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The advent of neuromorphic electronics is increasingly revolutionizing the concept of computation. In 
the last decade, several studies have shown how materials, architectures, and neuromorphic devices 
can be leveraged to achieve brain-like computation with limited power consumption and high energy 
efficiency. Neuromorphic systems have been mainly conceived to support spiking neural networks that 
embed bioinspired plasticity rules such as spike time-dependent plasticity to potentially support both 
unsupervised and supervised learning. Despite substantial progress in the field, the information transfer 
capabilities of biological circuits have not yet been achieved. More importantly, demonstrations of the 
actual performance of neuromorphic systems in this context have never been presented. In this paper, 
we report similarities between biological, simulated, and artificially reconstructed microcircuits in terms 
of information transfer from a computational perspective. Specifically, we extensively analyzed the 
mutual information transfer at the synapse between mossy fibers and granule cells by measuring the 
relationship between pre- and post-synaptic variability. We extended this analysis to memristor synapses 
that embed rate-based learning rules, thus providing quantitative validation for neuromorphic hardware 
and demonstrating the reliability of brain-inspired applications.

Introduction

The information transfer within neuronal circuits is a complex 
and nonlinear process involving the elaboration of analog signals, 
resulting in electroresponsiveness [1–3]. This activity relies on 
the time-dependent properties of release probability [4,5], neu-
rotransmitter diffusion [6,7], receptor activation [8], and, finally, 
membrane potential integration kinetics [9,10]. Nevertheless, 
in an abstraction exercise, neurons can be conceptualized as 
digital devices conveying trains of bits, namely, action poten-
tials or spikes, whose transmission dynamics can be altered by 
the expression of activity-dependent changes in synaptic strength 
[11,12]. This reductionist perspective is essential when attempt-
ing to quantify the information transfer in neuronal circuits and, 
more importantly, when integrating biological dynamics into 
neuromorphic hardware [13,14]. The language employed by 
neurons to communicate can be analyzed by adopting param-
eters taken directly from information and communication 
theory and calculating mutual information (MI). MI serves as 
a quantitative measure of the amount of information transmit-
ted by synapses and single neurons within neuronal popula-
tions. It is derived directly from variability in response to the 
same or separate inputs and provides a method for estimating 
the capability of a neuronal circuit to distinguish inputs and 

thus to convey information [15,16]. In this context, it is impor-
tant to note that although several neuronal circuits adopt rate-
based coding to communicate [17], as in the case of oscillatory 
activity detected in sensory [18] and motor neurons [19], infor-
mation can also be transferred through synchronization and spike 
time coincidence [20], thus playing a crucial role in the induction 
of several forms of long-term plasticity [21]. Interestingly, the 
majority of neuromorphic applications lay their foundations in 
firing rate coding [22], leaving potential applications based on 
time coding largely unexplored.

In this context, neuromorphic technologies have been 
designed and developed to support the simulation of neuronal 
networks based on spike transfer through synaptic contacts, 
incorporating bio-inspired mechanisms. It has been shown that 
the memristor, the electronic equivalent of a biological synapse, 
can reliably reproduce one of the most salient features of the 
latter, i.e., long-term plasticity [23,24]. Notably, although sev-
eral neuromorphic architectures have been proposed to embed 
the learning rules required to fully instantiate neuronal network 
functionality, a clear demonstration of the effective capabilities 
of electronic systems to replicate the information transfer typi-
cal of biological systems is yet to be achieved.

The estimation of information transfer can be performed by 
quantifying the amount of information conveyed by neural 
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responses in relation to input stimuli [25–28], treating neurons 
as stochastic communication channels. According to informa-
tion theory, it is possible to estimate the amount of information 
transmitted by a neuron in different contexts, such as sensory 
stimulation [29,30] or adaptation in visual receptive fields [31]. 
At the subcellular level, the efficiency of information transfer 
in single synapses has been measured using information theory 
[27,32–34]. Given that MI provides a correlation between input 
stimuli and neuron responses, and that its estimate can be 
assessed by determining the probability distribution of output 
spikes given any input, the main limitation of MI calculation 
is therefore the size of the input/output (I/O) space [26]. A 
typical biological neuron receives thousands of synaptic con-
tacts from different neurons across its dendritic tree, tremen-
dously expanding the size of the I/O space. The cerebellar 
circuit [35,36], particularly the input stage, provides an optimal 
framework for overcoming this issue by virtue of a series of 
factors: (a) the granule cells (GrCs) are small neurons (on aver-
age ~6 μm in diameter) receiving a limited number of excitatory 
inputs (4.38 on average; [37]); (b) their membrane potential is 
stable, and intrinsic firing is absent [7,38]; (c) they show ste-
reotyped response patterns with a limited number of spikes 
(less than two) confined in a narrow time window that has been 
well characterized [39]; (d) the synapse between mossy fiber 
(MF) and the GrCs relies on glutamatergic transmission, which 
is controlled by both pre- and post-synaptic mechanisms that 
have been thoroughly characterized. Most importantly, a com-
plete computational model of the microcircuit has been vali-
dated and repeatedly employed in various contexts [39–41].

From a broader perspective, artificial intelligence (AI) appli-
cations rely on learning algorithms that in some cases have 
shown performance surpassing human levels in various types 
of individual tasks [42]. Nevertheless, human intelligence per-
forms unlimited tasks by continually learning and accumulat-
ing knowledge, exceeding the capabilities of modern deep 
learning methods with incomparable superiority. Furthermore, 
the limited energy efficiency of modern AI systems necessitates 
alternative approaches that can address the forthcoming chal-
lenges facing our society. Among these alternatives, spiking 
neural networks (SNNs), which rely on parallelized and desyn-
chronized computational architectures, represent a promising 
neuro-inspired method to achieve human brain performance. 
Unfortunately, despite efforts in developing SNNs, the perform-
ance gap with traditional artificial neural network (ANN)-
based AI systems has yet to be completely bridged. Recently, 
compelling results in the field of SNNs have been achieved by 
algorithms capable of performing continual meta-learning 
based on minimum error entropy [43], few-shot online learn-
ing through a combination of recurrent network architecture 
and entropy theory [44], and fault-tolerant edge computing for 
navigation tasks through the implementation of a neuromor-
phic dopaminergic circuit [45]. SNNs serve as a theoretical and 
computational foundation for realizing neuromorphic comput-
ing platforms supported by robust and efficient neuromorphic 
electronics. This aspect is particularly relevant because the 
development of innovative bio-inspired devices such as mem-
ristors and synaptic transistors [46] is expected to greatly affect 
data storage and, more importantly, computing methodologies. 
This would allow artificial circuits to perform bioinspired 
operations such as dendritic computations [47] and play a criti-
cal role in functions like spatial navigation and sensory process-
ing. The mimicry of neural functions in hardware has the 

potential to enable high-performance superparallel in-memory 
computing and thus overcome the von Neumann bottleneck. 
In this regard, neuromorphic hardware platforms can ben-
efit from the co-location of memory and processing features 
because synaptic devices (e.g., memristors) can perform non-
volatile computation and show responses to spike stimuli that 
resemble those experimentally detected in biological computa-
tion and learning patterns. Importantly, these features eliminate 
the continuous, slow, and energy-intensive shuttling of data 
between memory and the central processing unit that is required 
by conventional computing architectures. It is this data shuttling 
that is largely responsible for the substantial energy inefficiency 
of state-of-the-art AI systems and hinders their integration into 
portable devices and impedes the advent of the era of pervasive 
and ubiquitous AI.

The conversion of biological circuits into neuromorphic 
electronics requires consideration of all these aspects. In this 
study, we begin by quantifying information transfer in different 
biological and artificial systems. We compare the information 
transfer of experimental, computational, and electronic models 
of cerebellar microcircuits, with a specific focus on the impact 
of long-term synaptic plasticity on MI values. It is known that 
the expression of long-term potentiation (LTP) and long-term 
depression (LTD) alters communication channels within neu-
ronal networks [48,49], although a quantitative demonstration 
is still lacking. Since the mechanisms underlying the induction 
and expression of long-term synaptic plasticity at the MF to GrC 
synapse have been thoroughly studied, such a synapse represents 
an ideal standard to be adopted in the present investigation. 
Furthermore, most of these mechanisms rely on presynaptic 
changes that are traceable to release probability modulation; 
therefore, they can be simulated in software [15] and reproduced 
in hardware. Given that much of the effort in the neuromorphic 
community has been dedicated to the design, development, and 
implementation of electronic solutions that mimic learning 
rules rather than to quantifying the computational performance 
of the hardware, we have tested the biological soundness of an 
artificial network from the perspective of information transfer. 
This represents a key step toward brain-inspired low-power 
artificial systems.

Materials and methods
Experiments were conducted using Sprague-Dawley rats at post-
natal days P17 to P24 [Charles-Rivers (Calco, Lecco, Italy) and 
internal breeding]. All experiments were conducted in accor-
dance with international guidelines outlined in the European 
Community Council Directive 86/609/EEC regarding the ethical 
use of animals. Approval for the experiments was obtained from 
both the Ethical committee of the Italian Ministry of Health and 
the Ethical Committee of the University of Modena and Reggio 
Emilia. Furthermore, the study was performed in compliance 
with the ARRIVE guidelines (https://arriveguidelines.org/). 
Animals (n = 4) were selected without consideration of gender, 
and a total number of 16 cells were employed to perform this 
research.

Recordings in acute cerebellar slices
Patch-clamp recordings were obtained from parasagittal cer-
ebellar slices, following previously established procedures [50]. 
Briefly, rats were anesthetized with isoflurane (Sigma-Aldrich, 
St. Louis, MO, USA) and decapitated. After removal, the 
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cerebellar vermis was isolated and fixed using cyanoacrylic glue 
on a vibroslicer stage (VT1000S, Leica Microsystems, Nussloch, 
Germany). Acute thick slices (200 μm) were cut in a cold cut-
ting solution containing 130 mM K-gluconate, 15 mM KCl, 
0.2 mM EGTA, 20 mM HEPES, and 10 mM glucose (pH adjusted 
to 7.4 with NaOH). Slices were incubated in oxygenated extra-
cellular Krebs solution containing 120 mM NaCl, 2 mM KCl, 
1.2 mM MgSO4, 26 mM NaHCO3, 1.2 mM KH2PO4, 2 mM 
CaCl2, and 11 mM glucose (pH 7.4 when equilibrated with 95% 
O2 and 5% CO2) at 32 °C for at least 1 hour before recordings. 
Subsequently, slices were transferred to a recording chamber 
on the stage of an upright microscope (Zeiss Axioexaminer A1, 
Oberkochen, Germany), immobilized with a nylon mesh 
attached to a platinum Ω-wire, and perfused at 1.5 ml min−1 
with the same oxygenated Krebs solution, maintained at 32 °C 
with a thermostatic controller (Multichannel systems GmbH, 
Reuntlingen, Germany).

Intracellular recordings were performed in a whole-cell 
patch-clamp configuration, following previously established 
procedures [39], from GrCs preferentially selected in the central 
lobules of the vermis (from IV to VII). Recordings were obtained 
using an Axopatch 200 B amplifier (Molecular Devices, Union 
City, CA, USA) (−3 dB; cutoff frequency = 2 kHz) and digitized 
at 20 kHz using pClamp 9 (Molecular Devices) and a Digidata 
1322A A/D converter (Molecular Devices). Patch pipettes were 
made with a vertical puller (model PP-830, Narishige, Tokyo, 
Japan) from borosilicate glass capillaries and filled with the fol-
lowing intracellular solution: 126 mM K-gluconate, 8 mM NaCl, 
15 mM glucose, 5 mM HEPES, 1 mM MgSO4, 0.1 mM BAPTA-
free, 0.05 mM BAPTA-Ca2+, 3 mM adenosine triphosphate 
(ATP), and 100 μM guanosine triphosphate (GTP) (pH adjusted 
to 7.2 with KOH). This solution maintained resting-free [Ca2+] 
at 100 nM, and the pipettes had a resistance of 7 to 10 MΩ 
before seal formation. Passive cellular parameters were moni-
tored at the beginning of every voltage-clamp recording session 
to assess the stability of the series resistance by measuring and 
analyzing the current relaxation induced by a 10-mV step from 
a holding potential of –70 mV. The transients were reliably 
fitted with monoexponential functions, resulting in a mem-
brane capacitance (Cm) of 2.1 ± 0.5 pF (n = 16), a membrane 
resistance (Rm) of 2.0 ± 0.6 GΩ (n = 16), and a series resistance 
(Rs) of 16.8 ± 2.8 MΩ (n = 16), in close similarity with previous 
results [51]. Afferent MFs were stimulated through an isolated 
bipolar tungsten electrode (Clark Instruments, Pangbourne, 
UK) at a stimulation intensity of ±4 – 12 V (duration 100 μs). 
During stimulation, GrCs were maintained at a membrane 
potential between −70 and −60 mV (mean −64.1 ± 4.8 mV, 
n = 16). Under the same conditions, previous analyses [7,52] 
estimated the average number of stimulated fibers per GrC to 
be in the range from 1 to 3.

MI estimation
The amount of MI transferred and the relative changes due to 
the expression of long-term plasticity were calculated following 
the approach outlined in [15,16]. Briefly, information theory 
was used to correlate the input stimuli and output responses 
[53] by generating time windows (temporal bins) of neuronal 
responses digitized based on the presence of a spike (Fig. 1). 
The degree of correlation was assessed by measuring the 
response entropy (RE), a quantity representing the variability 
of responses to a specific set of input stimuli. According to 
Shannon’s theory [54], the higher the RE, the better the system 

communicates. To account for systematic noise arising from 
the intrinsic noisiness of neuronal systems, noise entropy (NE) 
was introduced. The robustness of the system is quantified by 
subtracting NE from RE. MI, measured in bits, is calculated as 
follows:

where r and s are expressed in binary digits and represent the 
response and the stimulus patterns; p(r) and p(s) are the prob-
abilities of occurrence in one acquisition of r and s, respectively; 
and p(r|s) is the probability of having a specific r, given a specific 
s. The accuracy of the MI calculation increases with the accu-
racy of the probability estimation. As an increase in repetitions 
can limit the intrinsic variability of responses, we have employed 
a biologically plausible circuit that has been demonstrated to 
be suitable for MI estimations [16] in different conditions.

The MI estimation was computed by spike-sorting and digi-
tizing the GrC responses (MATLAB; Mathworks Inc., Oregon, 

MI =
∑

r

∑

s

p(s)p(r|s)log2
p(r|s)
p(r)

Fig.  1. Study design. (A) Left: Cerebellar granule cell (GrC) in its realistic morphological 
representation with four dendrites ending in characteristic claw-like spines. Right: 
Firing pattern recorded in a current clamp configuration from a GrC and evoked with a 
pair of stimuli at 50 Hz. (B) Left: Cerebellar GrC reconstructed with a morphologically 
detailed computational model. Each of the four dendrites has 4 compartments, 
whereas the axon hillock and the axon have a total of 37 compartments. Right: Firing 
pattern evoked with a pair of stimuli at 50 Hz in the simulated neuron shown on the 
left. (C and D) Similar to (A) and (B), the simulated and the electronic point neuron 
GrC have a single compartment and receive four inputs. The firing pattern evoked 
by a pair of stimuli at 50 Hz evoked two spikes.
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USA; Fig. 1C). With a 10-ms bin size and a 40-ms stimulus 
duration, the number of possible combinations (16) was reduced 
to 8 by discarding duplications (e.g., 1100, 0110, 1100, and 0011) 
and irrelevant patterns (0000). The limited input space accounted 
for the typical discharge patterns of the MF (two to four spikes 
at 100 Hz). Moreover, since the GrC firing frequency is approxi-
mately 150 Hz with less than five to six spikes [39], a 60-ms 
output time window with a 6-ms bin was adopted. Furthermore, 
response variability was reduced by repeating the same stim-
ulus 25 times, even though the number of possible output 
combinations (210) was much higher. This approximation 
has been derived from [15], where a similar approach pro-
vided a good estimation, particularly for MI values larger 
than 0.4 bits.

The MI was decomposed into the single stimulus contribu-
tion [stimulus-specific surprise (sss)] and the single spike con-
tribution [surprise per spike (sps)] and calculated using the 
following equations:

Surprise is a measure of the difference between the condi-
tional distribution of p(r|s) and the probability distribution p(r). 
The surprise per spike was calculated by dividing the surprise 
by the spike count of the input stimulus.

Finally, neurotransmission and synaptic plasticity were 
quantified by calculating the following parameters: (a) spike 
probability (sp); (b) number of emitted spikes (ns); (c) average 
first spike delay (sd); (d) first spike jitter (sj), measured as the 
standard deviation of the first spike delay; and (e) firing fre-
quency (ff), estimated as the average inverse of the interspike 
interval when measurable.

Long-term plasticity induction and analysis
Long-term plasticity was induced by delivering a theta-burst 
stimulation (TBS; 10 pulses at 100 Hz delivered eight times at 
4 Hz) protocol in a current-clamp configuration from −60 mV. 
GrCs were monitored in voltage-clamp configurations (holding 
cells at −70 mV) to detect excitatory post-synaptic currents 
(EPSCs) evoked by paired stimulation at 50 Hz. Fifty consecu-
tive responses were recorded, and EPSCs were averaged [29.7 ± 
4.4 pA (n = 16) [40]]. Moreover, the paired pulse ratio (PPR) 
was calculated as the ratio between the first and second evoked 
EPSC of each repetition [0.78 ± 0.05 (n = 16) [52]]. Finally, 
excitatory post-synaptic potentials (EPSPs) evoked by indi-
vidual stimuli were used to assess the stability of the recording 
sessions and the variations induced by TBS. The average EPSP 
amplitude was 11.4 ± 0.9mV (n = 16 cells).

Biologically realistic simulations (GrCHH)
Simulations of the microcircuit with a realistic multi-
compartmental model of the neuron were performed using the 
NEURON simulator (v 8.9) and Python (v.3.8.8) and run on a 
personal computer with an AMD Ryzen 5 3600 6-core proces-
sor running at 3.60 GHz. The model was originally presented 
in [7] and modified and refined in [40,41]. It describes the 

functioning of the synapses of single neurons, accounting for 
vesicular dynamics, neurotransmitter spillover, and receptor 
gating (including multiple closed, desensitized, and open states), 
but not for quantal release mechanisms. It reliably reproduces 
the kinetics and size of the post-synaptic currents (axonal con-
duction times were considered negligible, and the transmission 
delay was set to 1 ms for all the synapses). The GrC model 
describes the morphological structure and the localization and 
dynamics of ion channels. The soma had a 5.8-μm diameter 
attached to four identical unbranched dendrites (15-μm diam-
eter), subdivided into 4 compartments, and to the axon (0.75-μm 
diameter) with 5 proximal and 30 distal compartments. For 
each compartment, the Hodgkin–Huxley equation was solved, 
and the voltage was evaluated for each time step (where the 
time step was dt = 0.025 ms). The current was clamped to hold 
the resting potential at −65 mV.

Four identical independent synapses with distinct pre- and 
post-synaptic dynamics were used to create the synaptic model 
of GrCs. At the MF-GrC synapse, the short-term dynamics of 
the EPSCs were derived from the Tsodyks and Markram [55] 
three-state scheme accounting for synaptic facilitation and 
depression.

The microcircuit was constructed by connecting four MFs 
to a single GrC. The connection weights were randomly varied 
at each simulation trial, with each MF-GrC synapse being 
assigned a weight value selected from a distribution centered 
at 1 and with a standard deviation of 0.25. The stimulation 
pattern consisted of four inputs at 100 Hz that were switched 
on or off according to eight different combinations: [1,0,0,0], 
[1,1,0,0], [1,0,1,0], [1,0,0,1], [1,1,1,0], [1,1,0,1], [1,0,1,1], 
and [1,1,1,1]. All the stimuli simultaneously impinged on 
all the MFs.

Synaptic and neuronal devices
According to the configuration adopted in the biological exper-
iments (Fig. 1) and simulations (Figs. 2 and 3), a cerebellar 
GrC-like artificial complementary metal-oxide-semiconductor 
(CMOS) neuron with four memristor-based synaptic inputs 
was implemented to investigate the changes in information 
transfer induced by long-term plasticity. The circuit simulations 
were run using Cadence Virtuoso software, as in [14]. Briefly, 
the responses of the artificial CMOS neuron were abstracted 
by using a Verilog-A behavioral description of its constituent 
building blocks, and the properties of the artificial synapses 
were reproduced using an in-house-developed compact model 
(the UniMORE RRAM Model [56]). The adopted memristive 
elements were commercially available C-doped self-directed 
channel (SDC) memristors [57] available in a dual in-line pack-
age (DIP). To the best of our knowledge, these are the only 
commercially available packaged resistive random access mem-
ory (RRAM) devices. Therefore, it was possible to demonstrate 
that MI propagates through an SNN with CMOS leaky integrate-
and-fire (LIF) neurons and memristive synapses. More impor-
tantly, we demonstrated that no specific technological 
advancements are required to show this behavior. The SDC 
memristor consists of a stack composed of W/Ge2Se3/Ag/
Ge2Se3/SnSe/Ge2Se3:C/W, where Ge2Se3:C is the active layer 
[57]. During device fabrication, the three active layers below 
the top electrode (TE) intermix to form an Ag ion source [57]. 
The SnSe layer acts as a barrier to prevent Ag saturation in the 
active Ge2Se3:C layer and is responsible for the production of 
Sn ions and their migration into the active Ge2Se3:C layer 

I
(
s∗
)
= sss =

∑

r

(
p|rs∗

)
log2

(
p|rs∗

)

p(r)

IperSpike(s
∗)= sps=

I(s∗)

stimulus spike count
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during the initial operation of the device (typically addressed 
as “forming”), thus promoting Ag agglomeration at specific 
sites. The details of the mechanism at the basis of the resistive 
switching in these devices are available in [57]. To correctly 
reproduce the behavior of SDC memristors in circuit simula-
tions, a careful calibration of the UniMORE RRAM Model 
parameters was conducted using experimental data from elec-
trical measurements performed using a Keithley 4200-SCS, as 
described in [24]. A first set of electrical measurements was 
aimed at verifying the baseline functionality of the device and 
consisted of a sequence of quasi-static current acquisitions by 
applying slow voltage sweeps in the −0.8-V to 0.4-V range, 
using a current compliance of 10 μA directly provided by the 
Keithley 4200-SCS. Such electrical stimuli force the device to 
switch between a low resistive state (LRS) using the SET opera-
tion (V > 0) and a high resistive state (HRS) using the RESET 
operation (V < 0). Subsequently, a second set of electrical mea-
surements was conducted to evaluate the synaptic functionality 

of the memristors (i.e., their capability to respond to spike-like 
voltage stimuli rather than to quasi-static voltage sweeps) by 
applying a pulsed voltage sequence (i.e., a spike sequence), 
gradually driving the device resistance toward higher or lower 
values. The results confirmed a smooth and reproducible syn-
aptic analog behavior, with LTD and LTP achieved by applying 
trains of 20 depression pulses (V = −0.2 V, T = 10 μs) followed 
by 20 potentiation pulses (V = 0.55 V, T = 30 μs). Each poten-
tiation or depression pulse was succeeded by a small reading 
pulse (VREAD = 50 mV, TREAD = 50 μs) to retrieve the evolution 
of the resistance values during LTD and LTP.

SDC memristors are ion-conducting memristive devices 
that modulate their resistance because of the motion of Ag+ 
ions within the device. Nonetheless, their behavior is well cap-
tured by the UniMORE RRAM Model because it can be equally 
well described in terms of the equivalent modulation of the 
thickness of a dielectric barrier within a conducting filament. 
This latter behavior is typical of the filamentary memristive 

Fig. 2. MI changes upon the expression of long-term plasticity. (A) Left: Granular layer microcircuit with a stimulating electrode (stim) positioned onto the mossy fiber bundle 
(mf). The block of GABAergic inhibition allows only excitatory synapses to be activated. Right, top: Black trace represents the average of 10 synaptic responses obtained in 
voltage clamp configuration in control conditions (CTR). The red trace shows the average synaptic response obtained following the expression of LTP. Bottom: Similarly, voltage 
traces show the increase in the average response obtained following LTP induction in current clamp configuration. (B) The same circuit shown in (A) is now represented with 
the Golgi cell (GoC; a local interneuron, in red) inhibiting GrC responses. A configuration with active inhibition was adopted to preferentially induce LTD. Right, top: Black trace 
represents the average of 10 synaptic responses obtained in voltage clamp configuration in control conditions. The blue trace shows the average synaptic response obtained 
following the expression of LTD. Bottom: Similarly, voltage traces show the increase in the average response obtained following LTP induction in current clamp configuration. 
(C) Spike detection procedure generating binary digits. A single response of a GrC to three pulses at a variable frequency (code 1101, arrows). The spike in each 6-ms time 
window determines the output code in binary digits (0010010000, top). (D) Left: Effects induced by LTP on MI transfer (red, 39.6% ± 10.8%, P < 0.001) and spike-related 
parameters (sp, green, 17.8% ± 5.8%, P < 0.001; ns, blue 36.4% ± 19.3%, P < 0.05; sj, gray, −32.5% ± 5.1%, P < 0.001; sd, white, −31.6% ± 3.9%, P < 0.001; n = 7). Right: 
Effects induced by LTD on MI transfer (red, −37.5% ± 20.9%, P < 0.01) and spike-related parameters (sp, green, −18.7% ± 7.4%, P < 0.05; ns, blue −24.7% ± 10.3%, P < 
0.05; sj, gray, 20.9% ± 7.3%, P < 0.01; sd, white, 29.8% ± 16.4%, P < 0.05; n = 5).
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devices for which the UniMORE RRAM Model was originally 
conceived. The barrier thickness is directly related to the mem-
ristor conductance, which, in turn, is representative of the syn-
aptic strength. The details of the experiments and the ensuing 
UniMORE RRAM Model parameter calibration are provided 
in [24].

Results and Discussion
We analyzed the changes in MI transfer following the expres-
sion of long-term plasticity in a real microcircuit, in various 
simulated environments, and in an electronic neuromorphic 
system (Fig. 1).

Biological neurons
We began by assessing changes in MI transfer in the cerebellar 
input stage microcircuit by performing whole-cell patch-clamp 
recordings from cerebellar GrCs. Current-clamp recordings of 
these neurons were performed while eliciting excitatory syn-
aptic activation through repetitive MF stimulation (Fig. 2). 
Spike detection was arranged in such a way as to generate 
binary digits, representing sequences of the GrC output to input 
patterns (see Materials and Methods for a complete description 
of the MI calculation; see also [16]). MI was estimated as a 
combination of spike number, precision, and probability of fir-
ing by presenting eight types of stimulation patterns resulting 
from all possible MF input combinations (see Materials and 
Methods). In line with prior experimental findings, the calcu-
lation of MF-GrC MI transfer revealed a value of 2.45 ± 0.41 
(n = 9), showing a basal level of functional correlation between 
the input signals and GrC responses that was slightly larger 
than that previously recorded for the same circuit [15,16]. This 
could be due to the presence of the GABAA receptor blocker 
gabazine in the bath solution. Gabazine increases GrC firing 
activity and, therefore, increases the probability of inducing 
LTP during the TBS protocol (Fig. 2A). Indeed, in response to 
TBS, the majority of GrCs (seven out of nine) improved their 
synaptic responses based on LTP expression [51,58]. Conversely, 
one cell that underwent LTD exhibited decreased synaptic 
responses, whereas the remaining cells showed no discernible 

changes (Fig. 2B). In line with the changes induced by LTP in 
GrCs firing (firing probability sp = +17.8% ± 6.8%; total num-
ber of emitted spikes ns = +36.4% ± 20.3%; spike jitter sj = 
−32.5% ± 5.1%; first spike delay sd = −31.6% ± 3.9%; n = 7; 
Fig. 2D), cells undergoing LTP showed an increase in MI trans-
fer (39.6% ± 10.8%; n = 7; Fig. 2C and D), consistent with 
previous observations and theoretical predictions. The induc-
tion of LTD was performed by maintaining GABAergic inhibi-
tion through Golgi cell activity [50,59]. In this experimental 
configuration, the MI transfer was compatible with previous 
observations (1.9 ± 0.35; n = 5) and, in response to the expres-
sion of LTD, the MI transfer markedly decreased (−49.2% ± 
24.3; n = 5). The down-regulation of MI induced by LTD was 
associated with changes in firing parameters, as in the case of 
synaptic potentiation but with opposite signs (Fig. 2D).

Simulated neurons
Modeling neuronal activity is a challenging undertaking due 
to the large number of characteristics that must be considered 
when reproducing a complex system, such as a neuron and its 
connections [60,61]. The level of biological detail reproduced 
by the model affects the realism of the simulation, and the 
required computational capacity scales up with the size of the 
simulated circuit [62,63]. The most detailed class of computa-
tional models of neuronal electrical behavior is the Hodgkin 
and Huxley model (HH-model; [64]). Models of this class are 
typically constructed according to the morphological charac-
teristics of single neurons and are implemented with a variable 
number of dendritic and axonal compartments that have spe-
cific structural properties and are equipped with ionic channels 
distributed according to experimental data. A biologically real-
istic model of the cerebellar GrC [7] has been employed to 
explore the impact of LTP and LTD on information transfer 
(GrCHH; Fig. 3A). Similar to what has been shown in [15,16], 
the granule cell Hodgkin and Huxley model (GrCHH) has been 
connected to excitatory MFs via AMPA (α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid) and NMDA (N-methyl-
d-aspartate) glutamatergic synapses, which were stimulated 
with the same stimulation patterns adopted in the experiments. 
Changes in synaptic weights have been simulated by increasing 

Fig. 3. MI changes in GrCHH. (A) Firing pattern of the simulated GrCHH neuron model in response to three inputs delivered at 100 Hz under different simulated conditions 
(CTR, control black trace; LTP, red trace; LTD, gray trace). The numbers next to each dendrite represent the random distribution of release probability during the stimulation. 
(B) Changes in MI and spike-related parameters following LTP (left) and LTD (right).
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or decreasing the release probability since both LTP and LTD 
at the MF-GrC synapse are mainly expressed as presynaptic 
mechanisms [65]. As expected, simulating an increase in the 
release probability resulted in increases in the total number of 
emitted spikes (+45.1%) and in the firing probability (+75.5%) 
coupled with decreases in first-spike delay (−29.6%) and vari-
ability (−20.3%). Conversely, the decrease in release probabil-
ity induced a delayed first spike (39.6%) with an increased 
variability (+73.9%) and decreased the total number of emit-
ted spikes (−57.8%) and the firing probability (−77.8%). As 
a whole, these changes in synaptic behaviors influenced the 
MI transfer, which increased upon LTP (from 3.01 with P = 
0.42 to 4.6 with P = 0.63; +53.7%) and decreased following 
LTD (from 3.01 with P = 0.42 to 2.01 with P = 0.21; −33.2%; 
Fig. 3B).

From the perspective of translating biological neurons into 
neuromorphic circuits, we have also tested the MI transfer 
using a simplified version of a neuronal model. The conversion 
of the HH model into an electronic architecture has been 
recently proposed [66]. However, the number of parameters 
that must be tuned to describe the action potential dynamics 
in a single neuron severely limits the hardware implementation 
of large-scale networks. In most cases, this limitation has led 
to the use of simplified neuron implementations such as the 
integrate-and-fire (IAF) model. In this case, the membrane 
potential value is calculated numerically during synaptic inte-
gration, and after overcoming the spike threshold, it is forced 
to return to its resting value without spending time on further 
computation. Following the GrCHH model, the granule cell 
integrate-and-fire model (GrCIAF; Fig. 4A) was connected to 
four excitatory inputs, and the stimulation patterns were deliv-
ered to quantify the MI transfer. Changes in synaptic release 
simulating the expression of presynaptic LTP and LTD were 
mimicked by varying the weights of AMPA and NMDA. The 
synaptic parameters activating the IAF neuron connected to 
the excitatory inputs were calibrated to generate response pat-
terns compatible with the experimental results (Fig. 4). 
Analogous to the biologically detailed model, simulating LTP 
increased firing activity (fp +70.8%; ns +54%; Fig. 4B) and 
reduced first spike variability and delay (sj −23.6%; sd −28.2%; 
Fig. 4B). Conversely, simulating the expression of LTD resulted 

in decreased firing activity (fp −48.1%; ns −55%; Fig. 4B), cou-
pled with increased first-spike variability and delay (sj +22.7%; 
sd +58.8%; Fig. 4B). Accordingly, the MI transfer increased 
from 1.64 to 2.52 (+53.7%; Fig. 4B) upon the increase of syn-
aptic weights, whereas it decreased to 0.33 in response to LTD 
(−79.9%; Fig. 4B). These results show that despite assumptions 
leading to an overall reduction in the complexity of molecular 
and cellular behavior, models that treat neuronal activity as a 
single-point element are a reliable tool for evaluating how neu-
ronal circuits transmit information and can be faithfully trans-
lated into neuromorphic hardware.

Electronic neurons
As described in [14], a CMOS LIF neuron supporting a rate-
dependent plasticity rule on memristive devices was designed 
and simulated to investigate changes in MI transfer. In this 
configuration, the input terminal integrates spikes from pre-
synaptic neurons using a capacitor, included in the “integration 
box” shown in Fig. 5A. When the voltage exceeds a given 
threshold value (VTH), an action potential is generated at the 
output. This is achieved by comparing the output of the integra-
tor with that of the VTH using a standard comparator based on 
an operational amplifier. The initial state of the integrator is 
restored by discharging the capacitor after a predefined delay. 
This is achieved by the TSpike Delay block in Fig. 5A, which 
generates a logical “Reset” signal. This signal, in turn, temporar-
ily influences the integrator (as symbolized by the dashed line 
connecting the input of the integrator to the ground). The pres-
ence of a reset-set latch allows for the triggering of the output 
“Spike” signal for a duration dictated by the TSpike Delay block. 
This signal drives the waveform generator, which is designed 
to produce the correct output spike waveform at the “Neuron 
Out” terminal. Biological constraints are imposed by setting a 
dependency of the charging rate of the capacitor on both the 
input spike rate and the synaptic strength. Synaptic plasticity 
has been mimicked by translating the rate of presynaptic stimu-
lation into the potentiation or depression of the corresponding 
synapse (Fig. 5A), which, in turn, is expressed as a relative 
change of the conductance (ΔG/G; Fig. 5A). Specifically, the 
synaptic element (i.e., the memristor) was fed a specific poten-
tiation or depression spike via access transistors, as illustrated 

Fig. 4. MI changes in GrCIAF. (A) Firing pattern of the simulated GrCIAF neuron model to three inputs delivered at 100 Hz in different simulated conditions (control, black 
trace; LTP, red trace; LTD, gray trace). The numbers beside each dendrite represent the random distribution of synaptic weights during the stimulation. (B) Changes in MI and 
spike-related parameters following LTP (left) and LTD (right).
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in Fig. 5A (central panel, bottom line), to realize the correspond-
ing operation. The shape of the spike was determined according 
to the specifications of the selected memristor technology.

The electronic GrC (eGrC) was simulated by employing 
spikes with a longer duration (10 ms for the input and output 
spikes) to account for the technological constraints of the mem-
ristive elements. Nevertheless, the generality of the demonstra-
tion was preserved. Considering the intrinsic deterministic 
nature of the proposed electronic neuron, spike stimulations 
were applied at a random time (jitter, with max jitter = 5 ms) 
within a time window of 50 ms. This approach, combined with 
a gaussian noise on VTH (μ = 0 V, σ = 0.1 V), allows the intro-
duction of a variability source to resemble the biological sto-
chastic counterpart. Output spikes were sampled in time 
windows of 10 ms. To maintain biological realism, the changes 
in the conductance of the memristors were scaled according to 
changes of ±50% [from 6 μS (control—CTR) to 9 μS for LTP 
and from 6 μS to 3 μS for LTD]. This was achieved in circuit 

simulations by suitably modulating the properties of the mem-
ristor via an appropriate choice of the spike shape. Specifically, 
to accurately simulate the response of the memristor to the 
stimulation spikes, we employed the UniMORE RRAM model 
(Fig. 5B), in which the conductance of the device depends on 
the physical properties of the conductive nanofilament within 
the device structure, namely, the thickness of the dielectric bar-
rier (x) within the filament. Also, following the analysis in the 
previous section, each memristor condition (i.e., CTR, LTD, 
and LTP) is defined for a specific conductance range (related 
to the barrier window parameter x, internal to the UniMORE 
RRAM model, with x ± 0.2 nm).

The estimation of MI transfer in control conditions yielded 
a value of 3.51 bits, which increased to 4.18 bits upon LTP 
(+19%) and decreased to 2.54 bits (−28%) upon LTD (Fig. 5C). 
As observed in biological and simulated neurons, changes in 
MI due to LTP resulted from an anticipation of the first spike 
(−29.3%) and the reduced variability of the first spike delay 

Fig. 5. Neuromorphic hardware. (A) Top: Schematic of the implemented LIF neuron. Bottom left: Synaptic plasticity is reproduced by a rate-based learning rule, with potentiation 
(depression) induced by a presynaptic stimulation rate higher (lower) than the threshold V0. Bottom right: Shapes of the potentiation and depression spikes and their 
connections to the memristor. (B) Memristor conductance versus barrier (x) relation, derived from the UniMORE RRAM model. Each memristor condition (i.e., CTR, LTD, and 
LTP) is confined to x ± 0.2 nm, with x = 1.4 nm for CTR, x = 1.2 nm for LTP, and x = 1.7 nm for LTD. (C) MI calculated for CTR, LTD, and LTP. The conductance values are 6, 3, 
and 9 μS, respectively, as evaluated from (B). (D) Effects induced by LTP (left) and LTD (right) on MI transfer and spike-related parameters.
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(−67.1%), coupled with increases in the total number of emit-
ted spikes (17.8%) and the probability of firing (4.6%). The 
opposite occurred in response to LTD (+92% sd; +98% sj), 
where both the firing probability (−11.5%) and the number of 
emitted spikes (−41.9%) were reduced. These findings show 
that it is possible to achieve high-fidelity reproductions of bio-
logical behaviors during the expression of long-term synaptic 
plasticity, in terms of both firing characteristics and informa-
tion transfer, using neuromorphic hardware that mimics actual 
neuronal microcircuits.

To further confirm the robustness of our estimations, we 
investigated changes in information transfer induced by long-
term plasticity by measuring the surprise per spike in the hard-
ware (see Materials and Methods). This method allows for the 
highlighting of the contribution of single spikes to the informa-
tion content by discarding the influence of the firing rate, which 
has been quantified as approximately 50% of the MI transfer 
in the simulated MF-GrC synaptic relay [15]. Briefly, the set of 
MF stimuli was ranked according to the surprise-per-spike 
value for the three conditions (black traces in Fig. 6), and single 
stimuli were monitored in their rankings upon changing the 
memristive conductance that mimicked the expression of LTP 
and LTD. In qualitative accordance with the simulations (see 
figure 6 in [15]), stimuli moved within curves following a pat-
tern that increased or decreased their rank depending on their 
starting positions: stimuli with low initial rankings in the LTD 
curve tended to increase their positions (Fig. 6A), whereas 
stimuli with high initial rankings in the LTD curve tended to 
decrease their positions (Fig. 6B). In all cases, the surprise per 
spike increased with the increase in release probability. These 
results confirm the reliability of artificial memristor-based cir-
cuits for estimating the information content of specific spike 
trains.

Discussion

The current study demonstrates that it is possible to transform 
neurons into electronic circuits that mirror biological actions 
without losing any important properties. We examined how 
the abstraction process, initiated with experimental data, can 

yield hardware architectures that exhibit properties consistent 
with actual circuits. These findings support recent research 
showing that neuromorphic microcircuits can exhibit striking 
biological resemblance [67–69].

Biological versus software and hardware 
neuromorphic circuits
Neuronal networks serve as the fundamental building blocks 
of nervous systems across all animal species. From the perspec-
tive of generating artificially intelligent systems, the capability 
of biological circuits to transfer information by conveying 
trains of action potentials is undoubtedly the most important 
aspect to consider [70]. In our approach, involving a gradual 
level of abstraction, we transformed a biological microcircuit 
into neuromorphic software and, subsequently, into a hardware 
neural circuit. Although the macroscopic behavior of the sys-
tem generally remained aligned throughout the simplification 
phase, a few quantitative deviations were observed. The main 
factor contributing to these differences is noise. Biological net-
works are inherently noisy systems [71] given the presence of 
various stochastic elements involved in the process of neuro-
transmission ranging from the opening of single ion channels 
[72] to synaptic vesicle release [73] and post-synaptic receptor 
activation [74]. To mitigate the intrinsic noise of neuronal cir-
cuits, we implemented different strategies at the experimental 
and simulation levels. First, we limited the sources of variability 
in MI calculation by focusing on the simplest circuit in the 
brain: the cerebellar GrC with its afferents [75,76]. Second, 
synaptic weights were distributed among different afferents 
while preserving the average weight. Last, long-term plasticity 
was simulated by changing synaptic strengths in terms of 
release probability, weights, or memristive conductance. These 
precautions allowed the in silico reproduction of the experi-
mentally observed biological variability [7,40]. This aspect is 
particularly important because previous studies have demon-
strated that, during long-term plasticity, there is a critical 
change in the variability of spike generation that can potentially 
affect the MI transfer [15,16].

At the hardware level, biological circuits have been repro-
duced by assuming a direct dependency between the release 
probability and the memristor conductance. Here, we provide 
evidence that, despite the differences between biological and 
neuromorphic neurons, complicated computational tasks can 
be effectively performed by artificial systems [67]. This serves 
as a proof-of-concept demonstration, showcasing the feasibility 
of developing electronic neural networks with features compa-
rable to those exhibited by brain circuitry. The idea of reproduc-
ing biological performance in hardware has been implemented 
in the past using different strategies based on materials [77] 
and/or architectures [78], mimicking the firing of single neu-
rons [66] or the activity of single synapses [79]. Nonetheless, 
the fundamentals of whether and how hardware circuits are 
capable of transferring information have never been explored. 
An important finding of this study is related to the parameters 
that affect MI estimation the most. It is evident that neuromor-
phic electronics transfer information by influencing spike tim-
ing and firing precision [15,16] (Fig. 4B), rather than by simply 
modulating the firing frequency and the total number of spikes. 
Furthermore, we have also shown that, even after discarding 
the influence of firing rate on information transmission and 
focusing on single spikes [15], the transferability of biological 
circuits to artificial networks can be reliably achieved. This 

Fig. 6. Surprise per spike (sps) as a function of release probability. (A) Black traces 
show the sps values of all 3,876 stimuli for the three different conditions corresponding 
to low release probability (low conductance/LTD), medium release probability 
(medium conductance/CTR), and high release probability (high conductance/LTP). 
Blue circles follow the trend of two different stimuli (1111 1111 1111 1111—stim 1; 1111 
1111 1111 0000—stim 2) following changes in memristor conductance. (B) Similar to 
(A), red circles show changes in two different stimuli with medium and high initial 
ranks in the low conductance curve (0000 0000 0000 1111—stim3, 0000 0000 
0000 0001—stim4).
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evidence supports the robustness of the proposed method for 
estimating the capability of neuromorphic hardware systems 
in transferring salient spike-based information. Moreover, dif-
ferent metrics can be adopted to estimate information transfer, 
such as the correlation among different spike trains [80], fre-
quency dependence coding [18], and incremental MI, which 
is a measure of network connectivity [81]. The choice of MI 
allows for reducing the complexity of the observables and, con-
sequently, reducing the size and complexity of neuromorphic 
hardware. In addition to demonstrating the remarkable capabil-
ity of neuromorphic hardware to compute sparse and temporally 
uncorrelated information, these results help pave the way for the 
development of advanced biorealistic electronic circuits.

The proposed study has been conducted by analyzing one 
of the crucial issues regarding neuronal function: the manner 
in which information is transmitted [81–84]. The approach 
adopted to reproduce in hardware the capabilities of biological 
circuits required limiting the number of neuronal computa-
tional models to be tested. Our hypothesis of circumscribing 
the number of tests only to (a) morphological [85] and (b) point 
neuron models [86,87] has been corroborated by results show-
ing that little or no difference can be found during the transition 
from experiments to hardware. It could be argued that the sim-
plicity of the adopted neuronal class, the cerebellar GrC, with 
its four inputs, biases the interpretation of the reliability of the 
process. However, although more complicated neurons with 
articulated morphologies and multiple inputs would likely lead 
to error amplification during the conversion process from bio-
logical neurons to electronics, the changes in spike-related 
parameters are comparable [88]. This observation should be 
respected in different and more articulated network configura-
tions presenting, for instance, highly integrative nodes like hub 
neurons. This consideration arises from the observation that, 
although the neuromorphic circuit has not been calibrated and 
parameterized for specific neuronal behaviors, the first spike 
delay and variability, which are extremely sensitive to changes 
in neuronal properties, show similar variations in electronics, 
simulations, and experiments. Conversely, macroscopic param-
eters, such as the number of spikes and firing probability, which 
can both be finely tuned during more sophisticated calibration 
procedures, show fewer similarities under different testing con-
ditions. Interestingly, these effects on spike-related parameters 
reverberated in the number of MI changes calculated in the 
hardware, experiments, and simulations, suggesting similar 
performance with other network configurations.

Future perspectives and limitations of the study
The demonstration of the biological reliability of neuromorphic 
circuits is crucial because, unlike conventional hardware, neu-
romorphic electronics can be designed to operate in a strongly 
reduced power consumption regime across multiple time 
domains, accommodating various circuit architectures. This 
advantage, intrinsically related to the electronic implementa-
tion of bioplausible SNNs, will be remarkably useful for several 
applications in the next few years. In particular, from an elec-
tronics standpoint, we expect that the exploration of optimal 
design strategies for circuits that encode information in the 
time domain will be crucial. Aspects related to information 
transfer within such circuits will be coupled with innovative 
circuit design strategies based on CMOS and innovative devices 
to target the realization of low-power neuromorphic architec-
tures with a high resemblance to their biological counterparts 

in terms of information processing, transmission, and energy 
efficiency. Additionally, from a computational modeling stand-
point, further advancements could involve the exploration of 
different metrics determining information transfer in micro-
circuits. These metrics may include synchronized and desyn-
chronized firing patterns in neuronal cohorts or the transmitted 
intersection information, which measures how much of the 
information content within a neuronal population at a given 
time is present at a later time in a second population.

These investigations will be fundamental in overcoming some 
of the limitations of the proposed approach, which include (a) 
the adoption of the smallest biological circuit, (b) the discard of 
brain complexity, (c) the use of a single metric (MI) to estimate 
information transfer, and (d) the choice of time coding over fre-
quency coding to estimate information content. Addressing these 
aspects may involve increasing the circuit size, adopting addi-
tional metrics, and further refining the translation of the 
remarkable capabilities of brain circuits into biomimetic devices.

Conclusion
In this study, we analyzed information transfer in neuromor-
phic circuits through a process of abstraction, allowing the con-
version of biological neurons into electronic neurons. Importantly, 
the reduction of biological complexity, typically pursued when 
abstracting from the real world to a simulation environment, has 
preserved an essential feature of neuronal circuits: the amount 
of information transferred during synaptic communication. We 
believe that this characteristic has been preserved because the 
information is linked to the timing of spikes rather than their 
frequency. This evidence could greatly influence the future of 
neuromorphic computing, given the widely adopted tendency to 
design devices for frequency-based algorithms.
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