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Abstract

Laser cladding, an innovative surface modification and coating preparation process, has emerged as a
research hotspot in material surface modification and green remanufacturing domains. In the laser
cladding process, the interaction between laser light, powder particles, and the substrate results in a
complicated mapping connection between process parameters and clad layer quality. This work aims
to shed light on this mapping using fast evolving machine learning algorithms. A full factorial
experimental design was employed to clad Inconel 718 powder on an A286 substrate comprising 64
groups. Analysis of variance, contour plots, and surface plots were used to explore the effects of laser
power, powder feeding rate, and scanning speed on the width, height, and dilution rate of the cladding.
The performance of the predictive models was evaluated using the index of merit (IM), which includes
mean square error (MSE), mean absolute error (MAE), and coefficient of determination (RY). By
comparing the performance of the models, it was found that the Extra Trees, Random forest
regression, Decision tree regression, and XGBoost algorithms exhibited the highest predictive
accuracy. Specifically, the Extra Trees algorithm outperformed other machine learning models in
predicting the cladding width, while the RFR algorithm excelled in predicting the associated height.
The DTR algorithm demonstrated the best performance in predicting the cladding dilution rate. The
R? values for width, height, and dilution rate were found to be 0.949, 0.954, and 0.912, respectively, for
these three models.

1. Introduction

Laser cladding is an advanced surface modification and coating preparation technology, integrating material
preparation and surface configuration, and is a crucial support technology for green remanufacturing
technology. Laser cladding exploits the high energy density of a laser beam to melt and spray metal powder (or
wire) onto the surface of the target substrate, forming coatings with high hardness, high abrasion resistance, high
corrosion resistance, etc. The cladding process enables surface modification of critical parts as well as the repair
of surface damage, and it has been widely used in the fields of aviation, aerospace, automotive, machinery and so
on[1,2].

The process parameters of the laser cladding process have a profound effect on the quality characteristics of
the resulting cladded layer (i.e., the geometrical and mechanical properties). The coupling of light, powder, and
substrate properties leads to a complex mapping relationship between process parameters and cladding layer
[3,4]. In order to optimize laser cladding, many scholars are exploring the influence of the different process
parameters on the coating morphology and mechanical [5, 6]. In the study by Liu et al 27 sets of experiments
were selected using a full factorial design (FFD) to investigate the interplay between laser power(P), powder feed
rate(F), and scanning speed(S) on the cross-sectional dimensions (i.e., width and height) of a cladded deposit

© 2024 The Author(s). Published by IOP Publishing Ltd
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consisting of ferrous self-melting alloy powder. A nonlinear fitting model was used to fit the relationship
between geometrical parameters and process parameters [7]. Li et al used a single-track orthogonal experiment
to explore the influence of process parameters (substrate tilt angle, P, F, and S) on the cladding layer width and
height during the laser cladding deposition of Ni60A powder under the tilted substrate. The results showed that
an increase in tilt angle would increase the cladding layer width and decrease the height, with the width being
more significantly affected by laser power, and the height being more influenced by S and F[8]. Xu et al used
Taguchi’s method to design L, orthogonal experiments to melt cladding of In718 on a A286 substrate [9]. They
analyzed the effects of P, F, and S, on micro-hardness, load bearing capacity, yield strength, ultimate tensile
strength, and elongation and failure. In addition, they have shown that using optimized process paramaters,
mechanical properties could be further improved. Despite the differences in the selection of process parameters
by researchers in many scientific papers, it is still evident that P, F, and S generally have an important influence in
different experimental studies.

The optimization of laser cladding process parameters is often divided into three stages: experimental
design, predictive modeling, and parameter optimization. The research methodology adopted in each stage
affects the final results. Currently, robust experimental designs for laser cladding often employ factorial
experiments, Taguchi analysis methods, and response surface methodology [5-7].

To realize the complex mapping between laser cladding process parameters and cladding layer quality, three
methods are commonly used: (i) statistical analysis method, to establish the regression model between the
process parameters and the response [10-12]; (ii) using finite element analysis methods, the established three-
dimensional model controls each parameter variable, simulates the experimental process of laser cladding, and
predicts the desired experimental results [ 13—16]; (iii) application of machine learning (ML) algorithms such as
Random forest regression (RFR), Support Vector Machine (SVM), Artificial Neural Network (ANN), and Deep
Learning [16-21].

Alizadeh-Sh et al melted In718 alloy powder on the surface of A286 iron-based superalloy. They proposed an
empirical statistical analysis based on the linear regression (LR) method to analyze the melting and cladding
process. The critical geometrical characteristics (i.e., width, height, angle, dilution rate) required to avoid
solidification cracking during the melting process were predicted [22]. Lian et al carried out laser cladding on
curved surfaces and used the response surface method to establish mathematical models for width, height, and
dilution rate. The authors obtained the relationship between the response and the process parameters, and
experimentally verified the model’s reliability. However, it is difficult to solely use regression equations to
describe this correlation when dealing with nonlinear data and data characteristics involving complex
polynomials [23]. Song et al established a three-dimensional finite element model of the laser cladding process of
7075 aluminum alloy powder on 2024 aluminum alloy substrate, and obtained the temperature field and
residual stress field generated during the process, in order to analyze the effects of different laser power, scanning
speed, cladding layer lengths, cladding layer patterns, and cladding angles on fatigue life of aircraft Fuselage [24].
Wolff et al predicted the effects of process parameters on temperature distribution, liquid metal flow, cladding
layer geometry, and dilution rate in the melt pool during the laser cladding process by establishing a three-
dimensional thermo fluid dynamics model and using a surface contour calculation method based on
minimizing surface free energy [25]. Many assumptions need to be made, which often do not align well with the
actual cladding process. This misalignment results in simulation outcomes that struggle to offer meaningful
guidance for the actual process. Additionally, the finite element method often consumes a significant amount of
time during the solving process.

To circumvent the above issues, many scholars have recently turned their attention to rapidly developing
research methods such as ML to achieve better process predictions. Omar et al studied the applicability of
common ML algorithms such as Gaussian Process Regression, Decision Tree Regression (DTR), Random Forest
Regression (RFR), Support Vector Regression (SVR), Gradient Boosting Regressor, and Multi-layer Perceptron
(MLP) in predicting friction welding process parameters. The results showed that Gradient Boosting Regressor
(GBR), Support Vector Regressor (SVR), and Gaussian Process Regressor had the highest accuracy with a
percentage error of less than 3% [17]. According to literature research, commonly used ML algorithms in
establishing prediction models for laser cladding include Back-propagation Neural Network (BP), SVR, DTR,
RFR, GBR, etc. [3, 20, 26-31].

Although numerous scholars have conducted detailed studies on predicting laser cladding process
parameters, fewer have undertaken in-depth comparative analyses of these ML algorithms to determine their
accuracy and applicability. Therefore, the primary focus of this study is to compare the predictive accuracy of
commonly used ML algorithms in determining the geometric characteristics of laser-cladded layers of Inconel
718. Specifically, our study centers on K-Nearest Neighbors (KNN), Back-propagation Neural Network (BP),
Support Vector Regression (SVR), Decision Tree Regression (DTR), Random Forest Regression (RFR), Extra
Trees, and XGBoost. Our objective is to establish which ML algorithms exhibit higher precision in predicting
process parameters for laser cladding. We conducted 64 FFD experiments on Inconel 718 clad on an A286
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Figure 1. Laser cladding equipment employed in the present work.

substrate. First, we applied an analysis of variance to assess the contribution of each parameter to various
responses and the statistical significance of the cladding process. Secondly, traditional analytical methods
investigated the relationship between the three inputs—Ilaser power (P), powder feed rate (F), and scanning
speed (S)—and the responses—cladding width (W), cladding height (H), and dilution rate (D). Finally, we
optimized the hyperparameters in the machine learning models using genetic algorithms (GA). Subsequently,
we assessed the performance of these optimized ML algorithms in predicting the quality indices (IMs) of the
laser cladding process parameters, and comparative evaluations were performed.

2. Materials and methods

2.1.Laser cladding

Figure 1 shows the ZKZM-Z06 laser cladding system employed in this work. The laser cladding system, which is
installed in a 4-axis CNC machine, consists of 6KW fiber laser, a coaxial laser cladding head, and powder feeding
and cooling systems. Disc-shaped samples (9150 mm x 10 mm) consisting of iron-based high-temperature
alloy (A286) were used as the substrate material. Nickel-based high-temperature alloy In718 powder was
selected as the cladding material. To ensure good flowability, In718 powder with spherical-shaped particles in
the diameter of 45-150 pum was chosen, and its micrograph, obtained through a Scanning Electron Microscope
(SEM, FEI Quanta 250), is shown in figure 2.

The chemical composition of the substrate was determined using carbon-sulfur analysis and atomic
spectroscopy, as shown in table 1. Before the experiments, the powders were dried in a vacuum using an oven set
at 100 °C for 2 h. Prior to laser cladding, the A286 substrates were ground using 180+ SiC sandpaper to remove
oxides and contaminants from the substrate surface and wiped clean using absolute ethanol (anhydrous
ethanol). Single-track cladded layers were deposited on the pre-treated upper surface of the substrates, with
representative dimensions of 5 mm x 8 mm x 10 mm. Subsequently, the samples were sequentially grounded
using SiC sandpaper with grit size 4004, 8004, 12004, 1500# and 2000+ and then polished with W2.5
abrasive paste. The samples cross-section was subsequently etched using Kalling’s reagent (i.e., a mixture of
100 ml water, 100 ml HCI, and 5 g CuCl,). Finally, the etched cross-section was observed using an optical
microscope (OM, LEICA DM4), and the geometric characteristics of the cladding layer were measured and
evaluated using an image processing program (Image]J, National Institure of Health, US).

2.2.Design of experiments

In this study, a full factorial experimental (FFD) approach was employed to design the experiments, considering
the varying degrees of influence from different process parameters. The laser spot diameter was set constant at

5 mm, and argon gas was used as the shielding and carrier gas for powder delivery. The gas flow rate was
maintained at 15 L/min. Based on literature research, three main process parameters, namely P, F, and S, were
selected as independent variables. Each parameter was set at 4 levels, as shown in table 2. The 64 sets of parameter
combinations obtained from the full factorial experimental design are shown in table 3.
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Figure 2. SEM micrograph of the In718 powder.

Table 1. Composition of A286 and In718.

Material Nominal composition (wt%)

A286 Ni Cr Ti Mo Mn Si Al C Fe
24.64 14.81 2.05 1.26 1.2 0.6 0.24 0.06 Bal

In718 Ni Cr Nb Mo Ti Al Cu C Fe

52.41 19.17 5.19 3.19 0.95 0.51 0.087 0.04 Bal

Table 2. Key parameters of laser cladding process in different levels.

Process parameters Unit Notations Level 1 Level 2 Level 3 level 4
Laser power w P 800 1300 1800 2300
Powder feed speed r/min F 0.4 0.5 0.6 0.7
Scan speed mm/s S 3 4.5 6 7.5

Figure 3 presents the measured geometric characteristics of the cross-section of the single-track claddings.
The geometric characteristics, including W, H, melt pool depth (h), cladding area (Ac), and fusion area (Af),
were measured using Image] software.

The dilution rate (D) is an important parameter which indicates the degree of bonding between the fusion
cladding and the substrate. In the present work, it was calculated using equation (1) [32]:

Ar

D= " (1)
A, —l—Af

where Ay is the area of the fusion zone, and A, is the area of the cladding layer.

2.3.Machine learning methods and selection of hyperparameters

Drawing upon relevant literature and the authors’ own investigations into mainstream machine learning
techniques, this paper employs a selection of algorithms, including K-Nearest Neighbors (KNN), Back-
propagation Neural Network (BP), Support Vector Regression (SVR), Decision Tree Regression (DTR),
Random Forest Regression (RFR), Extra Trees, and XGBoost [3, 20, 26—31]. The objective is to compare their
predictive performance in the context of this study.

To avoid issues such as overfitting and underfitting, this study employs 5-fold cross-validation. In this
validation technique, k denotes the number of parts into which the data is divided; K-1 folds are used for
training, and the remaining folds are used for testing the model. The evaluation metrics of the cross-validation
set can be used to continuously adjust the hyper-parameters to obtain a reliable and stable model. Additionally,
different ML algorithms have their characteristics, and the hyperparameters that significantly impact the
prediction results may vary depending on the specific problem. Therefore, this study selects important

4



Table 3. Full factorial experimental data set.

No. P (kW) F(r/min) S(mm/s) W (um) H (um) D (%) No. P (kW) F(r/min) S(mm/s) W (um) H (um) D (%)
1 0.8 0.4 3 1979 1529 0.73 33 1.8 0.4 3 4438 2388 10.28
2 0.8 0.4 4.5 1818 887 4.72 34 1.8 0.4 4.5 3897 1497 17.67
3 0.8 0.4 6 1568 638 2.23 35 1.8 0.4 6 3321 1158 18.9
4 0.8 0.4 7.5 1529 269 19.28 36 1.8 0.4 7.5 3422 986 11.84
5 0.8 0.5 3 2442 434 27.74 37 1.8 0.5 3 4242 2382 11.39
6 0.8 0.5 4.5 1489 1168 0 38 1.8 0.5 4.5 4052 1794 5.27
7 0.8 0.5 6 1557 832 0 39 1.8 0.5 6 3606 1378 9.04
8 0.8 0.5 7.5 1194 630 0 40 1.8 0.5 7.5 3279 1147 7.69
9 0.8 0.6 3 2424 2216 0 41 1.8 0.6 3 4687 3196 0.71
10 0.8 0.6 4.5 2263 1640 0 42 1.8 0.6 4.5 4349 2364 0.85
11 0.8 0.6 6 1636 998 0 43 1.8 0.6 6 3945 1687 1.01
12 0.8 0.6 7.5 — — 0 44 1.8 0.6 7.5 3790 1556 1.04
13 0.8 0.7 3 — — 0 45 1.8 0.7 3 4657 3493 0
14 0.8 0.7 4.5 — — 0 46 1.8 0.7 4.5 4402 2780 0
15 0.8 0.7 6 — — 0 47 1.8 0.7 6 3701 2020 0
16 0.8 0.7 7.5 — — 0 48 1.8 0.7 7.5 3802 1325 0
17 1.3 0.4 3 3719 2156 5.16 49 2.3 0.4 3 5070 2293 26.58
18 1.3 0.4 4.5 3137 1212 1591 50 2.3 0.4 4.5 4522 1574 40.39
19 1.3 0.4 6 2673 986 8.25 51 2.3 0.4 6 4213 1176 44.86
20 1.3 0.4 7.5 2465 790 6.74 52 2.3 0.4 7.5 3677 951 52.01
21 1.3 0.5 3 3719 2531 1.59 53 2.3 0.5 3 4764 2560 25.12
22 1.3 0.5 4.5 3107 1580 1.59 54 2.3 0.5 4.5 4337 1859 29.82
23 1.3 0.5 6 3351 1349 1.22 55 2.3 0.5 6 4088 1141 40.41
24 1.3 0.5 7.5 2816 939 3.85 56 2.3 0.5 7.5 3867 1028 37.76
25 1.3 0.6 3 3743 2941 0 57 2.3 0.6 3 4690 3217 12.2
26 1.3 0.6 4.5 3089 1990 0 58 2.3 0.6 4.5 4479 2186 20.23
27 1.3 0.6 6 2970 1366 0 59 2.3 0.6 6 4319 1764 19.93
28 1.3 0.6 7.5 2935 1194 0 60 2.3 0.6 7.5 4123 1521 16.57
29 1.3 0.7 3 4010 3244 0 61 2.3 0.7 3 4990 3541 5.51
30 1.3 0.7 4.5 3392 2180 0 62 2.3 0.7 4.5 4592 2566 5.4
31 1.3 0.7 6 2881 1675 0 63 2.3 0.7 6 4337 2151 3.78
32 1.3 0.7 7.5 2691 1319 0 64 2.3 0.7 7.5 4048 1751 5.15
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Figure 3. Schematic representation of the cross-sectional geometric parameters of a single-track laser cladding.

Table 4. Hyperparameter selection for algorithm implementation.

ML algorithm Hyperparameters

KNN Neighbor tree = 5,Vector distance algorithm = Euclidean distance

BP Hidden layers = 3,Hide layer node tree = 100,Learning rate = 0.25,Activation function = Identity
SVR Kernel function = Radial basis kernel function,Kernel function coefficients = Scale

DTR Maximum depth = 30,

RFR Number of trees = 100, maximum depth = 20

Extra Trees Number of trees = 100, maximum depth = 20

XGBoost Base learner = gblinear, Number of base learners = 100, Maximum depth = 10

hyperparameters based on previous research to ensure that the ML algorithms can achieve good predictive
performance and generalization ability. For ML algorithm in table 4, heuristic algorithms are used to optimize
the hyperparameters. The schematic is shown in figure 4.

2.3.1. K-nearest neighbor

The K-nearest neighbor (KNN) regression algorithm operates on the principle of distance similarity. It selects
the K closest neighbors to the sample to be predicted by computing the distance between the target sample and
each sample in the training set. Prediction is then made based on the labels of these neighbors. The algorithm’s
workflow involves storing samples and their labels during the training phase, creating a sample space. In the
prediction phase, the distance between a test sample and each training set sample is calculated, and the K nearest
neighbors are chosen based on these distances. For regression problems, the average value of the K neighbors is
used as the prediction result. By selecting an appropriate K value and distance metric, the KNN algorithm can
accurately predict regression problems. Using Euclidean distance as the vector distance algorithm, and after
optimizing the K value of KNN through the genetic algorithm (GA), the value of 5 was selected [26].

2.3.2. BP neural network

BPNN (BP) is a neural network regression algorithm based on the back-propagation algorithm, which is based
on the principle of training the network weights through two phases: forward propagation and back-
propagation, in order to enable the network to learn the mapping relationship between inputs and outputs. The
loss function is minimized by continuously adjusting the weights and biases and is suitable for dealing with
nonlinear problems. The complexity and learning capability of the network are determined by parameters such
as the number of hidden layers and the number of neurons in each hidden layer. The learning rate determines
the step size of each weight update. A learning rate that is too large may cause oscillations, while a learning rate
that is too small may result in slow convergence. The number of iterations determines the number of training
cycles. Too many iterations may lead to overfitting, while too few may result in underfitting [4, 5, 20, 27].

2.3.3. Support vector regression

Support Vector Regression (SVR) is a regression algorithm based on Support Vector Machines that fits the data
by finding the optimal hyperplane and minimizing the prediction error as much as possible. It is suitable for
dealing with high-dimensional data and linear problems. One of its most important hyperparameters is the
kernel function. Through the comparison of different kernel functions, it was found that the model based on the
radial basis is more suitable for predicting the geometric characteristics of the cladding [3].
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Figure 4. Flowchart of the procedure employed to predict geometric characteristics of laser cladding using ML algorithms.

2.3.4. Decision tree regression

Decision tree regression (DTR) is a regression algorithm based on a tree structure based on the principle of
modeling the input data in segments by constructing a tree to predict continuous values of the output variables.
In DTR, each tree node represents a feature, and the input data is partitioned based on that feature until a
predetermined stopping condition is met. At each node, DTR uses some criterion to select the best feature and
segmentation point, commonly used criteria include mean square error (MSE) and mean absolute error (MAE).
During the prediction phase, the input data follows the branches of the tree and eventually reaches a leaf node,
which stores the average or median value of the samples in that subset. This value serves as the prediction for that
subset [17, 19]. There are important parameters that need to be set in DTR. These include the maximum depth
of the tree, the minimum number of samples in a leaf node, and the minimum number of samples required for a
split. These parameters determine the complexity and generalization ability of the tree. A larger maximum depth
and minimum number of samples may lead to overfitting, while a smaller minimum number of samples may
lead to underfitting. By adjusting the maximum depth through GA to optimize the Decision Tree Regression
(DTR) and improve the model’s performance and generalization ability, more accurate prediction results can be
obtained.

2.3.5. Random forest regression

The Random Forest regression (RFR) algorithm is an ensemble learning method that constructs multiple
decision trees by randomly selecting data and features. The final result is obtained by voting or averaging the
predictions of these trees. It has high accuracy and generalization ability [17, 19]. In the Random Forest model,
important hyperparameters include the number of decision trees and the maximum depth [27].

2.3.6. Extra-trees

Extra trees, also known as Extremely Randomized Trees, further increase the randomness on top of the Random
Forest. Extra trees randomly select features and split points when constructing each decision tree instead of
optimizing criteria. This additional randomness can enhance the diversity of the model and reduce the risk of
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overfitting, making it suitable for handling high-dimensional data and nonlinear problems. The important
hyperparameters of Extra-trees are the same as those in the Random Forest algorithm.

2.3.7. XGBoost

XGBoost trains each weak classifier by optimizing the gradient of the loss function and obtains the final
prediction by weighted summation. The gradient boosting algorithm adjusts the sample and classifier weights in
each iteration to minimize the loss function. The accuracy and efficiency of the model is improved by using
regularization and parallel processing, which is suitable for dealing with high-dimensional data and nonlinear
problems [17, 20]. After optimization through GA, the learning rate is set to 0.1.

Random Forest and Extra Trees belong to the Bagging model, while XGBoost belongs to the Boosting model.
The Bagging model is a parallel ensemble learning method that constructs multiple base classifiers by randomly
sampling the training set with replacement. The final prediction is made through voting or averaging. The
Boosting model is a sequential ensemble learning method that iteratively trains multiple weak classifiers. In each
iteration, the sample weights are adjusted based on the predictions from the previous round to improve the
model’s performance.

2.4.Index of merit for the evaluation of the precision of ML algorithms

Using the 59 samples obtained from the experiments, the dataset was randomly divided into a training set (70%)
and a validation set (30%). To eliminate the dimensional impact among response values, a min-max scaling
preprocessing was performed. In particular, the data was scaled linearly between [0,1] using the following
equation (2):

X’ — X — Xmin (2)
Xmax - Xmin
To mitigate the randomness of the ML algorithm, five consecutive calculations were performed using the
hyperparameters shown in table 4. The best-performing result in predictive performance was selected as the
accuracy evaluation metric for the chosen algorithm. Notice that, in this study, we adopted an index of merit
(IM) introduced by Barrionuevo etal[17, 19] to assess the predictive accuracy, and which is defined as:
IM = /(1 — R¥)?* + MSE + (MAE)> 3)
Where:
N )2
R i BT (4)
N 72
25 =)
1N
MSE = = (. — 7)? )
N7
1N
MAE:NZIM -7 (6)
i

This index combines the above metrics of to provide a comprehensive measure of algorithm accuracy. Notice
thata value closer to 0 indicates better overall performance.

3. Results and discussion

Five samples were dislodged after the experiment and 59 samples were obtained. The single track cross-section
maps obtained from optical microscopy (OM) are shown in figure 5, representing the claddings prepared at
800 W, 1300 W, 1800 W, and 2300 W laser power (P), respectively.

3.1. Statistical analysis

Analysis of variance (ANOVA) can be used to investigate whether the process parameters significantly affect the
results of the laser cladding process. ANOVA is usually based on the assumption of normal distribution, so the
results of the obtained responses need to be tested for normality. Figure 6 shows the residual normal probability
plots for the measured W, H, and D. It can be observed that the data points are distributed along a straight line,
indicating that W, H, and D all follow a normal distribution.

The importance of p-values lies in their ability to help us perform hypothesis testing, i.e., to determine
whether the sample data supports the null hypothesis. Suppose the p-value is smaller than the predetermined
significance level (typically 0.05 or 0.01). In that case, we can reject the null hypothesis and conclude that there is
asignificant difference between the sample data and the hypothesized population mean.
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Figure 5. OM image showing the cross-section of the cladded layer as deposited using various combinations of processing parameters.
(a) Power 800 W, (b) Power 1300 W, (c) Power 1800W, (d) Power 2300 W.
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Figure 6. Normality test of (a) cladding width, (b) cladding height, (c) dilution rate.

The ANOVA results are shown in table 5, except for Fand S, which have insignificant effects on W and D,
respectively, the p-values of P, Fand S on W, H, and D are all less than 0.01, indicating that all have extremely
significant effects. Among them, the contribution rates of P, F, and S to W are 90.39%, 1.16%, and 8.45%,
respectively, indicating that P has the greatest influence on W. For H, the contribution rates of P, F, and Sare
43.85%, 9.30%, and 46.85%, respectively, indicating that P and F have the greatest impact on H. For D, the
contribution rates of Pand S are 63.80%, 0.48%, and 35.58%, respectively, indicating that P and S significantly
influence the dilution rate.

3.2. Contour plot and surface plot analysis

To visually examine the relationship between the process parameters and the geometrical characteristics of the
cladding, surface and contour plots of the response results versus the cladding parameters are made from the 59
sets of experimental data obtained. The concept of powder distribution density (I) is introduced to synthesize the
powder volume measure [33]:
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Figure 7. (a) Surface plot and contour plot of W about P and I (b) Main effect diagram of W.

Table 5. ANOVA for cladding width, cladding height, dilution rate.

Source Laser power(P) Feeding rate(F) Scanning speed(S) Residual Error Total
DF 3 3 3 54 63
Cladding width (W) Adj SS 93201486 1199200 8713793 11373119 114487598
AdjMS 31067162 399733 2904598 210613
Fvalue 147.51 1.9 13.79
P value 0 0.141 0
Contribution 90.39% 1.16% 8.45%
Cladding Height (H) AdjSS 17019726 3607601 18188283 10246486 49062097
AdjMS 5673242 1202534 6062761 189750
Fvalue 29.9 6.34 31.95
Pvalue 0 0.001 0
Contribution 43.85% 9.30% 46.85%
Dilution rate (D) AdjSS 0.49161 0.27485 0.00401 0.27956 1.05002
AdjMS 0.163869 0.091616 0.001337 0.005177
Fvalue 31.65 17.7 0.26
P value 0 0 0.855
Contribution 63.80% 35.68% 0.52%
R @)
S*d

where d is the laser spot diameter. Surface plots are drawn with I and P as independent variables and each
response as dependent variable, which enables the surface and contour plots of the same response to be displayed
in a single plot.

3.2.1. Cladding width

Asillustrated in figure 7(a), the contour plot shows the highest gradient variation along the direction of
increasing power, while the gradient variation along the direction of I is relatively smaller. This suggests that P
has a more significant impact on W compared to I. Additionally, as shown in figure 7(b), a positive correlation
between P and W is observed. Initially, increasing F enhances the influence on W, which then decreases.
Conversely, increasing S results in a decrease in W. This ultimately leads to a non-linear relationship between I
and W. It follows that when I'is constant, an increase in P within the melting power range can melt more powder
per unit time, thereby improving powder utilization and increasing W. When Pis constant and maintained
within the melting power range, increasing I leads to more powder per unit time, resulting in a larger W.
However, if I becomes too large, it can cause shielding effects, leading to a decrease in W. This explanation
effectively accounts for the overall increasing trend of W.

3.2.2. Cladding height

Similarly, as shown in figure 8(a), the contour plot exhibits the highest gradient variation along the direction of I,
while the gradient variation along the direction of Pis relatively smaller. This indicates that H is more influenced
by I'than by P. Further observation of figure 8 reveals that increasing P leads to a gradual decrease in the slope of
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Figure 9. (a) Surface plot and contour plot of D about Pand I, (b) Main effect diagram of D.

H, increasing Finitially increases H and then decreases it, and increasing Sleads to a decrease in H. Ultimately,
this results in a non-linear relationship between I and H. Within the melting range, when P remains constant, a
larger I'leads to a greater amount of powder deposition per unit time, resulting in a larger H. When I'is constant,
increasing Pleads to alarger amount of melted powder, thereby increasing H.

3.2.3. Dilution rate

In the laser cladding process, where high-energy lasers are used to melt cladding powder and form a melt pool on
the substrate, the deposition of cladding material on the substrate surface is key to enhancing its surface
properties. One crucial indicator is forming a sufficiently strong metallurgical bond between the deposited
material and the substrate, or previously deposited layer [20]. The dilution rate (D) is typically used to gauge the
bonding strength in laser cladding processes. The surface and contour plots shown in figures 9(a) and (b) show
that D increases with increasing P. This is because it increases the melt pool area, which allows more powder
material to be melted and bonded to the substrate material, inducing more material to fill the microscopic voids
on the surface of the substrate, which increases the contact area between the materials, and in turn increases D.
Moreover, the overall effect of I on the dilution rate exhibits an increasing trend.

3.3. Evaluation of model performance

To address the non-linear mapping between process parameters and the characteristics of the cladded layer,
eight ML algorithms, namely linear regression (LR), KNN, BP, SVR, DTR, RFR, Extra Trees, and XGBoost, were
employed to predict the Geometric Characteristics of laser cladding. The accuracy performance metric, IM, was
obtained for each algorithm’s prediction of the laser cladding response values, and the results are summarized in
table 6. Cross-validation is a method for assessing the performance of a model by dividing the dataset into a
training set and a validation set, which allows for an assessment of the model’s ability to generalize over

unseen data.
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Table 6. Statistical evaluation of global accuracy performance indicators for various prediction algorithms in predicting
geometric characteristics.

5-fold cross-validation Validation set
ML algorithm
R? MSE MAE M R? MSE MAE M
LR w 0.672 0.017 0.092 0.571 0.814 0.03 0.093 0.391
H 0.579 0.025 0.111 0.692 0.672 0.018 0.093 0.572
D 0.206 0.033 0.146 0.986 0.569 0.027 0.133 0.709
KNN w 0.738 0.015 0.089 0.480 0.866 0.007 0.089 0.278
H —0.125 0.038 0.0139 1.004 0.604 0.026 0.136 0.669
D —0.229 0.054 0.174 0.991 0.297 0.026 0.098 0.931
BP w 0.119 0.021 0.108 1.002 0.749 0.019 0.081 0.467
H —0.078 0.032 0.178 1.025 0.718 0.012 0.089 0.505
D —0.651 0.072 0.198 0.666 0.414 0.013 0.098 0.842
SVR w 0.694 0.018 0.106 0.546 0.779 0.01 0.076 0.413
H 0.104 0.048 0.175 1.028 0.332 0.042 0.172 0.929
D —3.024 0.095 0.282 8.155 —0.394 0.133 0.338 0.980
DTR w 0.881 0.004 0.05 0.238 0.913 0.007 0.05 0.193
H 0.484 0.027 0.116 0.792 0.836 0.009 0.097 0.330
D 0.342 0.028 0.1 0.904 0.912 0.005 0.037 0.186
RFR w 0.705 0.016 0.086 0.526 0.931 0.004 0.05 0.156
H 0.698 0.018 0.089 0.537 0.954 0.003 0.045 0.114
D 0.423 0.01 0.065 0.830 0.743 0.02 0.085 0.477
Extra Trees w 0.853 0.007 0.062 0.292 0.949 0.003 0.044 0.122
H 0.662 0.018 0.085 0.584 0.872 0.008 0.067 0.264
D 0.428 0.018 0.085 0.832 0.87 0.01 0.069 0.272
XGBoost w 0.534 0.023 0.096 0.737 0.894 0.006 0.068 0.226
H 0.681 0.014 0.08 0.555 0.831 0.015 0.077 0.342
D 0.532 0.024 0.077 0.738 0.766 0.021 0.084 0.446

As shown in table 6, among the eight prediction methods used in this study, the performance of 5-fold cross-
validation in terms of the IM metric is inferior to that of the validation set data. This is because it provides a more
stringent evaluation of the model. In 5-fold cross-validation, the data is divided into five mutually exclusive
subsets for model training and prediction, with each subset serving as the test set in turn. The cross-validation
results reflect the model’s performance on new, unseen data. This implies that the model is tested on a broader
range of data, leading to a higher prediction error. Therefore, the predictive performance of cross-validation
may exhibit larger variance and error [34, 35]. Furthermore, looking at the IM results of the 5-fold cross-
validation among the eight prediction methods, the generalization capabilities of LR and tree-based models
outperform KNN, BP, and SVR. This is due to LR being a parametric model that assumes a linear relationship
between features and the target. This simple assumption makes LR less prone to overfitting during training,
hence it has better generalization capabilities. The higher IM of tree-based models in CV could be attributed to
their binary decision structure for prediction, which is insensitive to outliers. Moreover, models like Random
Forest Regression (RFR), Extra Trees, and XGBoost are ensemble models that improve prediction performance
by integrating multiple decision trees. The ensemble method can average out the noise of individual decision
trees, enhancing the model’s stability and robustness.

As discerned from figure 10(b)—(h) exhibit a high degree of fit for cladding width prediction. Table 6 reveals
that the maximum R” value is for Extra Trees at 0.949, with KNN having the minimum at 0.866. Considering the
predictive performance evaluation indicators of MSE, MAE, and R%as per equation (2), the IM values for DTR,
RFR, Extra Trees, and XGBoost in predicting cladding width are 0.192, 0.156, 0.122, and 0.226 respectively,
indicating that Extra Trees has the best predictive performance of cladding width.

Observing figure 11(e)—(g) demonstrate superior fitting results for cladding height prediction. Table 6 shows
that the maximum R* value is for RER at 0.954, with DTR having the minimum at 0.836. Considering the
predictive performance evaluation indicators of MSE, MAE, and R? as per equation (3), the IM values for DTR,
RFR, Extra Trees and XGBoost in predicting cladding height are 0.330, 0.114, 0.264 and 0.342 respectively,
indicating that RFR has the best predictive performance of cladding height.

The observation of figures 12(e)—(h) shows that the algorithms DTR, RFR, Extra Trees and XGBoost have
better predictive performance for the prediction of dilution rate, and through table 6 it is known that the largest
R®value is DTR with 0.912 and the smallest is RER with 0.743. According to equation (3), the IM evaluation
metrics that combine the prediction performance of MSE, MAE and R2, the IM values of DTR, RFR, Extra Trees
and XGBoost for the prediction models of melting width are 0.186, 0.477, 0.272 and 0.446, respectively, which
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Figure 10. Evaluation of predictive performance for cladding width. (a) LR, (b) KNN, (c) BP, (d) SVR, (e) DTR, (f) RFR, (g) Extra
Trees, (h) XGBoost.

indicates that RFR has the best prediction performance. All four algorithms have IM values greater than 0.3 for
dilution rate, indicating that despite min-max Scaling data preprocessing, the small dilution rate and numerous
zero values result in a decline in fitting results.
From figures 10, 11 and 12, it can be seen that tree-based algorithms DTR, RFR, Extra Trees, and XGBoost

have the best predictive performance and accuracy. LR, KNN, BP, and SVR have poorer predictive performance
due to the complex mapping relationship between laser cladding process parameters and cladding layer quality.
Simple LR cannot accomplish such a complex prediction task. The KNN algorithm predicts based on the
distance between data points, but when dealing with high-dimensional data, distance calculation becomes very
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Figure 11. Evaluation of predictive performance for cladding height. (a) LR, (b) KNN, (c) BP, (d) SVR, (e) DTR, (f) RFR, (g) Extra
Trees, (h) XGBoost.

difficult, leading to a decline in predictive performance. Due to the adoption of a single response, the cladding
width, in determining the hyperparameters during the selection process, it may lead to poorer predictive
performance when predicting the width and dilution rate. This is the reason why SVR and BP cannot fit the
mapping relationship between height, dilution rate, and clad quality well [3—6].
The magnitude of the IM values calculated by the DTR, RFR, Extra Trees, and XGBoost prediction

algorithms shows that Extra Trees is the optimal prediction model in the prediction process of cladding width,
improving performance by 36.8%, 21.8%, and 46% compared to DTR, RFR, and XGBoost respectively. RFR has
the best predictive performance in the prediction process of cladding height, improving performance by 56.4%,
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Figure 12. Evaluation of predictive performance for dilution rate. (a) LR, (b) KNN, (c) BP, (d) SVR, (e) DTR, (f) RFR, (g) Extra Trees,
(h) XGBoost.

45.5%, and 57.9% compared to DTR, Extra Trees, and XGBoost respectively. DTR has superior predictive
ability in the prediction process of dilution rate, improving performance by 58.4%, 31.6%, and 58.3% compared
to RFR, Extra Trees, and XGBoost respectively. In general, the four tree-based ML algorithms DTR, RFR, Extra
Trees, and XGBoost, by adopting tree structure, bagging, and boosting strategies, can effectively predict the
results of the laser cladding process, providing powerful tools for the optimization and control of the laser
cladding process.
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Figure 13. Histogram of characteristic importance for cladding parameters based on tree-based models. (a) Cladding width, (b)
cladding height, (c) dilution rate.

3.4. Importance of different independent variables

Tree-based models possess a ‘feature importance’ attribute, which aids in analyzing the influence of different
independent variables or features on the output of prediction results. Each independent variable is assigned a
value from 0 to 1, with the total sum being 1. As seen in figure 13(a), among the factors influencing width in the
laser cladding process, laser power has the highest score and the greatest contribution in the four tree-based
model algorithms DTR, RFR, Extra Trees, and XGBoost, with respective values of 81%, 37.7%, 82.3%, and
46.9%. In the ANOVA of table 5, the contributions of each factor are 90.39%, 1.16%, and 8.45% respectively,
indicating that the Extra Trees algorithm can predict width effectively. As seen in figure 13(b), in the laser
cladding process, laser power and scanning speed contribute about 40% to height, which corresponds well with
the ANOVA results in table 5 of 43.85%, 9.30%, and 46.85%. This suggests that the RFR algorithm, which has
the smallest IM, can predict height and that the contribution rate of each factor to height is reliable. As seen in
figure 13(c), in the laser cladding process, P and F are significant factors influencing D, both around 40%.
Compared with the ANOVA results in table 5 0f 63.80%, 35.68%, and 0.52%, DTR can be used as the prediction
algorithm for dilution rate. The ‘feature importance’ attribute results are consistent with our ANOVA results,
further validating the effectiveness of our chosen ML algorithms. From figure 13(c), it can be observed that P and
F have a significant impact on D in the laser cladding process, both around 40%. This is consistent with the
ANOVA results in table 5, which show percentages of 63.80%, 35.68%, and 0.52% respectively. Therefore, DTR
can be considered as a suitable predictive algorithm for dilution rate. The ‘feature importance’ attribute results
align with our ANOVA results, further validating the effectiveness of the ML algorithms we have chosen.

4, Conclusion

This paper uses the full-factor experimental design method to clad In718 coating on an A286 substrate, with laser
power, powder feed rate, and scanning speed as inputs, and cladding width, cladding height, and dilution rate as
responses. The effects of various factors on responses were studied using ANOVA and surface plots, and the laser
cladding process was predicted using common ML algorithms, providing a reference for ML in laser cladding
process prediction.

The conclusions of this study are as follows:

(1) The ANOVA results show that laser power, scanning speed, and powder feed rate all have extremely
significant effects on the laser cladding process, with only the powder feed rate having a significant effect on
the dilution rate. Among them, laser power contributes the most to cladding width (90.39%) and dilution
rate (63.80%), while powder feed rate contributes the most to cladding height (46.85%).

(2) Through the analysis of contour and surface plots, an increase in laser power will increase cladding width,
height, and dilution rate; an increase in powder distribution density will increase width and height and
decrease dilution rate.

(3) Through the application of eight machine learning algorithms, LR, KNN, BP, SVR, DTR, RFR, Extra Trees,
and XGBoost, it was determined that DTR, RFR, Extra Trees, and XGBoost exhibited superior predictive
performances. Specifically, in the prediction of cladding width, height, and dilution rate, Extra Trees, RFR,
and DTR demonstrated the highest predictive accuracy, with Index of Merit (IM) values 0f0.122,0.114, and
0.186, respectively.

(4) The tree-based models, with their ‘feature importance’ attribute, play a similar role to the contribution rate
in ANOVA. They provide valuable insights into the influence of different variables on the prediction results,
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aligning well with our ANOVA findings and further validating the effectiveness of our chosen ML
algorithms.
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