D =
D  -¥ =

t
L t
x t

0, 0
, 0
, 0

. 4

In equation 3 we have introduced the thermal diffusivity

( )a
r

=
k

C
5

p

and the Joule heating timescale

( )g
r

r
=

¢

C

j
, 6J

p

el0
2

which can be interpreted as the timescale at which the NW
resistance changes because of the injected current. Another
timescale naturally arises from the diffusive nature of heat
transport as

( )g
p a

=
L

, 7D

2

2

which is the characteristic time for axial thermal processes.

We note that can similarly define g =
aD r
r

,

2

, with r the radius
of the NW, as a characteristic time for radial thermal pro-
cesses. Given the high-aspect ratio of the NW we observe that
γD,r= γD, supporting our assumption of translational invar-
iance orthogonally to the NW axis.

While a complete and thorough derivation would be
outside of the scope of this work, it is possible to show that
the solution to equation (3) can be stated in the form

( ) ( ) ( )ò åt t
p

D =
-¥ =

+¥

x t d U t
n x

L
, ; sin , 8

t

n
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1

with Un being determined by the equation

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )
g g

w+ - = "
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dt
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n
t U n

1
sin 0 . 9n

D J
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2
2

Figure 3. Particular profiles taken from figure 2 for injection currents of 5μ A (a)–(b) and 30μ A (c)–(d), corresponding to Θ= 5× 10−3 and
Θ= 0.19 respectively. From panels (a)–(b) it is clear how for Θ= 1 the analytical and FEM models are in good agreement, especially on the
voltage profile. This is the case because the ΔFEM(x)−ΔAn(x) oscillates along the NW, and it is integral cancels out almost exactly. When
Θ∼ 1, however, the effect of self-heating can no more be treated perturbatively. Panels (e)–(f) show how in this case the analytical solution
would lead to an error of 20% on the maximum temperature, translating into a 9% overestimate of the voltage drop.
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From equation (9) it is clear how the presence of Joule’s
heating and the consequent change in NW resistance causes a
deviation from the simple diffusive problem. We can quantify
this effect through the adimensional number

( )g
g

r
k

Q = =
¢

j L . 10D

J

el
0
2 2

We may also define another adimensional number

( )wg
wr
p k

X = =
C

L , 11D
p

2
2

which describes the ability of the system to respond to the
sinusoidally-modulated injection current.

In the regime where

 ( )Q 1, 12

the effect of ¢R can be considered a perturbation of the dif-
fusive transport. Therefore, we can consider the solution

⎛
⎝
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where we have defined ( )
( )

f = wg
+

cot 2n n2 1
D

2 as the cotangent of

the relative phase shift of each component and

( )g
g

r

k
D =

¢
=

R

R

j
L , 14D

J

el
0

0 0
2

2

which is proportional to the peak temperature for each Fourier
component.

Besides the obvious relation D µ j0 0
2, is very interesting

to note that D µ L

k0
2

, which comes from the fact that both a
longer NW or a smaller thermal conductivity make for a less
efficient heat transfer and thus higher temperatures. A notable
absent in (14) is Cp, meaning that thermodynamic information
are only necessary to obtain γ, but it is only transport prop-
erties that influence the final temperature profile. We shall
note that, we can now directly relate the change in NW
resistance to the transport and electrical property via the
relation

( )Q =
¢DR

R
150

0

after which, as expected the condition in equation (12) simply
reads

 ( )¢DR R . 160 0

Figure 4. Analysis of the same data shown in figure 1 with both the analytical and the FEM methods. Panels (a), (c) represent the same

nanostructured NW from figures 2–3, with k »
W

mK
1 (k = 1.1 0.1 W

mK
and 1.5 0.2 W

mK
from the analytical and FEM models respectively).

From the residuals from the best fit in panel (c) we can see how the analytical fails to correctly retrace the data, while the FEM model
reproduces it more closely. Both models, however, correctly fit the experimental data for the single-crystal InAsSb NW with larger thermal
conductivity ( 4.7 0.3 W

mK
and 5.0 0.2 W

mK
for the analytical and FEM method respectively) in panels (b), (d). Panel (e) shows the relative

discrepancy k k
k

- AnFEM

FEM
for all experiments in the available dataset, where we can see how the analytical method systematically underestimates

the thermal conductivity of the nanostructure. More importantly, we can see how this becomes more prominent for samples with low κ,
reaching close to 40% in certain samples. The colored dots represent the samples from panels (a) and (b). Data taken as described in [2].
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It ought to be clear that, depending on the specific device,
it may be challenging to fulfill this relation, especially for
specimens with low κ, which are, however, the most inter-
esting from a technological point of view, for they have the
best thermoelectric performance. Particularly for those,
therefore, the requirement in equation (12) clearly indicates
the need for the more complete numerical treatment. It is
worth mentioning here that, since the parameter Θ is related
to the heat flux flowing in the nanostructure, a possible
approach to force the condition in equation (12) would be to
decrease the injection current. However, this approach would
also cause experimental difficulties related to the decrease of
the measured signals and thus a less accurate measurement of
κ. For this reason, reducing the heat flux in the nanowire is
not a desirable way to force the system in a regime in which
the assumptions at the basis of the analytical model are valid.

If condition equation (12) is met, however, it ought to be
clear that the length scale over which the NW resistance is
modified with respect of R0 because of Joule’s heating is
much is much larger than the NW physical length. Therefore,
we may perturbatively retain only the leading term n= 0.

The voltage profile along the NW is given by

⎛
⎝

⎞
⎠

( ) ( ) ( ) ( )ò w= +
¢

D ¢ ¢V t R
R

L
x t dx I t, sin 17

x

0
0

0

thus, after trivial integration, the third harmonic for x= L
reads

( ) ( ) ( )
p

w f= -
Q

+ X
-wV t

R I
t

2

1 4
sin 3 , 183 4

0 0

2

where we have redefined the phase as ( )f = -ptan tan
2

f » X21 . Integrating in time in this limit, we obtain the
well-known relation for the root mean square third
harmonic [24]

( )
p k

= -
¢

+ X
wV

I R R L

S

4

2 2

1

1 4
. 193

0
3

0

4 2

Equation (19) clearly reflects the intuition that for Ξ= 1 the
system behaves quasi-statically, and temperature is able to
oscillate with voltage. As the NW is driven faster, however,
thermal conduction is unable to keep up with the injection
current, and the temperature oscillations become damped. We
also note that Ξ is the only leftover dependency upon the NW
thermodynamic properties Cp. Therefore, we can deliberately
choose a frequency low enough to achieve Ξ= 1, thus
removing this dependency completely. This regime, as we
shall see, is also advantageous for the numerical approach
described in the next section, and is therefore the regime that
shall uniquely discuss henceforth. The final analytical formula
therefore reads

( )
p k

= -
¢

wV
I R R L

S

4

2 2
, 203

0
3

0

4

which is the model used to fit the two curves in figure 1.
However, as ought to be apparent from figure 1(b), this model
cannot faithfully reproduce the experimental data. More sig-
nificantly, we shall see how the difference between

figures 1(b) and (c) is that the former, where the agreement
with equation (20) is poorer, represents an InAsSb NW whose
nanostructure has been engineered to reduce the thermal
conductivity. Considering the requirement in equation (12), it
ought to be clear how this may cause the analytical model to
fail by returning an underestimated value for the thermal
conductivity when Θ∼ 1, while still be able to reproduce the
experimental data for the single-crystal InAsSb NW coun-
terpart in figure 1(c).

3.3. Finite element treatment

In this section we shall discuss a Finite Element Modelling
(FEM) approach to numerically describe physical systems in
which the condition in equation (12) cannot easily be met.
Our task is to solve a coupled physics problem where the set
of thermoelectric partial differential equations

⎧
⎨⎩

       
     

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( )
s s

k

= - 

F = P - 

j x t x t E x t S x t T x t

x t j x t T x t

, , , , ,

, , ,
, 21e

must be solved together with the heat equation

     ( ) · ( ) ( ) ( )r
¶
¶

= - F +C
t
T x t x t q x t, , , 22p

to obtain the correct V3ω given the appropriate boundary
conditions. In equation (22) we have used  ( )q x t, to indicate
the local heat generation in the specimen.

It is possible to prove that direct coupling of

j and


F

because of the Seebeck Se and Peltier Π= TSe coefficients
are usually negligible because of the injected current and the
comparatively smaller temperature gradients [13, 25, 33, 34].
Thus equation (21) greatly simplifies to

⎧
⎨⎩

    
   

( ) ( ) ( )
( ) ( )

( )s

k

=

F = 

j x t x t E x t

x t T x t

, , ,

, ,
. 23

This, together with the microscopic definition of Joule’s
heating  

   ( ) ( ) · ( )=q x t j x t E x t, , , , allows us to rewrite
equation (22) as

     ( ) ( ) ( ) · ( ) ( )r k
¶
¶

D = -  D +C
t

x t x t j x t E x t, , , , , 24p
2

where we have once again employed the linearity of
equation (22) to define

 ( ) ( )D = -x t T x t T, , 0 for con-
sistency with the above discussion.

It is easy to see that this formulation is equivalent to
equation (2) in the microscopic formalism.

We can now consider the effect of Joule’s heating
through the definition


( )

( )
( )s = =

+ ¢D
x t

R

L

S R R x t

L

S
,

1 1

,
. 25

0

If we now consider the regime where Ξ= 1, the system has
plenty of time to follow the changes in


( )j t , and thus behaves

quasi-statically. Hence

( ) ⟶ ( )¶
¶

D
X t

x t,
0

0. 26
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Therefore, the heat equation reads
    ( ) ( ) · ( ) ( )k D =x t j x t E x t, , , , 272

which, combined with equation (25), becomes


 

( ) ∣ ( )∣
( )

( )k D = -

+ ¢D

x t
V x t

R R x t

L

S
,

,

,
, 282

2

0

where, for notational convenience in the subsequent para-
graphs, we have simply written the electric field inside the
specimen as

   ( ) ( )= -E x t V x t, , . It is worth stressing that
L, S, R0 and ¢R are all quantities which can be separately
measured, thus the only unknown parameter, to be obtained
through fitting of experimental data, in equation (28) is the
thermal conductivity κ.

A full definition of the problem, however, is still lacking
a way to compute the local electrical potential. This could be
achieved through the charge continuity equation. Since
equation (28) describes a stationary solution, this takes the
form

  · ( ) =j x t, 0. Together with the first equation in
equations (23), we can thus write

   · ( ( ) ( )) ( )s  =x t V x t, , 0, 29

which merely states that no charge is accumulating inside the
specimen. Equations (28) and (29) together represent the
strong formulation of the problem. It is worth mentioning that
the need for a system of coupled equations arises due to the
fact that the electrical resistance of the specimen depends on
the temperature through the temperature resistance coefficient
R. Thus, a precise solution for the problem under con-
sideration requires to solve the heat and electrical transport
equations by coupling them rather than considering the Joule
heating effect as a fixed heat source for the heat transport
equation and solely solve the latter. In order to properly solve
it through the Finite Element Method [35–40], however, we
have to derive its weak definition. A detailed description of
the steps followed and selected would be out of the scope of
this work, and it is detailed in the supplementary information
in appendix section C.

Once the coupled physics problem has been correctly
defined, the last thing to impose before being able to imple-
ment a solution is to impose the correct boundary conditions.
The same argument of translational invariance holds for the
FEM model as well. Therefore, NW temperature still follows
the boundary conditions in equation (4) This, however, is no
more enough for we are dealing with a system of two coupled
equations. Since equation (29) if formally a second-order
ODE we shall thus impose two more boundary conditions.
The first one can be enforced experimentally by tying one of
the external contacts to ground, while the last one comes
down to simply requiring that the current forced through the
specimen at each instant in time amounts to the injection
current I(t). Therefore, this translates to

⎧
⎨⎩

  
( )

( ) · ( ) ( )
ò w

=

=
=

V t

j x t dS I t

0, 0

, sin
, 30

x L 0

where ∫x=L refers to the surface in contact with the non-
grounded outer metal pad. Because of equation (29), the

second condition in (30) automatically implies that

  ∮ ( ) · ( )=j x t dS, 0, 31

so that all the injected current is always flowing out of the
NW and there is no charge accumulation inside the specimen.

Finally, we shall note that, thanks to the properties of the
problem, both the temperature and voltage profile will possess
translational symmetry in the plane orthogonal to the NW
axis. Thus, we can simply write


( ) ( ) ˆ ( )w=j t

I

S
t xsin . 320

Nevertheless, in the present paragraphs the 3D notation
will still be employed because the resolution will take place
over a 3D mesh, as, each NW was modeled as an hexagonal
prism with the corresponding measured length and diameter.

Finally, we ought to point out that the second condition
in equation (30) is not a Dirichlet condition. Consequently, its
FEM implementation does require some additional work,
which is reported appendix ?, where it is shown that, because
of the particular properties of our problem, this last condition
is mathematically equivalent to a Von Neumann boundary
condition.

4. Discussion

4.1. Comparison between the FEM and analytical results

4.1.1. Θ= 1. equations (28)–(29), together with the
appropriate boundary conditions, completely define the 3ω
problem as long as the experimental conditions fulfill Ξ= 1.
It is interesting, however, to consider the FEM model in the
regime Θ= 1. In this case, once again, we can consider
Joule’s heating as a perturbation of the temperature profile,
which reads, at first order

( ) ( ) ( )wD =
D -

x t
x L x

L
t,

2
sin , 330

2

which is the well-known parabolic solution to the heat
equation with uniform heat generation (O(Θ)). This is in
contrast with the sinusoidal profile arising from the Fourier
expansion in the analytical treatment. Moreover, if we
consider the total change in NW resistance

( ) ( )òd = - =
¢

D ¢ ¢R R R
R

L
x t dx, , 34

x

0
0

is the similar for both models. In particular, d =RAn

¢D » ¢D
p

R R0.0828
0 04 , while d = ¢D » ¢DR R R0.083FEM

1

12 0 0.
Therefore, the error on the voltage drop across the NW given
by equation (17), and thus equation (20), is of order

- »p1 1
96

4

% . Thus, V3ω remains largely the same as long
as Θ= 1 and we can neglect the non-homogeneous heating
effect created by a change in local temperature. This shall
appear even more clearly during the discussion of figure 3.
We shall note that if all the terms in the infinite series in
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equation (13) were used, instead of only n= 0, both models
would predict d = ¢DR R1

12 0, as ought to be expected.

4.1.2. Θ∼ 1. A comparison between the analytical and FEM
models in the regime where Θ∼ 1 is presented in figure 2 for
various injection currents. For the sake of presenting a
meaningful example, the simulations have been performed
with the parameters of one of the InAsSb NWs from the
dataset discussed in section 4.2. In particular, we chose the
device used to measure figures 1(a) and 4(a). The relevant
parameters are: 1 μm length, 35 nm diameter, and k = 1.5 W

mK
.

From figures 2(a)–(b), we can see the qualitative similarity of
the two models hitherto discussed. It is clear, however, that,
the two have a significant discrepancy in the peak
temperature, especially for higher currents. Nevertheless,
this regime is the most useful from an experimental point of
view, as the stronger non-linearity of the NW response allows
for better signal-to-noise ratio. The aforementioned
disagreement between the two models is caused by the low
value of κ of the NW chosen as an example, whose
engineered superlattice lowers thermal transport by an order
of magnitude with respect to the respective homogeneous
InAs crystal. This drop in thermal conductivity means that it
becomes challenging to fulfil equation (12) in typical
experimental conditions, with the parameters reaching
Θ= 0.33 for the higher temperature. Therefore, it becomes
clear that the effects of self-heating and the resulting gradients
in electrical conductivity can no more be neglected, and must
be taken into account in an FEM model. Most importantly,
from equation (17) we can see how the underestimate in the
NW temperature profile results in an overestimate V(x), and
therefore of V3ω.

This discrepancy is highlighted in figure 3, which shows
a direct comparison between the two models for injection
currents of 5μA (figures 3(a)–(b)) and 30μA (figure 3(c)–(d)),
corresponding to Θ= 5× 10−3 and Θ= 0.19 respectively.
Echoing the previous remarks, we shall see how for the lower
injection current we fulfill Θ= 1, and thus the error on the
temperature remains bound to a few percent. Moreover, as
clear from figure 3(a), ΔFEM(x)−ΔAn(x) oscillates along the
NW, and it is integral cancels out almost exactly. As we can
clearly see from figure 3(e), when Θ∼ 1 taking the local
effect of Joule’s heating into account causes a discrepancy up
to 20% between the analytical 3ω approach and the (more
accurate) Finite Element modelling. In turn, this also causes a
discrepancy in the voltage profile. This is even more
significant than the Θ= 1, as ΔFEM(x)−ΔAn(x)> 0 along
the whole NW. Thus, the error on the voltage accumulates
rather than cancelling out, which manifests in an overestimate
of the voltage drop of 9%. Considering equation (20), it is
clear how therefore the naive analysis would lead to an
underestimate of the NW thermal conductivity, thus high-
lighting the requirement for a self-consistent FEM modelling
the thermal and electrical profiles in nanostructures, especially
those engineered to lower their thermal conductivity.

4.2. Extracting κ from experimental data

Finally, we shall compare the two methods on an actual
experimental dataset,taken as described in [2], where we
demonstrate a drastic reduction in thermal conductivity in
InAsSb NWs thanks to a twinning superlattice crystal struc-
ture. This lends itself particularly well to the task, for it con-
tains 3ω measurements for a wide variety of thermal
conductivities,while maintaining similar physical and electrical
properties. For the finite element modeling,the calculations are
performed within a Python code employing the FEniCS
package [41] and the solution is directly exploited to fit
experimental data within the same framework consistently (see
supplementary info sections B, C for more detailed informa-
tion). Figures 4(a)–(b) show the same V3ω(I0) curves from
figure 1, but now with also the FEM fit. Figures 4(a), (c) show
the same nanostructured NW from figures 2–3, while
figures 4(b), (d) represent a single-crystal InAsSb NW with
larger thermal conductivity. It ought to be clear how the FEM
model is in far better agreement with the experimental datasets
than equation (20). This appears evident also from the reported
residuals,where the analytical model,unlike the FEM simula-
tions,clearly shows an oscillating trend in figure 4(c). More-
over,while the two models give a similar estimate of κ for the
device in panel (b), 4.7 0.3 W

mK
and 5.0 0.2 W

mK
for the

analytical and FEM method respectively, the two are sig-
nificantly different in the case of the nanostructured NW in
panel (a). Namely, equation (20) not only clearly does not fit
well the data,but estimates k = 1.1 0.1 W

mK
. The FEM

model,on the other hand,returns a value of 1.5 0.2 W

mK
,

amounting to an underestimate of almost 30%. The explana-
tion for this phenomenon ought to be clear from the theory, as
a reduction in κ implies an increase in Θ, which may push the
experimental conditions outside the range of validity of
equation (20). This trend is shown even more clearly in 4(e),
where we can see how such an underestimate is common for
all the low-κ devices. We can quantify this by considering the
relative discrepancy k k

k
- AnFEM

FEM
, which we can see being no less

than 25% in almost all nanostructured NWs, reaching close to
40% in some occasions. More importantly, the nature of this
error is systematic because of the break down of the main
assumption of the underlying theoretical result, and thus can
only be corrected with the use of a more suitable model.
Lastly, we shall stress how the naive application of the 3ω-
method in low-κ specimens systematically leads to measuring
an lower thermal conductivity. This is of crucial importance in
phonon-engineered or nanostructured systems for thermal
applications, where the effect of the nano-engineering may be
erroneously overestimated, which may in turn lead to an over-
inflation of the predicted thermoelectric performance.

5. Conclusion

This work clearly shows the need for accurate numerical
simulations, such as Finite Element Modelling, when extracting
thermal conductivity of nanostructures with low κ with the
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3ω-method. In particular, we have shown how the application of
the analytical results, which are routinely applied in measure-
ments of state-of-the-art high-aspect-ratio nanostructures, parti-
cularly semiconducting NWs, can lead to a significant
systematic error on the extracted thermal conductivity. In part-
icular, we shall stress how this is a systematic underestimate of
κ, which we have shown in experimental data to reach almost
30%. Specifically, we have identified the adimensional para-
meter Θ describing the regime in which the analytical approach
is effective (i.e. Θ= 1). When this relation is not respected,
then resorting to the finite element modelling approach to
extract κ is crucial for the 3ω technique to be effective.

This remark is of particular importance since low-κ
nanostructures are the devices which are the most interesting
from the technological point of view of thermoelectric
application. The stride to lower the thermal through phonon-
engineering and nanotechnology, on the pursuit of higher
thermoelectric figures of merit, may therefore risk to be
artificially inflated by the naive application of a methods
whose very assumptions require thermal conductivity to be
large enough to treat thermal transport perturbatively.

In this work, we also propose a more robust and mathe-
matically-sound approach based on the numerical solution of
the heat equation via Finite Element Modelling. This relaxes
the low-κ assumptions, and thus can more precisely assess the
thermal transport, and thus thermoelectric, performance of a
nanostructure, more reliably extracting its thermal conductivity.
We invite other groups developing low thermal conductivity
materials to adopt the method described in this work in order to
assess its robustness deriving from the mathematical frame-
work it has been developed on and to more precisely measure
the thermal conductivity of their samples to establish new
records in high-performance thermoelectric nanomaterials.
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