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Abstract
Laser cladding, an innovative surfacemodification and coating preparation process, has emerged as a
research hotspot inmaterial surfacemodification and green remanufacturing domains. In the laser
cladding process, the interaction between laser light, powder particles, and the substrate results in a
complicatedmapping connection between process parameters and clad layer quality. This work aims
to shed light on thismapping using fast evolvingmachine learning algorithms. A full factorial
experimental designwas employed to clad Inconel 718 powder on anA286 substrate comprising 64
groups. Analysis of variance, contour plots, and surface plots were used to explore the effects of laser
power, powder feeding rate, and scanning speed on thewidth, height, and dilution rate of the cladding.
The performance of the predictivemodels was evaluated using the index ofmerit (IM), which includes
mean square error (MSE), mean absolute error (MAE), and coefficient of determination (R2). By
comparing the performance of themodels, it was found that the Extra Trees, Random forest
regression, Decision tree regression, andXGBoost algorithms exhibited the highest predictive
accuracy. Specifically, the Extra Trees algorithmoutperformed othermachine learningmodels in
predicting the claddingwidth, while the RFR algorithm excelled in predicting the associated height.
TheDTR algorithmdemonstrated the best performance in predicting the cladding dilution rate. The
R2 values forwidth, height, and dilution rate were found to be 0.949, 0.954, and 0.912, respectively, for
these threemodels.

1. Introduction

Laser cladding is an advanced surfacemodification and coating preparation technology, integratingmaterial
preparation and surface configuration, and is a crucial support technology for green remanufacturing
technology. Laser cladding exploits the high energy density of a laser beam tomelt and spraymetal powder (or
wire) onto the surface of the target substrate, forming coatings with high hardness, high abrasion resistance, high
corrosion resistance, etc. The cladding process enables surfacemodification of critical parts as well as the repair
of surface damage, and it has beenwidely used in thefields of aviation, aerospace, automotive,machinery and so
on [1, 2].

The process parameters of the laser cladding process have a profound effect on the quality characteristics of
the resulting cladded layer (i.e., the geometrical andmechanical properties). The coupling of light, powder, and
substrate properties leads to a complexmapping relationship between process parameters and cladding layer
[3, 4]. In order to optimize laser cladding,many scholars are exploring the influence of the different process
parameters on the coatingmorphology andmechanical [5, 6]. In the study by Liu et al 27 sets of experiments
were selected using a full factorial design (FFD) to investigate the interplay between laser power(P), powder feed
rate(F), and scanning speed(S) on the cross-sectional dimensions (i.e., width and height) of a cladded deposit
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consisting of ferrous self-melting alloy powder. A nonlinearfittingmodel was used tofit the relationship
between geometrical parameters and process parameters [7]. Li et al used a single-track orthogonal experiment
to explore the influence of process parameters (substrate tilt angle,P, F, and S) on the cladding layer width and
height during the laser cladding deposition ofNi60A powder under the tilted substrate. The results showed that
an increase in tilt angle would increase the cladding layer width and decrease the height, with thewidth being
more significantly affected by laser power, and the height beingmore influenced by S and F [8]. Xu et al used
Taguchi’smethod to design L16 orthogonal experiments tomelt cladding of In718 on aA286 substrate [9]. They
analyzed the effects of P, F, and S, onmicro-hardness, load bearing capacity, yield strength, ultimate tensile
strength, and elongation and failure. In addition, they have shown that using optimized process paramaters,
mechanical properties could be further improved. Despite the differences in the selection of process parameters
by researchers inmany scientific papers, it is still evident that P, F, and S generally have an important influence in
different experimental studies.

The optimization of laser cladding process parameters is often divided into three stages: experimental
design, predictivemodeling, and parameter optimization. The researchmethodology adopted in each stage
affects thefinal results. Currently, robust experimental designs for laser cladding often employ factorial
experiments, Taguchi analysismethods, and response surfacemethodology [5–7].

To realize the complexmapping between laser cladding process parameters and cladding layer quality, three
methods are commonly used: (i) statistical analysismethod, to establish the regressionmodel between the
process parameters and the response [10–12]; (ii) usingfinite element analysismethods, the established three-
dimensionalmodel controls each parameter variable, simulates the experimental process of laser cladding, and
predicts the desired experimental results [13–16]; (iii) application ofmachine learning (ML) algorithms such as
Random forest regression (RFR), Support VectorMachine (SVM), Artificial Neural Network (ANN), andDeep
Learning [16–21].

Alizadeh-Sh et almelted In718 alloy powder on the surface of A286 iron-based superalloy. They proposed an
empirical statistical analysis based on the linear regression (LR)method to analyze themelting and cladding
process. The critical geometrical characteristics (i.e., width, height, angle, dilution rate) required to avoid
solidification cracking during themelting process were predicted [22]. Lian et al carried out laser cladding on
curved surfaces and used the response surfacemethod to establishmathematicalmodels for width, height, and
dilution rate. The authors obtained the relationship between the response and the process parameters, and
experimentally verified themodel’s reliability. However, it is difficult to solely use regression equations to
describe this correlationwhen dealingwith nonlinear data and data characteristics involving complex
polynomials [23]. Song et al established a three-dimensional finite elementmodel of the laser cladding process of
7075 aluminumalloy powder on 2024 aluminumalloy substrate, and obtained the temperature field and
residual stressfield generated during the process, in order to analyze the effects of different laser power, scanning
speed, cladding layer lengths, cladding layer patterns, and cladding angles on fatigue life of aircraft Fuselage [24].
Wolff et al predicted the effects of process parameters on temperature distribution, liquidmetalflow, cladding
layer geometry, and dilution rate in themelt pool during the laser cladding process by establishing a three-
dimensional thermofluid dynamicsmodel and using a surface contour calculationmethod based on
minimizing surface free energy [25].Many assumptions need to bemade, which often do not alignwell with the
actual cladding process. Thismisalignment results in simulation outcomes that struggle to offermeaningful
guidance for the actual process. Additionally, the finite elementmethod often consumes a significant amount of
time during the solving process.

To circumvent the above issues,many scholars have recently turned their attention to rapidly developing
researchmethods such asML to achieve better process predictions. Omar et al studied the applicability of
commonML algorithms such asGaussian Process Regression, Decision Tree Regression (DTR), RandomForest
Regression (RFR), Support Vector Regression (SVR), Gradient Boosting Regressor, andMulti-layer Perceptron
(MLP) in predicting frictionwelding process parameters. The results showed that Gradient Boosting Regressor
(GBR), Support Vector Regressor (SVR), andGaussian Process Regressor had the highest accuracywith a
percentage error of less than 3% [17]. According to literature research, commonly usedML algorithms in
establishing predictionmodels for laser cladding include Back-propagationNeural Network (BP), SVR,DTR,
RFR,GBR, etc. [3, 20, 26–31].

Although numerous scholars have conducted detailed studies on predicting laser cladding process
parameters, fewer have undertaken in-depth comparative analyses of theseML algorithms to determine their
accuracy and applicability. Therefore, the primary focus of this study is to compare the predictive accuracy of
commonly usedML algorithms in determining the geometric characteristics of laser-cladded layers of Inconel
718. Specifically, our study centers onK-NearestNeighbors (KNN), Back-propagationNeural Network (BP),
Support Vector Regression (SVR), DecisionTree Regression (DTR), RandomForest Regression (RFR), Extra
Trees, andXGBoost. Our objective is to establishwhichML algorithms exhibit higher precision in predicting
process parameters for laser cladding.We conducted 64 FFD experiments on Inconel 718 clad on anA286
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substrate. First, we applied an analysis of variance to assess the contribution of each parameter to various
responses and the statistical significance of the cladding process. Secondly, traditional analyticalmethods
investigated the relationship between the three inputs—laser power (P), powder feed rate (F), and scanning
speed (S)—and the responses—claddingwidth (W), cladding height (H), and dilution rate (D). Finally, we
optimized the hyperparameters in themachine learningmodels using genetic algorithms (GA). Subsequently,
we assessed the performance of these optimizedML algorithms in predicting the quality indices (IMs) of the
laser cladding process parameters, and comparative evaluationswere performed.

2.Materials andmethods

2.1. Laser cladding
Figure 1 shows the ZKZM-Z06 laser cladding system employed in this work. The laser cladding system,which is
installed in a 4-axis CNCmachine, consists of 6KWfiber laser, a coaxial laser cladding head, and powder feeding
and cooling systems. Disc-shaped samples (ø150mm× 10 mm) consisting of iron-based high-temperature
alloy (A286)were used as the substratematerial. Nickel-based high-temperature alloy In718 powderwas
selected as the claddingmaterial. To ensure good flowability, In718 powderwith spherical-shaped particles in
the diameter of 45–150 μmwas chosen, and itsmicrograph, obtained through a Scanning ElectronMicroscope
(SEM, FEIQuanta 250), is shown infigure 2.

The chemical composition of the substrate was determined using carbon-sulfur analysis and atomic
spectroscopy, as shown in table 1. Before the experiments, the powders were dried in a vacuumusing an oven set
at 100 °C for 2 h. Prior to laser cladding, the A286 substrates were ground using 180# SiC sandpaper to remove
oxides and contaminants from the substrate surface andwiped clean using absolute ethanol (anhydrous
ethanol). Single-track cladded layers were deposited on the pre-treated upper surface of the substrates, with
representative dimensions of 5 mm× 8 mm× 10 mm. Subsequently, the samples were sequentially grounded
using SiC sandpaperwith grit size 400#, 800#, 1200#, 1500# and 2000# and then polishedwithW2.5
abrasive paste. The samples cross-sectionwas subsequently etched using Kalling’s reagent (i.e., amixture of
100 mlwater, 100 mlHCl, and 5 gCuCl2). Finally, the etched cross-sectionwas observed using an optical
microscope (OM, LEICADM4), and the geometric characteristics of the cladding layer weremeasured and
evaluated using an image processing program (ImageJ, National Institure ofHealth, US).

2.2.Design of experiments
In this study, a full factorial experimental (FFD) approachwas employed to design the experiments, considering
the varying degrees of influence fromdifferent process parameters. The laser spot diameter was set constant at
5 mm, and argon gaswas used as the shielding and carrier gas for powder delivery. The gas flow ratewas
maintained at 15 L/min. Based on literature research, threemain process parameters, namely P, F, and S, were
selected as independent variables. Each parameter was set at 4 levels, as shown in table 2. The 64 sets of parameter
combinations obtained from the full factorial experimental design are shown in table 3.

Figure 1. Laser cladding equipment employed in the present work.
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Figure 3 presents themeasured geometric characteristics of the cross-section of the single-track claddings.
The geometric characteristics, includingW,H,melt pool depth (h), cladding area (Ac), and fusion area (Af),
weremeasured using ImageJ software.

The dilution rate (D) is an important parameter which indicates the degree of bonding between the fusion
cladding and the substrate. In the present work, it was calculated using equation (1) [32]:

( )D
A

A A
1

f

c f

=
+

where Af is the area of the fusion zone, and Ac is the area of the cladding layer.

2.3.Machine learningmethods and selection of hyperparameters
Drawing upon relevant literature and the authors’ own investigations intomainstreammachine learning
techniques, this paper employs a selection of algorithms, including K-NearestNeighbors (KNN), Back-
propagationNeural Network (BP), Support Vector Regression (SVR), Decision Tree Regression (DTR),
RandomForest Regression (RFR), Extra Trees, andXGBoost [3, 20, 26–31]. The objective is to compare their
predictive performance in the context of this study.

To avoid issues such as overfitting and underfitting, this study employs 5-fold cross-validation. In this
validation technique, k denotes the number of parts intowhich the data is divided; K-1 folds are used for
training, and the remaining folds are used for testing themodel. The evaluationmetrics of the cross-validation
set can be used to continuously adjust the hyper-parameters to obtain a reliable and stablemodel. Additionally,
differentML algorithms have their characteristics, and the hyperparameters that significantly impact the
prediction resultsmay vary depending on the specific problem. Therefore, this study selects important

Figure 2. SEMmicrograph of the In718 powder.

Table 1.Composition of A286 and ln718.

Material Nominal composition (wt%)

A286 Ni Cr Ti Mo Mn Si Al C Fe

24.64 14.81 2.05 1.26 1.2 0.6 0.24 0.06 Bal

ln718 Ni Cr Nb Mo Ti Al Cu C Fe

52.41 19.17 5.19 3.19 0.95 0.51 0.087 0.04 Bal

Table 2.Key parameters of laser cladding process in different levels.

Process parameters Unit Notations Level 1 Level 2 Level 3 level 4

Laser power W P 800 1300 1800 2300

Powder feed speed r/min F 0.4 0.5 0.6 0.7

Scan speed mm/s S 3 4.5 6 7.5
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Table 3. Full factorial experimental data set.

No. P (kW) F (r/min) S (mm/s) W (μm) H (μm) D (%) No. P (kW) F (r/min) S (mm/s) W (μm) H (μm) D (%)

1 0.8 0.4 3 1979 1529 0.73 33 1.8 0.4 3 4438 2388 10.28

2 0.8 0.4 4.5 1818 887 4.72 34 1.8 0.4 4.5 3897 1497 17.67

3 0.8 0.4 6 1568 638 2.23 35 1.8 0.4 6 3321 1158 18.9

4 0.8 0.4 7.5 1529 269 19.28 36 1.8 0.4 7.5 3422 986 11.84

5 0.8 0.5 3 2442 434 27.74 37 1.8 0.5 3 4242 2382 11.39

6 0.8 0.5 4.5 1489 1168 0 38 1.8 0.5 4.5 4052 1794 5.27

7 0.8 0.5 6 1557 832 0 39 1.8 0.5 6 3606 1378 9.04

8 0.8 0.5 7.5 1194 630 0 40 1.8 0.5 7.5 3279 1147 7.69

9 0.8 0.6 3 2424 2216 0 41 1.8 0.6 3 4687 3196 0.71

10 0.8 0.6 4.5 2263 1640 0 42 1.8 0.6 4.5 4349 2364 0.85

11 0.8 0.6 6 1636 998 0 43 1.8 0.6 6 3945 1687 1.01

12 0.8 0.6 7.5 — — 0 44 1.8 0.6 7.5 3790 1556 1.04

13 0.8 0.7 3 — — 0 45 1.8 0.7 3 4657 3493 0

14 0.8 0.7 4.5 — — 0 46 1.8 0.7 4.5 4402 2780 0

15 0.8 0.7 6 — — 0 47 1.8 0.7 6 3701 2020 0

16 0.8 0.7 7.5 — — 0 48 1.8 0.7 7.5 3802 1325 0

17 1.3 0.4 3 3719 2156 5.16 49 2.3 0.4 3 5070 2293 26.58

18 1.3 0.4 4.5 3137 1212 15.91 50 2.3 0.4 4.5 4522 1574 40.39

19 1.3 0.4 6 2673 986 8.25 51 2.3 0.4 6 4213 1176 44.86

20 1.3 0.4 7.5 2465 790 6.74 52 2.3 0.4 7.5 3677 951 52.01

21 1.3 0.5 3 3719 2531 1.59 53 2.3 0.5 3 4764 2560 25.12

22 1.3 0.5 4.5 3107 1580 1.59 54 2.3 0.5 4.5 4337 1859 29.82

23 1.3 0.5 6 3351 1349 1.22 55 2.3 0.5 6 4088 1141 40.41

24 1.3 0.5 7.5 2816 939 3.85 56 2.3 0.5 7.5 3867 1028 37.76

25 1.3 0.6 3 3743 2941 0 57 2.3 0.6 3 4690 3217 12.2

26 1.3 0.6 4.5 3089 1990 0 58 2.3 0.6 4.5 4479 2186 20.23

27 1.3 0.6 6 2970 1366 0 59 2.3 0.6 6 4319 1764 19.93

28 1.3 0.6 7.5 2935 1194 0 60 2.3 0.6 7.5 4123 1521 16.57

29 1.3 0.7 3 4010 3244 0 61 2.3 0.7 3 4990 3541 5.51

30 1.3 0.7 4.5 3392 2180 0 62 2.3 0.7 4.5 4592 2566 5.4

31 1.3 0.7 6 2881 1675 0 63 2.3 0.7 6 4337 2151 3.78

32 1.3 0.7 7.5 2691 1319 0 64 2.3 0.7 7.5 4048 1751 5.15
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hyperparameters based on previous research to ensure that theML algorithms can achieve good predictive
performance and generalization ability. ForML algorithm in table 4, heuristic algorithms are used to optimize
the hyperparameters. The schematic is shown infigure 4.

2.3.1. K-nearest neighbor
TheK-nearest neighbor (KNN) regression algorithmoperates on the principle of distance similarity. It selects
the K closest neighbors to the sample to be predicted by computing the distance between the target sample and
each sample in the training set. Prediction is thenmade based on the labels of these neighbors. The algorithm’s
workflow involves storing samples and their labels during the training phase, creating a sample space. In the
prediction phase, the distance between a test sample and each training set sample is calculated, and theKnearest
neighbors are chosen based on these distances. For regression problems, the average value of theKneighbors is
used as the prediction result. By selecting an appropriate K value and distancemetric, the KNNalgorithm can
accurately predict regression problems. Using Euclidean distance as the vector distance algorithm, and after
optimizing theK value of KNN through the genetic algorithm (GA), the value of 5was selected [26].

2.3.2. BP neural network
BPNN (BP) is a neural network regression algorithmbased on the back-propagation algorithm, which is based
on the principle of training the networkweights through two phases: forward propagation and back-
propagation, in order to enable the network to learn themapping relationship between inputs and outputs. The
loss function isminimized by continuously adjusting theweights and biases and is suitable for dealingwith
nonlinear problems. The complexity and learning capability of the network are determined by parameters such
as the number of hidden layers and the number of neurons in each hidden layer. The learning rate determines
the step size of eachweight update. A learning rate that is too largemay cause oscillations, while a learning rate
that is too smallmay result in slow convergence. The number of iterations determines the number of training
cycles. Toomany iterationsmay lead to overfitting, while too fewmay result in underfitting [4, 5, 20, 27].

2.3.3. Support vector regression
Support Vector Regression (SVR) is a regression algorithmbased on Support VectorMachines thatfits the data
byfinding the optimal hyperplane andminimizing the prediction error asmuch as possible. It is suitable for
dealingwith high-dimensional data and linear problems.One of itsmost important hyperparameters is the
kernel function. Through the comparison of different kernel functions, it was found that themodel based on the
radial basis ismore suitable for predicting the geometric characteristics of the cladding [3].

Figure 3. Schematic representation of the cross-sectional geometric parameters of a single-track laser cladding.

Table 4.Hyperparameter selection for algorithm implementation.

ML algorithm Hyperparameters

KNN Neighbor tree= 5,Vector distance algorithm=Euclidean distance

BP Hidden layers= 3,Hide layer node tree= 100,Learning rate= 0.25,Activation function= Identity

SVR Kernel function=Radial basis kernel function,Kernel function coefficients= Scale

DTR Maximumdepth= 30,

RFR Number of trees= 100,maximumdepth= 20

Extra Trees Number of trees= 100,maximumdepth= 20

XGBoost Base learner= gblinear, Number of base learners= 100,Maximumdepth= 10
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2.3.4. Decision tree regression
Decision tree regression (DTR) is a regression algorithmbased on a tree structure based on the principle of
modeling the input data in segments by constructing a tree to predict continuous values of the output variables.
InDTR, each tree node represents a feature, and the input data is partitioned based on that feature until a
predetermined stopping condition ismet. At each node, DTRuses some criterion to select the best feature and
segmentation point, commonly used criteria includemean square error (MSE) andmean absolute error (MAE).
During the prediction phase, the input data follows the branches of the tree and eventually reaches a leaf node,
which stores the average ormedian value of the samples in that subset. This value serves as the prediction for that
subset [17, 19]. There are important parameters that need to be set inDTR. These include themaximumdepth
of the tree, theminimumnumber of samples in a leaf node, and theminimumnumber of samples required for a
split. These parameters determine the complexity and generalization ability of the tree. A largermaximumdepth
andminimumnumber of samplesmay lead to overfitting, while a smallerminimumnumber of samplesmay
lead to underfitting. By adjusting themaximumdepth throughGA to optimize theDecisionTree Regression
(DTR) and improve themodel’s performance and generalization ability,more accurate prediction results can be
obtained.

2.3.5. Random forest regression
TheRandomForest regression (RFR) algorithm is an ensemble learningmethod that constructsmultiple
decision trees by randomly selecting data and features. Thefinal result is obtained by voting or averaging the
predictions of these trees. It has high accuracy and generalization ability [17, 19]. In the RandomForestmodel,
important hyperparameters include the number of decision trees and themaximumdepth [27].

2.3.6. Extra-trees
Extra trees, also known as Extremely Randomized Trees, further increase the randomness on top of the Random
Forest. Extra trees randomly select features and split points when constructing each decision tree instead of
optimizing criteria. This additional randomness can enhance the diversity of themodel and reduce the risk of

Figure 4. Flowchart of the procedure employed to predict geometric characteristics of laser cladding usingML algorithms.
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overfitting,making it suitable for handling high-dimensional data and nonlinear problems. The important
hyperparameters of Extra-trees are the same as those in the RandomForest algorithm.

2.3.7. XGBoost
XGBoost trains eachweak classifier by optimizing the gradient of the loss function and obtains thefinal
prediction byweighted summation. The gradient boosting algorithm adjusts the sample and classifierweights in
each iteration tominimize the loss function. The accuracy and efficiency of themodel is improved by using
regularization and parallel processing, which is suitable for dealingwith high-dimensional data and nonlinear
problems [17, 20]. After optimization throughGA, the learning rate is set to 0.1.

RandomForest and Extra Trees belong to the Baggingmodel, while XGBoost belongs to the Boostingmodel.
The Baggingmodel is a parallel ensemble learningmethod that constructsmultiple base classifiers by randomly
sampling the training set with replacement. Thefinal prediction ismade through voting or averaging. The
Boostingmodel is a sequential ensemble learningmethod that iteratively trainsmultiple weak classifiers. In each
iteration, the sampleweights are adjusted based on the predictions from the previous round to improve the
model’s performance.

2.4. Index ofmerit for the evaluation of the precision ofML algorithms
Using the 59 samples obtained from the experiments, the dataset was randomly divided into a training set (70%)
and a validation set (30%). To eliminate the dimensional impact among response values, amin-max scaling
preprocessing was performed. In particular, the data was scaled linearly between [0,1] using the following
equation (2):

( )X
X X

X X
2min

max min

=
-
-

¢

Tomitigate the randomness of theML algorithm,five consecutive calculations were performed using the
hyperparameters shown in table 4. The best-performing result in predictive performancewas selected as the
accuracy evaluationmetric for the chosen algorithm.Notice that, in this study, we adopted an index ofmerit
(IM) introduced by Barrionuevo et al [17, 19] to assess the predictive accuracy, andwhich is defined as:
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This index combines the abovemetrics of to provide a comprehensivemeasure of algorithm accuracy. Notice
that a value closer to 0 indicates better overall performance.

3. Results and discussion

Five samples were dislodged after the experiment and 59 samples were obtained. The single track cross-section
maps obtained fromopticalmicroscopy (OM) are shown infigure 5, representing the claddings prepared at
800W, 1300W, 1800W, and 2300W laser power (P), respectively.

3.1. Statistical analysis
Analysis of variance (ANOVA) can be used to investigate whether the process parameters significantly affect the
results of the laser cladding process. ANOVA is usually based on the assumption of normal distribution, so the
results of the obtained responses need to be tested for normality. Figure 6 shows the residual normal probability
plots for themeasuredW,H, andD. It can be observed that the data points are distributed along a straight line,
indicating thatW,H, andD all follow a normal distribution.

The importance of p-values lies in their ability to help us performhypothesis testing, i.e., to determine
whether the sample data supports the null hypothesis. Suppose the p-value is smaller than the predetermined
significance level (typically 0.05 or 0.01). In that case, we can reject the null hypothesis and conclude that there is
a significant difference between the sample data and the hypothesized populationmean.
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TheANOVA results are shown in table 5, except for F and S, which have insignificant effects onWandD,
respectively, the p-values ofP, F and S onW,H, andD are all less than 0.01, indicating that all have extremely
significant effects. Among them, the contribution rates ofP, F, and S toWare 90.39%, 1.16%, and 8.45%,
respectively, indicating that Phas the greatest influence onW. ForH, the contribution rates ofP, F, and S are
43.85%, 9.30%, and 46.85%, respectively, indicating that P and F have the greatest impact onH. ForD, the
contribution rates ofP and S are 63.80%, 0.48%, and 35.58%, respectively, indicating that P and S significantly
influence the dilution rate.

3.2. Contour plot and surface plot analysis
To visually examine the relationship between the process parameters and the geometrical characteristics of the
cladding, surface and contour plots of the response results versus the cladding parameters aremade from the 59
sets of experimental data obtained. The concept of powder distribution density (I) is introduced to synthesize the
powder volumemeasure [33]:

Figure 5.OM image showing the cross-section of the cladded layer as deposited using various combinations of processing parameters.
(a)Power 800 W, (b)Power 1300 W, (c)Power 1800W, (d)Power 2300 W.

Figure 6.Normality test of (a) claddingwidth, (b) cladding height, (c) dilution rate.
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where d is the laser spot diameter. Surface plots are drawnwith I andP as independent variables and each
response as dependent variable, which enables the surface and contour plots of the same response to be displayed
in a single plot.

3.2.1. Cladding width
As illustrated infigure 7(a), the contour plot shows the highest gradient variation along the direction of
increasing power, while the gradient variation along the direction of I is relatively smaller. This suggests thatP
has amore significant impact onWcompared to I. Additionally, as shown infigure 7(b), a positive correlation
betweenP andW is observed. Initially, increasing F enhances the influence onW,which then decreases.
Conversely, increasing S results in a decrease inW. This ultimately leads to a non-linear relationship between I
andW. It follows that when I is constant, an increase inPwithin themelting power range canmeltmore powder
per unit time, thereby improving powder utilization and increasingW.WhenP is constant andmaintained
within themelting power range, increasing I leads tomore powder per unit time, resulting in a largerW.
However, if I becomes too large, it can cause shielding effects, leading to a decrease inW. This explanation
effectively accounts for the overall increasing trend ofW.

3.2.2. Cladding height
Similarly, as shown infigure 8(a), the contour plot exhibits the highest gradient variation along the direction of I,
while the gradient variation along the direction ofP is relatively smaller. This indicates thatH ismore influenced
by I than by P. Further observation offigure 8 reveals that increasing P leads to a gradual decrease in the slope of

Figure 7. (a) Surface plot and contour plot ofWaboutP and I (b)Main effect diagramofW.

Table 5.ANOVA for claddingwidth, cladding height, dilution rate.

Source Laser power(P) Feeding rate(F) Scanning speed(S) Residual Error Total

DF 3 3 3 54 63

Claddingwidth (W) Adj SS 93201486 1199200 8713793 11373119 114487598

AdjMS 31067162 399733 2904598 210613

F value 147.51 1.9 13.79

P value 0 0.141 0

Contribution 90.39% 1.16% 8.45%

CladdingHeight (H) Adj SS 17019726 3607601 18188283 10246486 49062097

AdjMS 5673242 1202534 6062761 189750

F value 29.9 6.34 31.95

P value 0 0.001 0

Contribution 43.85% 9.30% 46.85%

Dilution rate (D) Adj SS 0.49161 0.27485 0.00401 0.27956 1.05002

AdjMS 0.163869 0.091616 0.001337 0.005177

F value 31.65 17.7 0.26

P value 0 0 0.855

Contribution 63.80% 35.68% 0.52%
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H, increasing F initially increasesH and then decreases it, and increasing S leads to a decrease inH.Ultimately,
this results in a non-linear relationship between I andH.Within themelting range, when P remains constant, a
larger I leads to a greater amount of powder deposition per unit time, resulting in a largerH.When I is constant,
increasingP leads to a larger amount ofmelted powder, thereby increasingH.

3.2.3. Dilution rate
In the laser cladding process, where high-energy lasers are used tomelt cladding powder and form amelt pool on
the substrate, the deposition of claddingmaterial on the substrate surface is key to enhancing its surface
properties. One crucial indicator is forming a sufficiently strongmetallurgical bond between the deposited
material and the substrate, or previously deposited layer [20]. The dilution rate (D) is typically used to gauge the
bonding strength in laser cladding processes. The surface and contour plots shown infigures 9(a) and (b) show
thatD increases with increasing P. This is because it increases themelt pool area, which allowsmore powder
material to bemelted and bonded to the substratematerial, inducingmorematerial tofill themicroscopic voids
on the surface of the substrate, which increases the contact area between thematerials, and in turn increasesD.
Moreover, the overall effect of I on the dilution rate exhibits an increasing trend.

3.3. Evaluation ofmodel performance
To address the non-linearmapping between process parameters and the characteristics of the cladded layer,
eightML algorithms, namely linear regression (LR), KNN, BP, SVR,DTR, RFR, Extra Trees, andXGBoost, were
employed to predict theGeometric Characteristics of laser cladding. The accuracy performancemetric, IM, was
obtained for each algorithm’s prediction of the laser cladding response values, and the results are summarized in
table 6. Cross-validation is amethod for assessing the performance of amodel by dividing the dataset into a
training set and a validation set, which allows for an assessment of themodel’s ability to generalize over
unseen data.

Figure 8. (a) Surface plot and contour plot ofH aboutP and I, (b)Main effect diagramofH.

Figure 9. (a) Surface plot and contour plot of D aboutP and I, (b)Main effect diagramofD.
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As shown in table 6, among the eight predictionmethods used in this study, the performance of 5-fold cross-
validation in terms of the IMmetric is inferior to that of the validation set data. This is because it provides amore
stringent evaluation of themodel. In 5-fold cross-validation, the data is divided into fivemutually exclusive
subsets formodel training and prediction, with each subset serving as the test set in turn. The cross-validation
results reflect themodel’s performance on new, unseen data. This implies that themodel is tested on a broader
range of data, leading to a higher prediction error. Therefore, the predictive performance of cross-validation
may exhibit larger variance and error [34, 35]. Furthermore, looking at the IM results of the 5-fold cross-
validation among the eight predictionmethods, the generalization capabilities of LR and tree-basedmodels
outperformKNN, BP, and SVR. This is due to LR being a parametricmodel that assumes a linear relationship
between features and the target. This simple assumptionmakes LR less prone to overfitting during training,
hence it has better generalization capabilities. The higher IMof tree-basedmodels inCV could be attributed to
their binary decision structure for prediction, which is insensitive to outliers.Moreover,models like Random
Forest Regression (RFR), Extra Trees, andXGBoost are ensemblemodels that improve prediction performance
by integratingmultiple decision trees. The ensemblemethod can average out the noise of individual decision
trees, enhancing themodel’s stability and robustness.

As discerned from figure 10(b)–(h) exhibit a high degree offit for claddingwidth prediction. Table 6 reveals
that themaximumR2 value is for Extra Trees at 0.949, withKNNhaving theminimumat 0.866. Considering the
predictive performance evaluation indicators ofMSE,MAE, andR2 as per equation (2), the IMvalues forDTR,
RFR, Extra Trees, andXGBoost in predicting claddingwidth are 0.192, 0.156, 0.122, and 0.226 respectively,
indicating that Extra Trees has the best predictive performance of claddingwidth.

Observing figure 11(e)–(g) demonstrate superior fitting results for cladding height prediction. Table 6 shows
that themaximumR2 value is for RFR at 0.954, withDTRhaving theminimumat 0.836. Considering the
predictive performance evaluation indicators ofMSE,MAE, andR2 as per equation (3), the IMvalues forDTR,
RFR, Extra Trees andXGBoost in predicting cladding height are 0.330, 0.114, 0.264 and 0.342 respectively,
indicating that RFRhas the best predictive performance of cladding height.

The observation offigures 12(e)–(h) shows that the algorithmsDTR, RFR, Extra Trees andXGBoost have
better predictive performance for the prediction of dilution rate, and through table 6 it is known that the largest
R2value isDTRwith 0.912 and the smallest is RFRwith 0.743. According to equation (3), the IM evaluation
metrics that combine the prediction performance ofMSE,MAE andR2, the IMvalues ofDTR, RFR, Extra Trees
andXGBoost for the predictionmodels ofmeltingwidth are 0.186, 0.477, 0.272 and 0.446, respectively, which

Table 6. Statistical evaluation of global accuracy performance indicators for various prediction algorithms in predicting
geometric characteristics.

ML algorithm
5-fold cross-validation Validation set

R2 MSE MAE IM R2 MSE MAE IM

LR W 0.672 0.017 0.092 0.571 0.814 0.03 0.093 0.391

H 0.579 0.025 0.111 0.692 0.672 0.018 0.093 0.572

D 0.206 0.033 0.146 0.986 0.569 0.027 0.133 0.709

KNN W 0.738 0.015 0.089 0.480 0.866 0.007 0.089 0.278

H −0.125 0.038 0.0139 1.004 0.604 0.026 0.136 0.669

D −0.229 0.054 0.174 0.991 0.297 0.026 0.098 0.931

BP W 0.119 0.021 0.108 1.002 0.749 0.019 0.081 0.467

H −0.078 0.032 0.178 1.025 0.718 0.012 0.089 0.505

D −0.651 0.072 0.198 0.666 0.414 0.013 0.098 0.842

SVR W 0.694 0.018 0.106 0.546 0.779 0.01 0.076 0.413

H 0.104 0.048 0.175 1.028 0.332 0.042 0.172 0.929

D −3.024 0.095 0.282 8.155 −0.394 0.133 0.338 0.980

DTR W 0.881 0.004 0.05 0.238 0.913 0.007 0.05 0.193

H 0.484 0.027 0.116 0.792 0.836 0.009 0.097 0.330

D 0.342 0.028 0.1 0.904 0.912 0.005 0.037 0.186

RFR W 0.705 0.016 0.086 0.526 0.931 0.004 0.05 0.156

H 0.698 0.018 0.089 0.537 0.954 0.003 0.045 0.114

D 0.423 0.01 0.065 0.830 0.743 0.02 0.085 0.477

Extra Trees W 0.853 0.007 0.062 0.292 0.949 0.003 0.044 0.122

H 0.662 0.018 0.085 0.584 0.872 0.008 0.067 0.264

D 0.428 0.018 0.085 0.832 0.87 0.01 0.069 0.272

XGBoost W 0.534 0.023 0.096 0.737 0.894 0.006 0.068 0.226

H 0.681 0.014 0.08 0.555 0.831 0.015 0.077 0.342

D 0.532 0.024 0.077 0.738 0.766 0.021 0.084 0.446
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indicates that RFRhas the best prediction performance. All four algorithms have IMvalues greater than 0.3 for
dilution rate, indicating that despitemin-max Scaling data preprocessing, the small dilution rate and numerous
zero values result in a decline infitting results.

From figures 10, 11 and 12, it can be seen that tree-based algorithmsDTR, RFR, Extra Trees, andXGBoost
have the best predictive performance and accuracy. LR, KNN, BP, and SVRhave poorer predictive performance
due to the complexmapping relationship between laser cladding process parameters and cladding layer quality.
Simple LR cannot accomplish such a complex prediction task. TheKNNalgorithmpredicts based on the
distance between data points, but when dealingwith high-dimensional data, distance calculation becomes very

Figure 10.Evaluation of predictive performance for claddingwidth. (a) LR, (b)KNN, (c)BP, (d) SVR, (e)DTR, (f)RFR, (g)Extra
Trees, (h)XGBoost.
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difficult, leading to a decline in predictive performance. Due to the adoption of a single response, the cladding
width, in determining the hyperparameters during the selection process, itmay lead to poorer predictive
performancewhen predicting thewidth and dilution rate. This is the reasonwhy SVR andBP cannot fit the
mapping relationship between height, dilution rate, and clad quality well [3–6].

Themagnitude of the IMvalues calculated by theDTR, RFR, Extra Trees, andXGBoost prediction
algorithms shows that Extra Trees is the optimal predictionmodel in the prediction process of claddingwidth,
improving performance by 36.8%, 21.8%, and 46% compared toDTR, RFR, andXGBoost respectively. RFR has
the best predictive performance in the prediction process of cladding height, improving performance by 56.4%,

Figure 11.Evaluation of predictive performance for cladding height. (a) LR, (b)KNN, (c)BP, (d) SVR, (e)DTR, (f)RFR, (g)Extra
Trees, (h)XGBoost.
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45.5%, and 57.9% compared toDTR, Extra Trees, andXGBoost respectively. DTRhas superior predictive
ability in the prediction process of dilution rate, improving performance by 58.4%, 31.6%, and 58.3% compared
to RFR, Extra Trees, andXGBoost respectively. In general, the four tree-basedML algorithmsDTR, RFR, Extra
Trees, andXGBoost, by adopting tree structure, bagging, and boosting strategies, can effectively predict the
results of the laser cladding process, providing powerful tools for the optimization and control of the laser
cladding process.

Figure 12.Evaluation of predictive performance for dilution rate. (a) LR, (b)KNN, (c)BP, (d) SVR, (e)DTR, (f)RFR, (g)Extra Trees,
(h)XGBoost.
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3.4. Importance of different independent variables
Tree-basedmodels possess a ‘feature importance’ attribute, which aids in analyzing the influence of different
independent variables or features on the output of prediction results. Each independent variable is assigned a
value from0 to 1, with the total sumbeing 1. As seen infigure 13(a), among the factors influencingwidth in the
laser cladding process, laser power has the highest score and the greatest contribution in the four tree-based
model algorithmsDTR, RFR, Extra Trees, andXGBoost, with respective values of 81%, 37.7%, 82.3%, and
46.9%. In the ANOVAof table 5, the contributions of each factor are 90.39%, 1.16%, and 8.45% respectively,
indicating that the Extra Trees algorithm can predict width effectively. As seen infigure 13(b), in the laser
cladding process, laser power and scanning speed contribute about 40% to height, which corresponds well with
the ANOVA results in table 5 of 43.85%, 9.30%, and 46.85%. This suggests that the RFR algorithm,which has
the smallest IM, can predict height and that the contribution rate of each factor to height is reliable. As seen in
figure 13(c), in the laser cladding process, P and F are significant factors influencingD, both around 40%.
Comparedwith the ANOVA results in table 5 of 63.80%, 35.68%, and 0.52%,DTR can be used as the prediction
algorithm for dilution rate. The ‘feature importance’ attribute results are consistent with ourANOVA results,
further validating the effectiveness of our chosenML algorithms. Fromfigure 13(c), it can be observed that P and
F have a significant impact onD in the laser cladding process, both around 40%. This is consistent with the
ANOVA results in table 5, which showpercentages of 63.80%, 35.68%, and 0.52% respectively. Therefore, DTR
can be considered as a suitable predictive algorithm for dilution rate. The ‘feature importance’ attribute results
alignwith ourANOVA results, further validating the effectiveness of theML algorithmswe have chosen.

4. Conclusion

This paper uses the full-factor experimental designmethod to clad ln718 coating on anA286 substrate, with laser
power, powder feed rate, and scanning speed as inputs, and claddingwidth, cladding height, and dilution rate as
responses. The effects of various factors on responses were studied usingANOVA and surface plots, and the laser
cladding process was predicted using commonML algorithms, providing a reference forML in laser cladding
process prediction.

The conclusions of this study are as follows:

(1) The ANOVA results show that laser power, scanning speed, and powder feed rate all have extremely
significant effects on the laser cladding process, with only the powder feed rate having a significant effect on
the dilution rate. Among them, laser power contributes themost to claddingwidth (90.39%) and dilution
rate (63.80%), while powder feed rate contributes themost to cladding height (46.85%).

(2) Through the analysis of contour and surface plots, an increase in laser power will increase cladding width,
height, and dilution rate; an increase in powder distribution density will increase width and height and
decrease dilution rate.

(3) Through the application of eight machine learning algorithms, LR, KNN, BP, SVR, DTR, RFR, Extra Trees,
andXGBoost, it was determined thatDTR, RFR, Extra Trees, andXGBoost exhibited superior predictive
performances. Specifically, in the prediction of claddingwidth, height, and dilution rate, Extra Trees, RFR,
andDTRdemonstrated the highest predictive accuracy, with Index ofMerit (IM) values of 0.122, 0.114, and
0.186, respectively.

(4) The tree-based models, with their ‘feature importance’ attribute, play a similar role to the contribution rate
in ANOVA. They provide valuable insights into the influence of different variables on the prediction results,

Figure 13.Histogramof characteristic importance for cladding parameters based on tree-basedmodels. (a)Claddingwidth, (b)
cladding height, (c) dilution rate.
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aligningwell with ourANOVA findings and further validating the effectiveness of our chosenML
algorithms.
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