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Abstract. In genomic applications, there is often interest in identifying
genes whose time-course expression trajectories exhibit periodic oscilla-
tions with a period of approximately 24 hours (circadian genes). While
it is natural to expect that the expression of gene i at time j might
depend to some degree on the expression of the other genes measured
at the same time, widely-used rhythmicity detection techniques do not
accommodate for the potential dependence across genes. We develop a
Bayesian approach for periodicity identification that explicitly takes into
account the complex dependence structure across time-course trajecto-
ries in gene expressions. The methodology is applied to a plant gene
expression dataset.
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1 Introduction

Circadian rhythms are cycles of biological activity based on a 24-hour period
which allow organisms to anticipate and adapt to predictable daily oscillations in
the environment [4]. Circadian rhythms are present in almost all plants and ani-
mals. In plants, circadian rhythms play a role in the regulation of plant metabolic
pathways, such as photosynthesis and carbon metabolism, in the regulation of
developmental processes and signalling pathways, such as defence responses. In
humans, blood pressure, hormone production, metabolism and other biologi-
cal cycles are clock-regulated. Disruptions to the circadian rhythms have been
linked to a variety of pathologies, for example cancer, psychiatric disorders and
neurodegenerative diseases in humans [4].

Circadian rhythms are controlled by the circadian clock, namely, a network
of mutually interacting genes controlling the timing of many physiological pro-
cesses. The interest is in identifying such genes through examination of their
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expression levels or “transcripts”. Several authors have proposed methods for
periodicity identification in biomedical research over the last couple of decades.
[5] provide a comprehensive review of the main existing techniques commonly
used for circadian rhythm detection, and evaluate their accuracy and repro-
ducibility on various empirical datasets. As a separate line of research, several
model-based clustering algorithms have been proposed in both the classical and
Bayesian framework (e.g., [3]).

A key assumption in the approaches above is that of independence across
genes. Although practical from a computational perspective, the independence
assumption is often too strong to be realistic in many applications. In this paper,
we propose a Bayesian approach that identifies periodic signals in gene expres-
sion profiles while accounting for dependence in the functional data. Specifically,
the true underlying signal for each transcript is decomposed into a series expan-
sion of sine and cosine (Fourier) waves. Conditional dependence across genes at
each time point is accommodated via a latent factor framework. Dimensiona-
lity reduction and sparsity are induced through careful modelling of the latent
factors as well as the Fourier basis coefficients.

The rest of the paper is organised as follows. Section 2 outlines the metho-
dology. Section 3 discusses priors and posterior inference for detecting circadian
genes. The proposed approach is tested on the Arabidopsis thaliana [3] dataset
(Section 4). Conclusions are drawn in Section 5.

2 Methods

We consider data in the form of a p × T matrix Y = {yij}, where entry yij
denotes the expression level for gene i at time tj , for i = 1, . . . , p, and with p
denoting the total number of genes. In circadian microarray studies, data are
typically collected over two complete circadian cycles and the sampling rate is
usually either two (T = 24) or four hours (T = 12). We assume that the yij ’s
are error-prone measurements of an underlying smooth true trajectory:

yij = fi(tj) + νij . (1)

Suppose that the de-trended and centred true signal for gene i at time tj , fi(tj),
can be represented as:

fi(tj) =

q∑
m=1

[θi,2m−1b2m−1(tj) + θi,2mb2m(tj)] =

q∑
m=1

θi,mbm(tj) = b>j θi,

where θi,m = (θi,2m−1, θi,2m) and bm(tj) = [b2m−1(tj), b2m(tj)]
>

, for m =
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of 2q fixed basis functions evaluated at time tj . The natural basis choice for the
space of periodic functions is the Fourier basis:
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where {ωm}qm=1 denotes the periodicity of the signal and t is time represented
by a unit-interval increase. The q period lengths wm are assumed known and
fixed. Since there are 13 time points per transcript in the Arabidopsis thaliana
dataset (Section 4), we can use up to six sine/cosine pairs of harmonics.

The term νij in Equation (1) models the deviation between yij and the
underlying smooth profile. To accommodate for the potential dependence across
genes at time j, we adopt a factor model representation:

νj = Ληj + εj , (2)

with νj = [ν1j , . . . , νpj ]
>, Λ = [λ1, . . . ,λp]

>
is a p × k factor loading matrix

with elements {λih}i=1,...,p; h=1,...,k, ηj = (η1j , . . . , ηkj)
> is k×1 vector of latent

factors at time j, and εj is a residual error. The full model for gene i at time tj
is:

yij = b>j θi + λiηj + εij , εij ∼ N(0, σ2
i ), (3)

where the first term b>j θi captures periodic oscillations whereas the second term
λiηj captures across-genes dependence (if present).

Hereafter we follow standard practice and assign a Normal prior to the latent
factors at time tj , ηj ∼ Nk(0, I). Genes are assumed to be independent given
the latent factors, and dependence among genes is induced by marginalising over
the distribution of the factors. Therefore, marginally y(j) ∼ N(Θbj ,ΛΛ

>+Σ),
with y(j) = (y1j , . . . , ypj)

>, Θ is the p× 2q matrix of basis function coefficients,
and Σ = Diag(σ2

1 , . . . , σ
2
p). In practical applications involving moderate to large

p, the number of factors k is typically much smaller than p, thus inducing a
sparse characterisation of the unknown covariance matrix ΛΛ> +Σ.

3 Prior elicitation and identification of circadian genes

Inference on parameters θi is the primary interest of our work. Recall that
θi,m = (θi,2m−1, θi,2m), where θi,2m−1 is the coefficient of the (2m − 1)-th sine
basis and θi,2m is the coefficient of the 2m-th cosine basis, both harmonics of
period wm. To allow for the correct identification of gene i’s periodicity, we
need to switch on/off (θi,2m−1, θi,2m) jointly. We assume a latent threshold prior
(LTP) [6]:

θi,m = θ̃i,m1(||θ̃i,m|| ≥ $i,m), (4)

where $i,m is a latent threshold. The idea behind (4) is that the m-th pair of
sine/cosine coefficients is shrunk to zero when their (Euclidian) norm falls below
a m-th- (and gene-) specific threshold. Further, we model θ̃i = {θ̃i,m}qm=1 as:

θ̃i = Wλ>i + δi and δi ∼ N2q(0, I), (5)

where λi is the vector of factor loadings for gene i as in Eq. (3), and W is a
2q × k matrix such that W>

j ∼ Nk(0, I), j = 1, . . . , 2q. Elicitation is completed
by placing conditionally conjugate priors on all remaining model parameters,
e.g., Gamma priors on precisions, the multiplicative Gamma process shrinkage
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prior [1] on the loadings and a uniform prior on the latent thresholds. Posterior
inference proceeds via MCMC with conditionally conjugate updating steps.

The LTP eases the identification of circadian genes. Indeed, we estimate
the posterior probability of a gene being circadian by counting the proportion
of posterior samples for which the coefficients of the 24-hours sine/cosine pair
(e.g., (θi,2q−1, θi,2q)) are not shrunk to zero whilst all the remaning coefficients
are switched off:

P (Gene i is circadian) =
1

TS

TS∑
g=1

1

({
θ
(g)
i,l

}2q−2

l=1
≡ 0 and

{
θ
(g)
i,2q−1, θ

(g)
i,2q

}
6= 0

)
,

(6)
where g denotes the iteration number and TS denotes the total number of
thinned posterior samples post burn-in. Similarly, the framework above can be
used for inference on phase and amplitude of the signals, or for detecting whether
a gene exhibits periodicity other than 24-hours.

4 Analysis

We apply our method to the Arabidopsis Thaliana dataset [3]. Eight-day-old
Columbia seedlings grown under 12-hours-light/12-hours-dark cycles were trans-
ferred to constant light at 22◦. Plant samples were harvested at 13 time points
covering two circadian cycles in 4 hours intervals, starting 26 hours after the last
dark-light transition. Here p = 22810 genes and T = 13 time points.

[2] reports 26 known clock-associated genes in Arabidopsis. Among these
genes are CCA1 (Circadian Clock Associated 1) and LHY (Late Elongated
Hypocotyl), which function synergistically in regulating circadian rhythms of
Arabidopsis, TOC1 (Timing of Cab Expression 1), which contributes to the
plant fitness (carbon fixation, biomass), and ELF4 (Early Flowering 4), which
accounts for sustained rhythms in the absence of daily light/dark cycles. We use
the 26 well-known circadian genes as a benchmark to evaluate our approach. We
compare the proposed approach with its independent version (that is, omitting
the latent factor component from Eq. (3)) and JTK Cycle [4] (chosen for com-
parison based on performance evaluations presented in [5]). The rankings of the
26 known clock genes are reported in Table 1. All the algorithms were able to
identify most of the known clock genes from among their top 25% ranked candi-
dates, and we observe improved performance in terms of placing more genes in
the top 1% and 25%. The independent version of our model also performs well.
This is likely due to the borrowing of information in modelling the trajectories
induced by the Bayesian framework. Estimated trajectories for four clock genes
are represented in Figure 1.

We finally remark that we have also evaluated our model on simulation stu-
dies, where we could compare its performance to that of competitors in settings of
both dependence and independence across synthetic trajectories. These studies
show that our construction gives improved performance in identifying rhyth-
mic curves over widely-used rhythmicity detection techniques in both settings.
Results are omitted here due to space limitations.
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Table 1. Summary of rankings of 26 known clock genes in the Arabidopsis Thaliana
genome. Genes were ranked by estimated posterior circadian probability for the pro-
posed approach (below Dep.LF) and its independent version (IndepV); by p-value for
JTK cycle.

Method Top 1% Top 5% Top 10% Top 25% Top 60%

Dep. LF 4 8 14 23 26
IndepV 2 6 13 22 25
JTK cycle 1 8 12 17 22

Fig. 1. Four known clock genes in the Arabidopsis dataset ranking top by estimated
posterior probability of being circadian. The black dashed trajectory connects the true
expression levels (dots), the solid black line represents the estimated posterior mean
trajectory and the shaded grey area represents point-wise 95% credible intervals around
the estimated posterior mean trajectory.

5 Conclusions

In this manuscript, we presented a Bayesian method for periodicity detection.
The method employs a Fourier basis expansion coupled with a variable selection
prior on the basis coefficients to model gene expression trajectories and identify
circadian genes. The core statistical contribution consists in accommodating for
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the potential dependence in the trajectories via latent factor modelling. We apply
our technique to a well studied gene expression dataset, and its performance
is line with (if not better than that) of a widely-used rhythmicity detection
technique that does not directly accommodate for dependence across trajectories.

The results presented in this manuscript should be considered as preliminary
results, and various extensions could be considered. For example, in animal (e.g.,
mice) studies, mice could be given a stimulus at the beginning of the experiment.
The stimulus may produce local deviations in expression levels, and these devia-
tions may manifest at different times across genes and last for a different amount
of time. Deviations could be accommodated for by including an additional local
bases decomposition term in Eq. (3). Further, other priors for the basis coef-
ficients or for the latent factor model could also be considered. One drawback
of accommodating dependence across curves is the increased computational de-
mand, although the latent factor representation is a convenient way of doing so.
Gene-specific updating steps can also be parallelised to speed up posterior com-
putation. Although developed for detecting circadian genes, we finally remark
that the approach can be applied to any dataset where the inferential goal is that
of detecting periodicity of curves. Indeed, we are currently testing our model to
a novel EMG dataset for the identification of periodic bursts in spinae muscles
of violin players. Extensions and results will be collected in future research.
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