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A B S T R A C T

We consider evolution equations in Banach spaces. Their linear parts generate a strongly
continuous 𝐶0-semigroup of contractions. The nonlinear term is a Carathéodory function. When
the semigroup is not compact the nonlinearity has an additional restriction, involving the
Hausdorff measure of noncompactness. We provide solutions satisfying nonlocal, multivalued
Cauchy conditions. Our approach involves a suitable degree argument. The duality mapping
is used for guaranteeing the lack of fixed points of the associated homotopic fields along the
boundary of their domain. We apply our results for the investigation of transport and diffusion
equations for which we provide the existence of nonlocal solutions.

. Introduction

The discussion in this paper is motivated by the study of nonlocal solutions to partial differential equations. Our techniques
pply to transport equations of the type

𝑢𝑡(𝑡 , 𝑦) + 𝑎 ⋅ ∇𝑢(𝑡, 𝑦) = 𝑔
(

𝑡 , 𝑢(𝑡 , 𝑦) ,∫R𝑛
|𝑢(𝑡 , 𝜉)|𝑝𝑑𝜉

)

, 𝑡 ∈ [0, 𝑇 ] and 𝑦 ∈ R𝑛 (1.1)

ith 𝑎 ∈ R𝑛, 1 < 𝑝 < ∞ and some appropriate function 𝑔 (see Section 5). Our methods are also suitable for treating diffusion
quations such as

𝑢𝑡(𝑡 , 𝑦) = 𝛥𝑢(𝑡 , 𝑦) − 𝑏𝑢(𝑡 , 𝑦) + 𝑔
(

𝑡 , 𝑢(𝑡 , 𝑦) ,∫𝛺
𝜂(𝑦 , 𝜉)𝑢(𝑡 , 𝜉) 𝑑𝜉

)

, 𝑡 ∈ [0 , 𝑇 ] (1.2)

ith 𝑦 ∈ 𝛺 ⊂ R𝑛 bounded, 𝑏 > 0, 𝜂 ∈ 𝐿∞(𝛺 ×𝛺) and a sufficiently regular 𝑔 (see Section 6).
Typical examples of nonlocal Cauchy conditions for Eqs. (1.1) and (1.2) are the multipoint condition

𝑢(0, 𝑦) =
𝑚
∑

𝑖=1
𝛽𝑖𝑢(𝑡𝑖, 𝑦), 𝑦 ∈ R𝑛
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for some 𝑡𝑖 ∈ [0, 𝑇 ] and 𝛽𝑖 ∈ R, 𝑖 = 1,… , 𝑚 and the mean value condition

𝑢(0, 𝑦) = 1
𝑇 ∫

𝑇

0
𝑢(𝑡, 𝑦) 𝑑𝑡, 𝑦 ∈ R𝑛.

n some models nonlocal solutions can better describe the behavior of the related process. This motivates their interest and the study
f a great variety of them. A nonlocal condition can be also nonlinear and even multivalued as in the recent paper [1]. The search
or solutions satisfying some nonlocal Cauchy condition started around the nineties of previous century and many contributions
re already available. In the following we limit ourselves to mentioning only the most recent and refer to those papers for further
eferences. The results in [2,3] apply to parabolic diffusion equations such as (1.2), the nonlinear part is sublinear and globally
ontinuous in [3] while in [2] it can even be, for instance, a cubic polynomial; an approximation solvability method is exploited
n [4–6]; the controllability of nonlocal solutions is then obtained in [7], with a similar technique. The solutions in [6] satisfy a
ariational inequality. The results in [8,9] concern second order inclusions. A functional term appears in [10], whereas the linear
art also depends on 𝑡 both in [10] and in [11]. The results in [12] applies to systems.

The partial differential equations as (1.1) or (1.2) are usually written in their abstract form

𝑥′(𝑡) = 𝐴𝑥(𝑡) + 𝑓 (𝑡 , 𝑥(𝑡)) 𝑡 ∈ [0 , 𝑇 ] (1.3)

with 𝑥 in some function space and 𝐴 generator of a 𝐶0−semigroup. The results on the existence of nonlocal Cauchy solutions are
consequently stated for the associated Eq. (1.3). Eq. (1.3) becomes an inclusion in abstract setting when the original dynamic is
multivalued. Instead of 𝐴 it appears 𝐴(𝑡) when the linear part of the original partial differential equation is non-autonomous. In this
case 𝐴(𝑡) is the generator of an evolution operator. Here we persue the same strategy and following [1], we assume a multivalued,
possibly nonlinear, nonlocal Cauchy condition (see (3.1)). In Section 3 we consider the case when the semigroup generated by 𝐴
is not compact and the main result is Theorem 3.2 (see also Corollary 3.3). In Section 4 we assume that 𝐴 generates a compact
semigroup and the main result is Theorem 4.2. In both sections we consider a semigroup of contractions. We search for mild solutions
to (1.3) (see Definition 3.1).

The investigation of nonlocal conditions is always conducted with topological methods, frequently by some fixed point theorem.
The topological technique is then combined with the theory of semigroups and some measure of non-compactness can be involved,
when the semigroup is not compact. All these topics can be found in the books [13–17] (see also Section 2).

The main tool of our investigation is a degree argument instead of a fixed point theorem. Starting from (1.3) and the notion
of mild solution we introduce a solution operator depending on a real parameter 𝜆 which varies on the compact interval [0, 1]. In
such a way we obtain a family of homotopic fields and we check that no fixed point appears on the boundary of their domain.
Hence, we derive the solvability of our problem by means of a continuation principle based on the Leray–Schauder degree or on
the degree for condensing maps (see Theorems 2.7 and 2.8, respectively). Only very recently this method was introduced in this
context. Here we improve and generalize it (see the end of this section). This approach originates from Hartman [18] and was
first introduced for studying the two-point boundary value problem for second order ordinary differential equations. It was then
developed by Mawhin [19] and Bebernes [20] who introduced, in particular, the notion of bounding function (see also [21]), i.e. a
Lyapunov-like function. Several problems for ordinary differential equations were then solved and we refer to [22] for a survey
on this topic. The same approach was also recently used in [23], for treating second order ordinary differential equations with the
𝜙−laplacian operator. The method was then generalized in abstract setting for integro-differential equations [24] and more recently
for partial differential equations in [2,3,5]. In this paper we make use of the simplest possible bounding function i.e. 1

2 (‖𝑥‖
2 − 𝑅2)

ith 𝑥 in a suitable function space and so we introduce the duality mapping (see Section 2 and (3.2)) in order to guarantee the
ack of fixed points on the boundary of our solution operator. We need to differentiate our technique in the two cases when the
ssociate semigroup is not compact, as for the group generated by Eq. (1.1), and when it is, such as in (1.2).

We improve the results in [2,3,5] since we consider more general nonlocal conditions. In addition both in [2,3] only the case
hen the semigroup is compact is considered; the function 𝑓 appearing in (1.3) is globally continuous in [3] and it has some strong

estrictions in [2] (see [2, (A2) and (f4)]) for letting some superlinear growths. The uniqueness of solutions is also investigated
n [2]. An arbitrary semigroup of contraction is assumed in [5]; but their nonlocal condition is linear and a stronger regularity
estriction is assumed (see [5, (A5)]) on 𝑓 .

. Notation and preliminary results

We denote by 𝑋 an infinite dimensional real Banach space with norm ‖ ⋅ ‖ and by 𝐵 the open unit ball of 𝑋 centered at the
rigin, 𝐵 = {𝑥 ∈ 𝑋 ∶ ‖𝑥‖ < 1}. Moreover, let ([𝑎 , 𝑏] , 𝑋) be the space of continuous functions on the real interval [𝑎 , 𝑏] with values
n 𝑋.

If the dual space 𝑋∗ of 𝑋 is uniformly convex, then the duality mapping 𝐽 ∶ 𝑋 → 𝑋∗ defined by

𝐽 (𝑥) =
{

𝑥∗ ∈ 𝑋∗ ∶ ‖𝑥∗‖ = ‖𝑥‖ and ⟨𝑥∗, 𝑥⟩ = ‖𝑥‖2
}

(2.1)

s single-valued and continuous. Moreover, the map 𝛷 ∶ 𝑋 → R, 𝛷(𝑥) = 1
2‖𝑥‖

2, is Fréchet differentiable and 𝛷′(𝑥) = 𝐽 (𝑥).

Example 2.1. If 𝑋 = 𝐿𝑝(𝛺), 𝛺 ⊂ R𝑛, 1 < 𝑝 < +∞, the map 𝛷 ∶ 𝐿𝑝(𝛺) → R

𝛷(𝑢) = 1
‖𝑢‖2𝑝 =

1
(

|𝑢(𝑥)|𝑝 𝑑𝑥
)

2
𝑝

2

2 2 ∫𝛺



Communications in Nonlinear Science and Numerical Simulation 130 (2024) 107767L. Malaguti and S. Perrotta

m

is Fréchet differentiable and 𝛷′(𝑢) = 𝐽 (𝑢), where the duality mapping 𝐽 ∶ 𝐿𝑝(𝛺) → 𝐿𝑝′ (𝛺), 1
𝑝 +

1
𝑝′ = 1 is defined by

⟨𝐽 (𝑢), 𝑣⟩ = 1
‖𝑢‖𝑝−2𝑝

∫𝛺
|𝑢(𝑥)|𝑝−2𝑢(𝑥)𝑣(𝑥) 𝑑𝑥 (2.2)

see e.g. [25, Example 1.4.4].
The normalized upper semi-inner product on 𝑋 is the function [⋅ , ⋅]+ ∶ 𝑋 ×𝑋 → R defined by

[𝑥 , 𝑦]+ = lim
ℎ→0+

‖𝑥 + ℎ𝑦‖ − ‖𝑥‖
ℎ

, 𝑥 , 𝑦 ∈ 𝑋,

oreover, if 𝑋∗ is uniformly convex,

[𝑥 , 𝑦]+ =

{

‖𝑦‖ if 𝑥 = 0
1

‖𝑥‖ ⟨𝐽 (𝑥) , 𝑦⟩ if 𝑥 ≠ 0
𝑥 , 𝑦 ∈ 𝑋,

(see [25, Lemma 1.4.1, Definition 1.4.2, Lemma 1.4.3]). Consider the following linear, nonhomogeneous Cauchy problem
{

𝑥′(𝑡) = 𝐴𝑥(𝑡) + ℎ(𝑡)

𝑥(0) = 𝜉0
(2.3)

where 𝐴 ∶ 𝐷(𝐴) ⊂ 𝑋 → 𝑋 generates a strongly continuous semigroup (𝐶0-semigroup) {𝑆(𝑡)}𝑡≥0 of contractions i.e. such that
‖𝑆(𝑡)‖ ≤ 1 for all 𝑡 ≥ 0 (see e.g. [16]), 𝜉0 ∈ 𝑋 and ℎ ∈ 𝐿1([0 , 𝑇 ] , 𝑋). Following [25, Definition 1.7.4] we give the following
definitions of generalized solutions of the problem (2.3).

Definition 2.2. A function 𝑥 ∈ ([0 , 𝑇 ] , 𝑋) is said

• a mild solution of (2.3) if

𝑥(𝑡) = 𝑆(𝑡)𝜉0 + ∫

𝑡

0
𝑆(𝑡 − 𝑠)ℎ(𝑠)𝑑𝑠,

for every 𝑡 ∈ [0 , 𝑇 ];
• an integral solution of (2.3) if 𝑥(0) = 𝜉0 and

‖𝑥(𝑡) − 𝜉‖ ≤ ‖𝑥(𝑠) − 𝜉‖ + ∫

𝑡

𝑠
[𝑥(𝜏) − 𝜉 , ℎ(𝜏) + 𝐴𝜉]+ 𝑑𝜏, (2.4)

for every 𝜉 ∈ 𝐷(𝐴) and 𝑠, 𝑡 ∈ [0 , 𝑇 ], 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 .

Theorem 2.3. A function 𝑥 ∈ ([0 , 𝑇 ] , 𝑋) is a mild solution of (2.3) if and only if it is an integral solution of (2.3) and 𝑥(0) = 𝜉0.

Proof. It is a consequence of [17, Theorem 3.4.2], [25, Theorem 1.7.3 and Theorem 1.8.2]. □

In our discussion we will use measures of non-compactness (m.n.c. for short) in Banach spaces. We recall that, given a non empty
subset 𝐶 of the Banach space 𝑋, the Hausdorff m.n.c. of 𝐶 (see e.g. [14, Chap. 2]) is the function 𝜒 ∶ (𝑋) → [0 ,+∞] defined by

𝜒(𝐶) = inf

{

𝜖 > 0 ∶ ∃ 𝑥1,… 𝑥𝑘 ∈ 𝑋 such that 𝐶 ⊂
𝑘
⋃

𝑖=1
𝐵𝜖(𝑥𝑖)

}

.

if 𝐶 is bounded and 𝜒(𝐶) = +∞ if 𝐶 is unbounded.
The following properties of 𝜒 easily follow from the definition.

Proposition 2.4. If 𝜒 ∶ (𝑋) → [0 ,+∞] is the Hausdorff m.n.c. defined above then

(i) 𝜒(𝐶) = 0 if and only if 𝐶 is relatively compact;
(ii) if 𝐶1 ⊂ 𝐶2 ⊂ 𝑋 then 𝜒(𝐶1) ≤ 𝜒(𝐶2);

(iii) for every 𝐶1, 𝐶2 ⊂ 𝑋, 𝜒(𝐶1 ∪ 𝐶2) ≤ max{𝜒(𝐶1) , 𝜒(𝐶2)};
(iv) for every 𝐶1, 𝐶2 ⊂ 𝑋, 𝜒(𝐶1 + 𝐶2) ≤ 𝜒(𝐶1) + 𝜒(𝐶2);
(v) if 𝑌 is a Banach space and 𝛷 ∶ 𝑋 → 𝑌 is a Lipschitz function with constant 𝐿, then for every 𝐶 ⊆ 𝑋, 𝜒(𝛷(𝐶)) ≤ 𝐿𝜒(𝐶);

(vi) for every set 𝐶 ⊂ 𝑋, 𝜒(𝐶) = 𝜒
(

∪𝜆∈[0 ,1]𝜆𝐶
)

.

The following is a consequence of a more general result [14, Theorem 4.2.2 and Corollary 4.2.4] in the case of a 𝐶0-semigroup
of contractions.

Theorem 2.5. Let {𝑆(𝑡)}𝑡≥0 be a 𝐶0-semigroup of contractions and 𝐹 be the linear operator from 𝐿1([0 , 𝑇 ] , 𝑋) to ([0 , 𝑇 ] , 𝑋) defined
by

𝐹 (𝑓 )(𝑡) =
𝑡
𝑆(𝑡 − 𝑠)𝑓 (𝑠) 𝑑𝑠, 𝑓 ∈ 𝐿1([0 , 𝑇 ] , 𝑋) and 𝑡 ∈ [0 , 𝑇 ]. (2.5)
3

∫0
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Let 𝑞 ∈ 𝐿1(0 , 𝑇 ) and {𝑓𝑛}𝑛 ⊂ 𝐿1([0 , 𝑇 ] , 𝑋) be such that

𝜒
(

{𝑓𝑛(𝑡)}𝑛
)

≤ 𝑞(𝑡), for a.e. 𝑡 ∈ [0 , 𝑇 ].

hen

𝜒
(

{𝐹 (𝑓𝑛)(𝑡)}𝑛
)

≤ 2∫

𝑡

0
𝑞(𝑠) 𝑑𝑠, for every 𝑡 ∈ [0 , 𝑇 ].

If the Banach space 𝑋 is separable, then

𝜒
(

{𝐹 (𝑓𝑛)(𝑡)}𝑛
)

≤ ∫

𝑡

0
𝑞(𝑠) 𝑑𝑠, for every 𝑡 ∈ [0 , 𝑇 ].

In the sequel we will consider the following m.n.c. on the subsets of continuous function (see [14, Ex. 2.1.4]). For every bounded
set 𝛺 ⊂ ([𝑎 , 𝑏] , 𝑋).

𝜈(𝛺) = max
{𝑥𝑛}𝑛⊂𝛺

(

sup
𝑡∈[𝑎 ,𝑏]

𝜒
(

{𝑥𝑛(𝑡)}𝑛
)

,modC ({𝑥𝑛}𝑛)
)

∈ R2
+ (2.6)

where the maximum is taken with respect to the ordering induced by the cone R2
+ and modC is the modulus of equicontinuity

defined by

modC (𝛺) = lim
𝛿→0

sup
𝑥∈𝛺

max
|𝑡1−𝑡2|<𝛿

‖𝑥(𝑡1) − 𝑥(𝑡2)‖.

The m.n.c. 𝜈 is regular, that is 𝜈(𝐶) = 0 if and only if 𝐶 is a relatively compact subset of ([𝑎 , 𝑏] , 𝑋)

Definition 2.6. Given a Banach space 𝐸, a set 𝐹 ⊂ 𝐸, a m.n.c. 𝛽, the multivalued mapping 𝑇 ∶ 𝐹 × [0 , 1] ⊸ 𝐸 is called condensing
with respect to 𝛽, 𝛽-condensing for short, if for every 𝛺 ⊆ 𝐹

𝛽 (𝑇 (𝛺 , [0 , 1])) ≥ 𝛽(𝛺) ⇒ 𝛺 is relatively compact.

Our existence results are based on the following fixed-point theorems.

Theorem 2.7. Assume that 𝑄 is a closed and convex subset of ([𝑎 , 𝑏] , 𝑋) with non empty interior and  ∶ 𝑄 × [0 , 1] ⊸ ([𝑎 , 𝑏] , 𝑋) is
such that:

(1)  (𝑞 , 𝜆) is convex, for every 𝑞 ∈ 𝑄 and 𝜆 ∈ [0 , 1];
(2) the graph of  is closed;
(3)  is compact;
(4) {𝑥 ∈ 𝑄 ∶ 𝑥 ∈  (𝑥 , 𝜆) for some 𝜆 ∈ [0 , 1)} ∩ 𝜕𝑄 = ∅;
(5)  (⋅ , 0) ≡ {𝑥̄}, 𝑥̄ ∈

◦
𝑄.

Then there exists 𝑥 ∈ 𝑄 such that 𝑥 ∈  (𝑥 , 1).

Proof. It is a particular case of Theorem 2.23 in [26]. □

Theorem 2.8. Assume that 𝑄 is a closed and convex subset of ([𝑎 , 𝑏] , 𝑋) with non empty interior and  ∶ 𝑄 × [0 , 1] ⊸ ([𝑎 , 𝑏] , 𝑋) is
such that:

(1)  (𝑞 , 𝜆) is compact and convex, for every 𝑞 ∈ 𝑄 and 𝜆 ∈ [0 , 1];
(2)  is u.s.c.;
(3)  is 𝛽−condensing, where 𝛽 is a nonsingular, monotone m.n.c. on ([𝑎 , 𝑏] , 𝑋);
(4) {𝑥 ∈ 𝑄 ∶ 𝑥 ∈  (𝑥 , 𝜆) for some 𝜆 ∈ [0 , 1)} ∩ 𝜕𝑄 = ∅;
(5)  (⋅ , 0) ≡ {𝑥̄}, 𝑥̄ ∈

◦
𝑄.

Then there exists 𝑥 ∈ 𝑄 such that 𝑥 ∈  (𝑥 , 1).

Proof. It follows from the definition of a topological degree for 𝛽-condensing multifields (see [14, Chap. 3] and in particular
Theorem 3.3.2). □

3. Existence results for strongly continuous semigroups of contractions

In this section we consider the abstract Cauchy problem given by (1.3) with nonlocal initial condition

𝑥(0) ∈ 𝑥0 + 𝑔(𝑥) (3.1)

in a Banach space 𝑋 with 𝑋∗ uniformly convex.
4

Throughout this section we assume:
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(𝐴) 𝐴 ∶ 𝐷(𝐴) ⊂ 𝑋 → 𝑋 is a linear, not necessarily bounded, operator that generates a 𝐶0-semigroup of contractions {𝑆(𝑡)}𝑡≥0 on
𝑋;

(𝑓 ) 𝑓 ∶ [0 , 𝑇 ] ×𝑋 → 𝑋 is a function satisfying the following assumptions:

(𝑓1) the function 𝑓 (⋅ , 𝑥) ∶ [0 , 𝑇 ] → 𝑋 is measurable with respect to the Lebesgue measure on [0 , 𝑇 ] for every 𝑥 ∈ 𝑋;
(𝑓2) the function 𝑓 (𝑡 , ⋅) ∶ 𝑋 → 𝑋 is continuous, for almost every 𝑡 ∈ [0 , 𝑇 ];
(𝑓3) for every 𝜌 > 0 there exists a function 𝓁𝜌 ∈ 𝐿1(0 , 𝑇 ) such that ‖𝑓 (𝑡, 𝑥)‖ ≤ 𝓁𝜌(𝑡) for a.e. 𝑡 ∈ [0 , 𝑇 ] and every 𝑥 ∈ 𝑋 with

‖𝑥‖ ≤ 𝜌;

(𝑔) 𝑔 ∶ ([0 , 𝑇 ] , 𝑋) ⊸ 𝑋 is a multivalued function such that

(𝑔1) 𝑔(𝑞) is convex, for every 𝑞 ∈ ([0 , 𝑇 ] , 𝑋);
(𝑔2) there exists 𝑅 > 0 such that ‖𝑥0‖ < 𝑅 and 𝑥0 + 𝑔

(

([0 , 𝑇 ] , 𝑅𝐵̄)
)

⊆ 𝑅𝐵̄;
(𝑔3) 𝑔 has a closed graph;
(𝑔4) there exists 𝑘𝑔 ≥ 0 such that for every bounded subset 𝐶 ⊂ ([0 , 𝑇 ] , 𝑋), 𝜒(𝑔(𝐶)) ≤ 𝑘𝑔 sup𝑡∈[0 ,𝑇 ] 𝜒{𝑞(𝑡) ∶ 𝑞 ∈ 𝐶}.

n order to apply topological degree methods, we consider the following transversality condition: there exists 𝜀 > 0 such that for
.e. 𝑡 ∈ [0 , 𝑇 ]

⟨𝐽 (𝑥) , 𝑓 (𝑡, 𝑥)⟩ ≤ 0, for every 𝑥, 𝑅 − 𝜀 < ‖𝑥‖ < 𝑅, (3.2)

here 𝐽 ∶ 𝑋 → 𝑋∗ is defined in (2.1) and 𝑅 is the radius of the ball in (𝑔2).

efinition 3.1. We say that 𝑥 ∈ ([0 , 𝑇 ] , 𝑋) is a mild solution of the nonlocal problem (1.3), (3.1) if there exists 𝛾 ∈ 𝑔(𝑥) such that

𝑥(𝑡) = 𝑆(𝑡)(𝑥0 + 𝛾) + ∫

𝑡

0
𝑆(𝑡 − 𝑠)𝑓 (𝑠 , 𝑥(𝑠))𝑑𝑠.

or every 𝑡 ∈ [0 , 𝑇 ].

In this general setting, we will prove the following existence result.

heorem 3.2. Let conditions (𝐴), (𝑓), (𝑔) and (3.2) be satisfied. Suppose in addition that

H1) there exists 𝑘𝑓 ∈ 𝐿1(0 , 𝑇 ) such that 𝜒(𝑓 (𝑡, 𝐸)) ≤ 𝑘𝑓 (𝑡)𝜒(𝐸) for almost every 𝑡 ∈ [0 , 𝑇 ] and every 𝐸 ⊂ 𝑅𝐵̄, where 𝑅 appears in (𝑔2);

H2) 𝑘𝑔 + 2‖𝑘𝑓‖1 < 1.

hen the problem (1.3)–(3.1) has a mild solution.

roof. The set 𝑄 = ([0 , 𝑇 ] , 𝑅𝐵̄) is a closed convex subset of ([0 , 𝑇 ] , 𝑋) with non empty interior. Let us consider the homotopy
∶ 𝑄 × [0 , 1] ⊸ ([0 , 𝑇 ] , 𝑋) defined by

 (𝑞 , 𝜆)(𝑡) = 𝑆(𝑡)[𝑥0 + 𝜆𝑔(𝑞)] + 𝜆∫

𝑡

0
𝑆(𝑡 − 𝑠)𝑓 (𝑠 , 𝑞(𝑠))𝑑𝑠, 𝑡 ∈ [0 , 𝑇 ].

A mild solution of (1.3)–(3.1) is a fixed point of  (⋅ , 1). If  satisfies assumptions (1)–(5) of Theorem 2.8, then problem (1.3)–(3.1)
has a mild solution.
(1) By (𝑔1), (𝑔3) and (𝑔4), for every 𝑞 ∈ ([0 , 𝑇 ] , 𝑋), 𝑔(𝑞) is compact and convex. Since 𝑆(𝑡) is continuous and linear, also  (𝑞 , 𝜆) is
compact and convex for every 𝑞 ∈ ([0 , 𝑇 ] , 𝑋) and 𝜆 ∈ [0 , 1].
(2) If  is quasicompact (i.e.  maps compact sets into relatively compact sets) and its graph is closed, then by [14, Theorem 1.1.12],
 is upper semicontinuous.

Consider 𝑦𝑛 ∈  (𝑞𝑛 , 𝜆𝑛), {𝑞𝑛} ⊂ 𝑄 and 𝜆𝑛 ∈ [0 , 1], such that 𝜆𝑛 → 𝜆̄, 𝑦𝑛 → 𝑦̄ and 𝑞𝑛 → 𝑞 in ([0 , 𝑇 ] , 𝑋). We have to prove that
𝑦̄ ∈  (𝑞 , 𝜆̄). By the definition of  , for every 𝑛 there exists 𝜇𝑛 ∈ 𝑔(𝑞𝑛) such that

𝑦𝑛(𝑡) = 𝑆(𝑡)[𝑥0 + 𝜆𝑛𝜇𝑛] + 𝜆𝑛 ∫

𝑡

0
𝑆(𝑡 − 𝑠)𝑓 (𝑠 , 𝑞𝑛(𝑠))𝑑𝑠, 𝑡 ∈ [0 , 𝑇 ]. (3.3)

ince 𝜒
(

{𝑞𝑛(𝑡)}𝑛
)

= 0 for every 𝑡 ∈ [0 , 𝑇 ], by (𝑔4) we have

𝜒({𝜇𝑛}𝑛) ≤ 𝜒
(

𝑔({𝑞𝑛}𝑛)
)

≤ 𝑘𝑔 sup
𝑡∈[0 ,𝑇 ]

𝜒
(

{𝑞𝑛(𝑡)}𝑛
)

= 0 (3.4)

hence, up to a subsequence, 𝜇𝑛 → 𝜇̄ and 𝜇̄ ∈ 𝑔(𝑞) by the closure of the graph of 𝑔. Now, by (𝑓3),

‖𝑆(𝑡 − ⋅)𝑓 (⋅ , 𝑞𝑛(⋅))‖ ≤ 𝓁𝑅(⋅) ∈ 𝐿1(0 , 𝑡) (3.5)

for every 𝑡 ∈ [0 , 𝑇 ]; hence, passing to the limit as 𝑛→ ∞ in (3.3), we have

𝑦̄(𝑡) = 𝑆(𝑡)[𝑥0 + 𝜆̄𝜇̄] + 𝜆̄
𝑡
𝑆(𝑡 − 𝑠)𝑓 (𝑠 , 𝑞(𝑠))𝑑𝑠, for every 𝑡 ∈ [0 , 𝑇 ], (3.6)
5

∫0
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proving that 𝑦̄ ∈  (𝑞 , 𝜆̄), so the graph of  is closed.
To prove that  is quasicompact it is enough to prove that given {𝑞𝑛}𝑛 ⊂ 𝑄 and 𝜆𝑛 ∈ [0 , 1], such that 𝜆𝑛 → 𝜆̄ and 𝑞𝑛 → 𝑞 in

([0 , 𝑇 ] , 𝑋), for every {𝑦𝑛}𝑛, 𝑦𝑛 ∈  (𝑞𝑛 , 𝜆𝑛), there exists a subsequence {𝑦𝑛𝑘}𝑘 converging in ([0 , 𝑇 ] , 𝑋).
As before, we deduce from (3.3) and (3.4) that there exists 𝜇𝑛𝑘 → 𝜇̄ ∈ 𝑔(𝑞) and 𝑦𝑛𝑘 converges pointwise to 𝑦̄ defined by (3.6).

Moreover, the sequence {𝑆(⋅)(𝑥0 + 𝜆𝑛𝜇𝑛)}𝑛 is relatively compact in ([0 , 𝑇 ] , 𝑋).
As in (3.5) we obtain that ‖𝑓 (𝑡, 𝑞𝑛(𝑡))‖ ≤ 𝓁𝑅(𝑡) for a.e. 𝑡 ∈ [0 , 𝑇 ] and every 𝑛 ∈ N; hence the sequence {𝑓 (⋅), 𝑞𝑛(⋅)}𝑛 is integrably

bounded. Moreover, by (H1),

𝜒({𝑓 (𝑡, 𝑞𝑛(𝑡))}𝑛) ≤ 𝑘𝑓 (𝑡)𝜒({𝑞𝑛(𝑡)}𝑛) = 0, for a.e. 𝑡 ∈ [0 , 𝑇 ].

Therefore {𝑓 (⋅, 𝑞𝑛(⋅))}𝑛 is a semicompact sequence. According to [14, Theorem 5.1.1] and the convergence of {𝜆𝑛}𝑛 we obtain that
{

𝜆𝑛 ∫
⋅
0 𝑆(⋅ − 𝑠)𝑓 (𝑠 , 𝑞𝑛(𝑠))𝑑𝑠

}

𝑛 is relatively compact in ([0 , 𝑇 ] , 𝑋). In conclusion  is quasicompact.

(3) Let 𝛺 be a subset of 𝑄 such that 𝜈 ( (𝛺 , [0 , 1])) ≥ 𝜈(𝛺), where 𝜈 is defined in (2.6). We aim to prove (see Definition 2.6) that
𝛺 is relatively compact.

By (2.6) there exists a sequence {𝑥𝑛}𝑛 ⊂  (𝛺 , [0 , 1]) such that

𝜈 ( (𝛺 , [0 , 1])) =
(

sup
𝑡∈[0 ,𝑇 ]

𝜒
(

{𝑥𝑛(𝑡)}𝑛
)

,modC ({𝑥𝑛}𝑛)
)

.

Therefore for every {𝑤𝑛}𝑛 ⊂ 𝛺

⎧

⎪

⎨

⎪

⎩

sup
𝑡∈[0 ,𝑇 ]

𝜒
(

{𝑥𝑛(𝑡)}𝑛
)

≥ sup
𝑡∈[0 ,𝑇 ]

𝜒
(

{𝑤𝑛(𝑡)}𝑛
)

modC ({𝑥𝑛}𝑛) ≥ modC ({𝑤𝑛}𝑛).
(3.7)

By the definition of  , for every 𝑛 ∈ N there exist 𝑞𝑛 ∈ 𝛺, 𝜇𝑛 ∈ 𝑔(𝑞𝑛) and 𝜆𝑛 ∈ [0 , 1] such that

𝑥𝑛(𝑡) = 𝑆(𝑡)[𝑥0 + 𝜆𝑛𝜇𝑛] + 𝜆𝑛 ∫

𝑡

0
𝑆(𝑡 − 𝑠)𝑓 (𝑠 , 𝑞𝑛(𝑠))𝑑𝑠, 𝑡 ∈ [0 , 𝑇 ].

Applying properties of 𝜒 stated in Proposition 2.4, Theorem 2.5, (H1), (𝑓3) and (𝑔4) we have for every 𝑡 ∈ [0 , 𝑇 ] and 𝑠 ∈ [0 , 𝑡]

𝜒
({

𝑆(𝑡 − 𝑠)𝑓 (𝑠 , 𝑞𝑛(𝑠))
}

𝑛
)

≤ 𝑘𝑓 (𝑠)𝜒
({

𝑞𝑛(𝑠))
}

𝑛
)

≤ 𝑅𝑘𝑓 (𝑠)

and
𝜒
(

{𝑥𝑛(𝑡)}𝑛
)

≤ 𝜒

(

⋃

𝜆∈[0 ,1]
𝜆{𝑆(𝑡)𝜇𝑛}𝑛

)

+ 𝜒

(

⋃

𝜆∈[0 ,1]
𝜆
{

∫

𝑡

0
𝑆(𝑡 − 𝑠)𝑓 (𝑠 , 𝑞𝑛(𝑠))𝑑𝑠

}

𝑛

)

≤ 𝜒
(

{𝑆(𝑡)𝑔(𝑞𝑛)}𝑛
)

+ 𝜒
({

∫

𝑡

0
𝑆(𝑡 − 𝑠)𝑓 (𝑠 , 𝑞𝑛(𝑠))𝑑𝑠

}

𝑛

)

≤ 𝑘𝑔 sup
𝑡∈[0 ,𝑇 ]

𝜒
(

{𝑞𝑛(𝑡)}𝑛
)

+ 2∫

𝑡

0
𝑘𝑓 (𝑠) 𝑑𝑠 sup

𝑡∈[0 ,𝑇 ]
𝜒
({

𝑞𝑛(𝑡)
}

𝑛
)

=
(

𝑘𝑔 + 2‖𝑘𝑓‖1
)

sup
𝑡∈[0 ,𝑇 ]

𝜒
({

𝑞𝑛(𝑡)
}

𝑛
)

.

Finally, by (3.7) and (H2),

sup
𝑡∈[0 ,𝑇 ]

𝜒
({

𝑞𝑛(𝑡)
}

𝑛
)

≤ sup
𝑡∈[0 ,𝑇 ]

𝜒
(

{𝑥𝑛(𝑡)}𝑛
)

≤
(

𝑘𝑔 + 2‖𝑘𝑓‖1
)

sup
𝑡∈[0 ,𝑇 ]

𝜒
({

𝑞𝑛(𝑡)
}

𝑛
)

< sup
𝑡∈[0 ,𝑇 ]

𝜒
({

𝑞𝑛(𝑡)
}

𝑛
) (3.8)

that is sup𝑡∈[0 ,𝑇 ] 𝜒
({

𝑞𝑛(𝑡)
}

𝑛
)

= 0 and sup𝑡∈[0 ,𝑇 ] 𝜒
(

{𝑥𝑛(𝑡)}𝑛
)

= 0.
We will show that the functions {𝑥𝑛}𝑛 are equicontinuous. As in (3.4) we have that {𝜇𝑛}𝑛 and hence {𝑥0 + 𝜆𝑛𝜇𝑛}𝑛 is relatively

compact. Therefore the maps 𝑡 ↦ 𝑆(𝑡)[𝑥0 + 𝜆𝑛𝜇𝑛], 𝑡 ∈ [0 , 𝑇 ], 𝑛 ∈ N form a relatively compact set in ([0 , 𝑇 ] , 𝑋). Setting for 𝑛 ∈ N

𝑦𝑛(𝑡) = ∫

𝑡

0
𝑆(𝑡 − 𝑠)𝑓 (𝑠 , 𝑞𝑛(𝑠))𝑑𝑠, 𝑡 ∈ [0 , 𝑇 ],

as in (3.5) we have that 𝑓 (⋅ , 𝑞𝑛(⋅)) are integrably bounded in [0 , 𝑇 ], moreover 𝜒{𝑓 (𝑡 , 𝑞𝑛(𝑡))}𝑛 ≤ 𝐿(𝑡)𝜒
{

𝑞𝑛(𝑡)
}

𝑛 = 0 for every 𝑡 ∈ [0 , 𝑇 ],
hence, by [14, Theorem 5.1.1], {𝑦𝑛}𝑛 and {𝜆𝑛𝑦𝑛}𝑛 are relatively compact in ([0 , 𝑇 ] , 𝑋). Therefore {𝑥𝑛}𝑛 is relatively compact and
by Ascoli–Arzelà theorem the functions 𝑥𝑛 are equicontinuous, so we have modC ({𝑥𝑛}𝑛) = 0.

By (3.7) for every {𝑤𝑛}𝑛 ⊂ 𝛺

⎧

⎪

⎨

⎪

sup
𝑡∈[0 ,𝑇 ]

𝜒
(

{𝑤𝑛(𝑡)}𝑛
)

= 0

mod ({𝑤 } ) = 0
6
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that is 𝜈(𝛺) = 0, proving that 𝛺 is relatively compact in ([0 , 𝑇 ] , 𝑋).
(4) Let 𝑞0 ∈ 𝑄 and 𝜆0 ∈ [0 , 1) be such that 𝑞0 ∈  (𝑞0 , 𝜆0), that is there exists 𝜇0 ∈ 𝑔(𝑞0) such that

𝑞0(𝑡) = 𝑆(𝑡)[𝑥0 + 𝜆0𝜇0] + 𝜆0 ∫

𝑡

0
𝑆(𝑡 − 𝑠)𝑓 (𝑠 , 𝑞0(𝑠))𝑑𝑠, 𝑡 ∈ [0 , 𝑇 ]. (3.9)

Notice that, by (𝑔2) and 𝜆0 < 1,

‖𝑞0(0)‖ = ‖𝑥0 + 𝜆0𝜇0‖ ≤ 𝜆0‖𝑥0 + 𝜇0‖ + (1 − 𝜆0)‖𝑥0‖ < 𝜆0𝑅 + (1 − 𝜆0)𝑅 = 𝑅. (3.10)

We have to prove that ‖𝑞0(𝑡)‖ < 𝑅 for every 𝑡 ∈ [0 , 𝑇 ].
If 𝜆0 = 0, ‖𝑞0(𝑡)‖ = ‖𝑆(𝑡)𝑥0‖ ≤ ‖𝑥0‖ < 𝑅, for every 𝑡 ∈ [0 , 𝑇 ].
If 0 < 𝜆0 < 1, suppose by contradiction that max𝑡∈[0 ,𝑇 ] ‖𝑞0(𝑡)‖ = 𝑅. Let define 𝑡0 = min{𝑡 ∈ [0 , 𝑇 ] ∶ ‖𝑞0(𝑡)‖ = 𝑅}. By (3.10), 𝑡0 > 0,

moreover ‖𝑞0(𝑡0)‖ = 𝑅 and ‖𝑞0(𝑡)‖ < 𝑅 for every 𝑡 ∈ [0 , 𝑡0). By continuity there exists 𝛿 > 0 such that 𝑅 − 𝜀 < ‖𝑞0(𝑡)‖ < 𝑅 for every
𝑡 ∈ [𝑡0 − 𝛿 , 𝑡0), where 𝜀 is the positive constant defined in (3.2).

By (3.9), 𝑞0 is a mild solution of the linear Cauchy problem (2.3), with 𝜉0 = 𝑥0 + 𝜆0𝜇0 and ℎ(⋅) = 𝑓 (⋅ , 𝑞0(⋅)). Therefore, by
heorem 2.3, 𝑞0 satisfies (2.4). In particular for 𝜉 = 0, 𝑡 = 𝑡0 and 𝑠 = 𝑡0 − 𝛿 we obtain

0 < 𝑅 − ‖𝑞0(𝑡0 − 𝛿)‖ = ‖𝑞0(𝑡0)‖−‖𝑞0(𝑡0 − 𝛿)‖ ≤ ∫

𝑡0

𝑡0−𝛿

[

𝑞0(𝜏) , 𝑓 (𝜏 , 𝑞0(𝜏))
]

+ 𝑑𝜏

≤ ∫

𝑡0

𝑡0−𝛿

1
‖𝑞0(𝜏)‖

⟨𝐽 (𝑞0(𝜏)) , 𝑓 (𝜏 , 𝑞0(𝜏))⟩ 𝑑𝜏 ≤ 0

nd we get a contradiction. Therefore we have proved that  has no fixed points on 𝜕𝑄. Notice that the last inequality is due to
ondition (3.2).
5) For every 𝑞 ∈ 𝑄, 𝑡 ∈ [0 , 𝑇 ], since 𝑆(𝑡) is a contraction and ‖𝑥0‖ < 𝑅 (see (𝑔2)),  (𝑞 , 0)(𝑡) = {𝑆(𝑡)𝑥0} ⊂

◦
𝑄. □

When 𝑋 is separable, the previous result hold true with a condition weaker than (H2).

orollary 3.3. Let conditions (𝐴), (𝑓 ), (𝑔), (3.2) and (H1) hold. Suppose in addition that 𝑋 is separable and

𝑘𝑔 + ‖𝑘𝑓‖1 < 1. (3.11)

Then the problem (1.3)–(3.1) has a mild solution.

roof. In view of Theorem 2.5, if 𝑋 is separable inequalities (3.8) become

sup
𝑡∈[0 ,𝑇 ]

𝜒
({

𝑞𝑛(𝑡)
}

𝑛
)

≤ sup
𝑡∈[0 ,𝑇 ]

𝜒
(

{𝑥𝑛(𝑡)}𝑛
)

≤
(

𝑘𝑔 + ‖𝑘𝑓‖1
)

sup
𝑡∈[0 ,𝑇 ]

𝜒
({

𝑞𝑛(𝑡)
}

𝑛
)

< sup
𝑡∈[0 ,𝑇 ]

𝜒
({

𝑞𝑛(𝑡)
}

𝑛
)

.

So the proof is the same as that of the previous theorem. □

Remark 3.4. Notice that, if the multimap 𝑔 is compact, then 𝑘𝑔 = 0. In this case, to prove the condensivity of  (step (3) in the
proof of Theorem 3.2), it is possible to use the same techniques as in [14, Theorem 5.1.3] concluding that in Theorem 3.2 and in
Corollary 3.3 the result holds true without assuming (H2) and (3.11) respectively.

Remark 3.5. Assumption (H1) is satisfied, for instance, il 𝑓 is Lipschitz continuous in its second variable on bounded sets:

(𝑓 ′
2) for every 𝜌 > 0 there exists 𝐿𝜌 ∈ 𝐿1(0 , 𝑇 ) such that ‖𝑓 (𝑡 , 𝑥) − 𝑓 (𝑡 , 𝑦)‖ ≤ 𝐿𝜌(𝑡)‖𝑥 − 𝑦‖ for a.e. 𝑡 ∈ [0 , 𝑇 ] and for every 𝑥, 𝑦 ∈ 𝜌𝐵.

In this case 𝑘𝑓 = 𝐿𝑅 with 𝑅 introduced in (𝑔2).
Nevertheless, there are functions satisfying (H1), but not (𝑓 ′

2). For example if 𝑓 = 𝑓1 + 𝑓2, where only 𝑓1 satisfies (𝑓 ′
2), but 𝑓2 is

compact. In this latter case the growth of ‖𝑓 (𝑡 , 𝑥)‖ need not be sublinear with respect to ‖𝑥‖. Consider, for example, 𝑋 = 𝐿𝑝(𝑎 , 𝑏),
1 ≤ 𝑝 ≤ +∞, and 𝑓 ∶ 𝑋 → 𝑋 defined by

𝑓 (𝜂)(𝑦) =
(

∫

𝑦

𝑎
𝜂(𝑠) 𝑑𝑠

)2
, 𝑦 ∈ [𝑎 , 𝑏].

The map 𝑓 is compact in 𝐿𝑝(𝑎 , 𝑏). In fact, if {𝜂𝑛}𝑛 is bounded in 𝐿𝑝(𝑎 , 𝑏), the corresponding sequence {𝑓 (𝜂𝑛)}𝑛 is in ([𝑎 , 𝑏]) and it
satisfies Ascoli Arzelà theorem. Therefore {𝑓 (𝜂𝑛)}𝑛 is relatively compact in ([𝑎 , 𝑏]) and also in 𝐿𝑝(𝑎 , 𝑏).

Consequently (H1) holds with 𝑘𝑓 = 0, and along some directions (for instance along constant functions) 𝑓 has a quadratic growth
t infinity. Hence we showed that (H1) does not imply that the growth at infinity of ‖𝑓 (𝑡 , 𝑥)‖ is dominated by a linear function of
𝑥‖.

′

7

A further family of functions satisfying (H1) but not (𝑓2) can be found in the following example



Communications in Nonlinear Science and Numerical Simulation 130 (2024) 107767L. Malaguti and S. Perrotta

(
(
(

Example 3.6. Let ℎ ∶ [0 , 𝑇 ]×𝑋 → 𝑋 be a Carathéodory function satisfying (H1) (with 𝐿1-function 𝑘ℎ), 𝛹 ∶ R → R be a continuous
and bounded function and 𝑥∗ be a given element in the dual 𝑋∗ of 𝑋. Consider the map 𝑓 ∶ [0 , 𝑇 ] ×𝑋 → 𝑋 defined by

𝑓 (𝑡 , 𝑥) = 𝛹 (⟨𝑥∗ , 𝑥⟩)ℎ(𝑡 , 𝑥)

This is obviously a Carathéodory function but, in general, it is not locally Lipschitz continuous in its second variable. Moreover, for
a.e. 𝑡 ∈ [0 , 𝑇 ] and for every set 𝐸 ⊆ 𝑅𝐵̄,

𝑓 (𝑡 , 𝐸) ⊆ ∪𝜆∈[0 ,1]𝜆 𝜓̄ ℎ(𝑡 , 𝐸) ∪ ∪𝜆∈[0 ,1]𝜆 (−𝜓̄)ℎ(𝑡 , 𝐸),

where 𝜓̄ = supR |𝛹 |. Therefore, by (iii) and (vi) in Proposition 2.4 we have that

𝜒(𝑓 (𝑡 , 𝐸)) ≤ 𝜓̄ 𝜒(ℎ(𝑡 , 𝐸)) ≤ 𝜓̄ 𝑘ℎ(𝑡)𝜒(𝐸)

and hence 𝑓 satisfies (H1).

When 𝑓 is Lipschitz continuous in its second variable, less restrictive conditions are required for studying (1.3)–(3.1) (see also
Remark 3.8).

Theorem 3.7. Let conditions (𝐴), (𝑓1), (𝑓 ′
2), (𝑔1), (𝑔2), (𝑔3) and (3.2) hold. Suppose in addition that

H3) 𝑓 (⋅ , 0) ∈ 𝐿1(0 , 𝑇 );
H4) there exists 𝑘𝑔 ≥ 0 such that for every bounded subset 𝐶 ⊂ ([0 , 𝑇 ] , 𝑋), 𝜒(𝑔(𝐶)) ≤ 𝑘𝑔𝜒(𝐶);
H5) 𝑘𝑔 + ‖𝐿𝑅‖1 < 1, where 𝑅 appears in (𝑔2).

Then the problem (1.3)–(3.1) has a mild solution.

Remark 3.8. It is easy to prove ([14, Ex. 2.1.3]) that assumption (𝑔4) is stronger than (H4).

Proof of Theorem 3.7. Assumption (𝑓 ′
2) implies (𝑓2). Moreover, by (𝑓 ′

2) and (H3) we have

‖𝑓 (𝑡 , 𝑥)‖ ≤ ‖𝑓 (𝑡 , 𝑥) − 𝑓 (𝑡 , 0)‖ + ‖𝑓 (𝑡 , 0)‖ ≤ 𝐿𝜌(𝑡)‖𝑥‖ + ‖𝑓 (𝑡 , 0)‖

for every 𝑥 ∈ 𝜌𝐵̄ and almost every 𝑡 ∈ [0 , 𝑇 ], therefore assumption (𝑓3) holds for 𝓁𝜌(⋅) = 𝐿𝜌(⋅)𝜌 + ‖𝑓 (⋅ , 0)‖.
In Theorem 3.2, assumptions (𝑔4), (H1) and (H2) are involved in the proof of points (1) and (3).
Notice that (𝑔3) and (H4) imply that 𝑔(𝑞) is compact for every 𝑞 ∈ ([0 , 𝑇 ] , 𝑋), so also step (1) in the proof of Theorem 3.2 can

be proved in the same way.
Therefore we have only to prove (3), that is the condensivity of the solution operator  in the present hypotheses.
Let 𝛺 be a subset of 𝑄 such that 𝜒 ( (𝛺 , [0 , 1])) ≥ 𝜒(𝛺). By Proposition 2.4(iv) we deduce

𝜒 ( (𝛺 , [0 , 1])) ≤ 𝜒(𝑆(⋅)𝑔(𝛺)) + 𝜒
({

∫

⋅

0
𝑆(⋅ − 𝑠)𝑓 (𝑠 , 𝑦(𝑠)) 𝑑𝑠 ∶ 𝑦 ∈ 𝛺

})

.

By (H4) and (v) of Proposition 2.4

𝜒(𝑆(⋅)𝑔(𝛺)) ≤ 𝑘𝑔𝜒(𝛺). (3.12)

As to the second summand we claim that

𝜒
({

∫

⋅

0
𝑆(⋅ − 𝑠)𝑓 (𝑠 , 𝑦(𝑠)) 𝑑𝑠 ∶ 𝑦 ∈ 𝛺

})

≤ ‖𝐿𝑅‖1𝜒(𝛺). (3.13)

In fact, let {𝑞1,… , 𝑞𝑚} be a 𝜀-net for 𝛺. Let us consider the functions 𝑦𝑘 in ([0 , 𝑇 ] , 𝑋) defined by

𝑦𝑘(𝑡) = ∫

𝑡

0
𝑆(𝑡 − 𝑠)𝑓 (𝑠 , 𝑞𝑘(𝑠)) 𝑑𝑠, 𝑡 ∈ [0 , 𝑇 ], 𝑘 = 1,… , 𝑚.

By (𝑓 ′
2) we easily deduce that {𝑦1,… , 𝑦𝑚} is a

(

‖𝐿𝑅‖1𝜀
)

-net for the set
{

∫

⋅

0
𝑆(⋅ − 𝑠)𝑓 (𝑠 , 𝑦(𝑠)) 𝑑𝑠 ∶ 𝑦 ∈ 𝛺

}

,

proving the claim.
Summing (3.12) and (3.13) we obtain

𝜒(𝛺) ≤ 𝜒 ( (𝛺 , [0 , 1])) ≤ (𝑘𝑔 + ‖𝐿𝑅‖1)𝜒(𝛺).
8

By (H5) this is possible only if 𝜒(𝛺) = 0, therefore we conclude that 𝛺 is relatively compact and  is 𝜒-condensing. □
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4. Existence results for compact semigroups

As in the previous section, let 𝑋 be a Banach space with 𝑋∗ uniformly convex. We remark that 𝑋∗, and hence 𝑋 is a reflexive
pace. In this section we will discuss the nonlocal Cauchy problem (1.3)–(3.1) with the additional assumption that 𝐴 generates a
ompact semigroup.

Throughout this section we will consider (𝐴), (𝑓 ) and the following assumptions on 𝑔:

(𝑔′) 𝑔 ∶ ([0 , 𝑇 ] , 𝑋) ⊸ 𝑋 is a multivalued function satisfying the conditions (𝑔1), (𝑔2) and

(𝑔′3) for every {𝑥𝑛}𝑛 ⊂ ([0 , 𝑇 ] , 𝑅𝐵̄) such that 𝑥𝑛 → 𝑥 ∈ ([0 , 𝑇 ] , 𝑅𝐵̄) pointwise in (0 , 𝑇 ] and for every 𝜇𝑛 ∈ 𝑔(𝑥𝑛), there exists
a subsequence {𝜇𝑛𝑘}𝑘, 𝜇𝑛𝑘 → 𝜇 ∈ 𝑔(𝑥); the value 𝑅 appears in (𝑔2).

As in [3, Theorem 3.1] we will consider the family of homotopies 𝑚 ∶ 𝑄× [0 , 1] ⊸ ([0 , 𝑇 ] , 𝑋), for every integer 𝑚 greater than
1∕𝑇 , defined by

𝑚(𝑞 , 𝜆)(𝑡) =
⎧

⎪

⎨

⎪

⎩

𝑆
(

1
𝑚

)

[𝑥0 + 𝜆𝑔(𝑞)] if 𝑡 ∈
[

0 , 1
𝑚

]

𝑆(𝑡)[𝑥0 + 𝜆𝑔(𝑞)] + 𝜆 ∫
𝑡
1
𝑚
𝑆(𝑡 − 𝑠)𝑓 (𝑠 , 𝑞(𝑠))𝑑𝑠 if 𝑡 ∈

(

1
𝑚 , 𝑇

]

where 𝑄 = ([0 , 𝑇 ] , 𝑅𝐵̄). Then we will obtain the solution to (1.3)–(3.1) by passing to the limit in a sequence {𝑥𝑚}𝑚 of fixed points
of 𝑚(⋅ , 1).

The following proposition is a fixed point result for 𝑚(⋅ , 1).

Proposition 4.1. Let conditions (𝐴), (𝑓 ), (𝑔′) and (3.2) hold. Suppose in addition that 𝐴 generates a compact semigroup. Then there
exists 𝑥𝑚 ∈ 𝑚(𝑥𝑚 , 1).

Proof. We aim to prove that all the homotopies 𝑚 satisfy conditions (1)–(5) of Theorem 2.7.
Fix 𝑚 ∈ N. The proof of condition (5) is as in Theorem 3.2.

(1) By (𝑔1), for every 𝑞 ∈ ([0 , 𝑇 ] , 𝑋), 𝑔(𝑞) is convex. Since 𝑆(𝑡) is linear, 𝑚(𝑞 , 𝜆) is convex for every 𝑞 ∈ ([0 , 𝑇 ] , 𝑋) and 𝜆 ∈ [0 , 1].
(2) We have to prove that the graph of 𝑚 is closed. Consider, for 𝑛 ∈ N, 𝑦𝑛 ∈ 𝑚(𝑞𝑛 , 𝜆𝑛), 𝑞𝑛 ∈ 𝑄 and 𝜆𝑛 ∈ [0 , 1], such that 𝑦𝑛 → 𝑦̄
and 𝑞𝑛 → 𝑞 in ([0 , 𝑇 ] , 𝑋) and 𝜆𝑛 → 𝜆̄. We have to show that 𝑦̄ ∈ 𝑚(𝑞 , 𝜆̄).

Since 𝑦𝑛 ∈ 𝑚(𝑞𝑛 , 𝜆𝑛), there exists 𝜇𝑛 ∈ 𝑔(𝑞𝑛) such that

𝑦𝑛(𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑆
(

1
𝑚

)

[𝑥0 + 𝜆𝑛𝜇𝑛] if 𝑡 ∈
[

0 , 1
𝑚

]

𝑆(𝑡)[𝑥0 + 𝜆𝑛𝜇𝑛] + 𝜆𝑛 ∫
𝑡
1
𝑚
𝑆(𝑡 − 𝑠)𝑓 (𝑠 , 𝑞𝑛(𝑠))𝑑𝑠 if 𝑡 ∈

(

1
𝑚 , 𝑇

]

.
(4.1)

ince 𝜇𝑛 ∈ 𝑔(𝑞𝑛) and 𝑞𝑛 → 𝑞 in ([0 , 𝑇 ] , 𝑋), by (𝑔′3) there exists a subsequence 𝜇𝑛𝑘 → 𝜇̄ ∈ 𝑔(𝑞). Therefore

𝑆(𝑡)[𝑥0 + 𝜆𝑛𝑘𝜇𝑛𝑘 ] → 𝑆(𝑡)[𝑥0 + 𝜆̄𝜇̄] for every 𝑡 ∈ (0 , 𝑇 ],

n particular

𝑆
( 1
𝑚

)

[𝑥0 + 𝜆𝑛𝑘𝜇𝑛𝑘 ] → 𝑆
( 1
𝑚

)

[𝑥0 + 𝜆̄𝜇̄].

As to the integral term, by (𝑓2) and the continuity of 𝑆(𝑡 − 𝑠)

lim
𝑛→∞

𝑆(𝑡 − 𝑠)𝑓 (𝑠 , 𝑞𝑛(𝑠)) = 𝑆(𝑡 − 𝑠)𝑓 (𝑠 , 𝑞(𝑠)) for a.e. 𝑠 ∈ [1∕𝑚 , 𝑡],

for every 𝑡 ∈ [1∕𝑚 , 𝑇 ]. Moreover, by (𝑓3),

‖𝑆(𝑡 − 𝑠)𝑓 (𝑠, 𝑞𝑛(𝑠))‖ ≤ 𝓁𝑅(𝑠) for a.e. 𝑠 ∈ [1∕𝑚 , 𝑡].

Therefore, by the dominated convergence theorem,

lim
𝑛→∞∫

𝑡

1
𝑚

𝑆(𝑡 − 𝑠)𝑓 (𝑠 , 𝑞𝑛(𝑠))𝑑𝑠 = ∫

𝑡

1
𝑚

𝑆(𝑡 − 𝑠)𝑓 (𝑠 , 𝑞(𝑠))𝑑𝑠

for every 𝑡 ∈ [1∕𝑚 , 𝑇 ]. Summing up the previous results we have

𝑦𝑛𝑘 (𝑡) → 𝑧(𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑆
(

1
𝑚

)

[𝑥0 + 𝜆̄𝜇̄] if 𝑡 ∈
[

0 , 1
𝑚

]

𝑆(𝑡)[𝑥0 + 𝜆̄𝜇̄] + 𝜆̄ ∫
𝑡
1
𝑚
𝑆(𝑡 − 𝑠)𝑓 (𝑠 , 𝑞(𝑠))𝑑𝑠 if 𝑡 ∈

(

1
𝑚 , 𝑇

]

for every 𝑡 ∈ [0 , 𝑇 ]. Since 𝑦𝑛 → 𝑦̄ in ([0 , 𝑇 ] , 𝑋), we have 𝑦̄(𝑡) = 𝑧(𝑡) for every 𝑡 ∈ [0 , 𝑇 ], that is 𝑦̄ ∈ 𝑚(𝜆̄ , 𝑞).
(3) We shall prove that 𝑚(𝑄 × [0 , 1]) is relatively compact in ([0 , 𝑇 ] , 𝑋). Let {𝑦𝑛}𝑛 be a sequence in 𝑚(𝑄 × [0 , 1]), that is there
exist {𝑞𝑛}𝑛 ⊂ 𝑄, {𝜆𝑛}𝑛 ⊂ [0 , 1] and {𝜇𝑛}𝑛, 𝜇𝑛 ∈ 𝑔(𝑞𝑛) such that (4.1) holds. 𝑆

(

1
𝑚

)

is compact and, by (𝑔2), 𝑥0 + 𝜆𝑛𝜇𝑛 ⊂ 𝑅𝐵̄. Therefore

𝑆
(

1
)

[𝑥 + 𝜆 𝜇 ]
}

is relatively compact in 𝑋.
9

𝑚 0 𝑛 𝑛 𝑛
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By the same argument, for every 𝑡 ∈
(

1
𝑚 , 𝑇

]

,
{

𝑆 (𝑡) [𝑥0 + 𝜆𝑛𝜇𝑛]
}

𝑛 is relatively compact.

For a fixed 𝑡 ∈
(

1
𝑚 , 𝑇

]

, let 𝑤𝑛 ∈ 𝐿1(
[

1
𝑚 , 𝑡

]

, 𝑋) be defined by

𝑤𝑛(𝑠) = 𝜆𝑛𝑆(𝑡 − 𝑠)𝑓 (𝑠, 𝑞𝑛(𝑠)) for a.e. 𝑠 ∈ [1∕𝑚 , 𝑡].

By (𝑓3) the sequence {𝑤𝑛}𝑛 is uniformly integrable. Since 𝑋 is reflexive, {𝑤𝑛}𝑛 is relatively weakly compact in 𝐿1(
[

1
𝑚 , 𝑡

]

, 𝑋) (see [27,

p. 101]); therefore there exists a subsequence, still denoted by {𝑤𝑛}𝑛, such that
{

∫ 𝑡1∕𝑚𝑤𝑛(𝑠) 𝑑𝑠
}

𝑛
converges in 𝑋.

Summing up the previous results, we have that {𝑦𝑛(𝑡)}𝑛 is relatively compact in 𝑋.
In order to apply Ascoli–Arzelà theorem, it remain to prove that {𝑦𝑛}𝑛 is equicontinuous.
In [0 , 1∕𝑚] the maps 𝑦𝑛 are constant.
For every 𝑡1, 𝑡2 ∈ [1∕𝑚 , 𝑇 ], 𝑡1 < 𝑡2, by (𝑔2) we have

‖𝑆(𝑡2)[𝑥0 + 𝜆𝑛𝜇𝑛] − 𝑆(𝑡1)[𝑥0 + 𝜆𝑛𝜇𝑛]‖ ≤ 𝑅‖𝑆(𝑡2) − 𝑆(𝑡1)‖.

The semigroup {𝑆(𝑡)}𝑡≥0 is compact, hence 𝑆(⋅) is uniformly continuous in [1∕𝑚 , 𝑇 ] (see [16, Theorem 3.2]) and then {𝑆(⋅)[𝑥0 +
𝜆𝑛𝜇𝑛]}𝑛 is equicontinuous in [1∕𝑚 , 𝑇 ].

Let us define the sequence {𝑧𝑛}𝑛 in ([1∕𝑚 , 𝑇 ] , 𝑋),

𝑧𝑛(𝑡) = ∫

𝑡

1
𝑚

𝑤𝑛(𝑠)𝑑𝑠 for every 𝑡 ∈ [1∕𝑚 , 𝑇 ].

Consider 𝑡1, 𝑡2 ∈ [1∕𝑚 , 𝑇 ], 𝑡1 < 𝑡2. Since 𝜆𝑛 ∈ [0 , 1]

‖𝑧𝑛(𝑡1) − 𝑧𝑛(𝑡2)‖ ≤
‖

‖

‖

‖

‖

‖

∫

𝑡1

1
𝑚

[𝑆(𝑡2 − 𝑠) − 𝑆(𝑡1 − 𝑠)]𝑓 (𝑠 , 𝑞𝑛(𝑠))𝑑𝑠
‖

‖

‖

‖

‖

‖

+
‖

‖

‖

‖

‖

∫

𝑡2

𝑡1
𝑆(𝑡2 − 𝑠)𝑓 (𝑠 , 𝑞𝑛(𝑠))𝑑𝑠

‖

‖

‖

‖

‖

≤∫

𝑡1

1
𝑚

‖

‖

𝑆(𝑡2 − 𝑠) − 𝑆(𝑡1 − 𝑠)‖‖𝓁𝑅(𝑠)𝑑𝑠 + ∫

𝑡2

𝑡1
𝓁𝑅(𝑠)𝑑𝑠.

or a fixed 𝜀 > 0, let 𝜎 > 0 be such that, for every measurable set 𝐸 ⊂ [0 , 𝑇 ]

|𝐸| ≤ 𝜎 ⇒ ∫𝐸
𝓁𝑅(𝑠)𝑑𝑠 <

𝜀
4
.

Moreover, by the uniform continuity of 𝑆(⋅) in [𝜎 , 𝑇 ], there exists 𝛿, 0 < 𝛿 < 𝜎, such that for every 𝜏1, 𝜏2 ∈ [𝜎 , 𝑇 ]

|𝜏2 − 𝜏1| ≤ 𝛿 ⇒ ‖𝑆(𝜏1) − 𝑆(𝜏2)‖ <
𝜀

4‖𝓁𝑅‖1
.

Notice that, if 𝑡1, 𝑡2 ∈ [1∕𝑚 + 𝜎 , 𝑇 ], 0 < 𝑡2 − 𝑡1 < 𝛿, 𝑠 ∈ [1∕𝑚 , 𝑡1 − 𝜎], setting 𝜏1 = 𝑡1 − 𝑠 and 𝜏2 = 𝑡2 − 𝑠 we have 𝜏1, 𝜏2 ∈ [𝜎 , 𝑇 ] and
0 < 𝜏2 − 𝜏1 < 𝛿.

We will show that for any 𝑡1, 𝑡2 ∈ [1∕𝑚 , 𝑇 ]

0 < 𝑡2 − 𝑡1 < 𝛿 ⇒ ‖𝑧𝑛(𝑡1) − 𝑧𝑛(𝑡2)‖ < 𝜀, for every 𝑛.

Indeed, consider 𝑡1, 𝑡2 ∈ [1∕𝑚 , 𝑇 ], 0 < 𝑡2 − 𝑡1 < 𝛿.
If 𝑡1 ∈ [1∕𝑚 , 1∕𝑚 + 𝜎], we have 𝑡1 − 1∕𝑚 < 𝜎 and

‖𝑧𝑛(𝑡1) − 𝑧𝑛(𝑡2)‖ ≤ ∫

𝑡1

1
𝑚

‖

‖

𝑆(𝑡2 − 𝑠) − 𝑆(𝑡1 − 𝑠)‖‖𝓁𝑅(𝑠)𝑑𝑠 + ∫

𝑡2

𝑡1
𝓁𝑅(𝑠)𝑑𝑠

≤ 2∫

𝑡1

1
𝑚

𝓁𝑅(𝑠)𝑑𝑠 + ∫

𝑡2

𝑡1
𝓁𝑅(𝑠)𝑑𝑠 < 2 𝜀

4
+ 𝜀

4
< 𝜀.

On the other hand, if 𝑡1 ∈ (1∕𝑚 + 𝜎 , 𝑇 ] we have

‖𝑧𝑛(𝑡1) − 𝑧𝑛(𝑡2)‖ ≤ ∫

𝑡1−𝜎

1
𝑚

‖

‖

𝑆(𝑡2 − 𝑠) − 𝑆(𝑡1 − 𝑠)‖‖𝓁𝑅(𝑠)𝑑𝑠 + 2∫

𝑡1

𝑡1−𝜎
𝓁𝑅(𝑠)𝑑𝑠

+ ∫

𝑡2

𝑡1
𝓁𝑅(𝑠)𝑑𝑠 <

𝜀
4‖𝓁𝑅‖1 ∫

𝑡1

1
𝑚

𝓁𝑅(𝑠)𝑑𝑠 + 2 𝜀
4
+ 𝜀

4
≤ 𝜀.

herefore {𝑧𝑛}𝑛 and {𝑦𝑛}𝑛 are equicontinuous.
Finally, by Ascoli–Arzelà theorem {𝑦𝑛}𝑛 is relatively compact in ([0 , 𝑇 ] , 𝑋).

4) Let 𝑞0 ∈ 𝑄 and 𝜆0 ∈ [0 , 1) be such that 𝑞0 ∈ 𝑚(𝑞0 , 𝜆0). We have to prove that ‖𝑞0(𝑡)‖ < 𝑅 for every 𝑡 ∈ [0 , 𝑇 ]. For 𝑡 ∈ [0 , 1∕𝑚],
here exists 𝜇0 ∈ 𝑔(𝑞0) such that 𝑞0(𝑡) = 𝑆

(

1
𝑚

)

[𝑥0 + 𝜆0𝜇0]. Since 𝑆
(

1
𝑚

)

is a contraction, by (𝑔2) we can conclude, as in (3.10), that
‖𝑞0(𝑡)‖ < 𝑅, for every 𝑡 ∈ [0 , 1∕𝑚].

For 𝑡 ∈ (1∕𝑚 , 𝑇 ], the same reasoning as in step (4) of the proof of Theorem 3.2 leads to ‖𝑞0(𝑡)‖ < 𝑅, for every 𝑡 ∈ (1∕𝑚 , 𝑇 ].
We have proved that  satisfies all the assumptions of Theorem 2.7, therefore the proof is complete. □
10
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Now we can prove our existence result for compact semigroups.

heorem 4.2. Let conditions (𝐴), (𝑓 ), (𝑔′) and (3.2) hold. Suppose in addition that 𝐴 generates a compact semigroup. Then the problem
(1.3)–(3.1) has a mild solution.

Proof. By the previous proposition, there exists a sequence {𝑥𝑚}𝑚 in ([0 , 𝑇 ] , 𝑅𝐵̄) such that for every 𝑚

𝑥𝑚(𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑆
(

1
𝑚

)

[𝑥0 + 𝜇𝑚] if 𝑡 ∈
[

0 , 1
𝑚

]

𝑆(𝑡)[𝑥0 + 𝜇𝑚] + ∫ 𝑡1
𝑚
𝑆(𝑡 − 𝑠)𝑓 (𝑠 , 𝑥𝑚(𝑠))𝑑𝑠 if 𝑡 ∈

(

1
𝑚 , 𝑇

]

,
(4.2)

with 𝜇𝑚 ∈ 𝑔(𝑥𝑚); the value 𝑅 was introduced in (𝑔2).
We want to prove that a subsequence of {𝑥𝑚}𝑚 converges pointwise to a mild solution of (1.3)–(3.1). By the same reasonings as in

step (3) of the proof of Proposition 4.1 we have that {𝑥𝑚}𝑚 is relatively compact in ([𝑎 , 𝑇 ] , 𝑋), for every 𝑎 > 0. Therefore, for every
integer 𝑖 sufficiently large, we recursively define a subsequence {𝑥𝑖𝑛}𝑛 of {𝑥𝑚}𝑚 such that {𝑥𝑖𝑛}𝑛 is a subsequence of {𝑥𝑖−1𝑛 }𝑛 converging
uniformly in [1∕𝑖 , 𝑇 ]. By a standard digonalization method we obtain a subsequence {𝑥𝑚𝑘}𝑘 of {𝑥𝑚}𝑚, pointwise converging to
𝑥̄ ∈ ((0 , 𝑇 ] , 𝑋).

The space 𝑋 is reflexive and, by (𝑔2), 𝜇𝑚 ∈ −𝑥0 +𝑅𝐵̄, therefore there is a subsequence 𝜇𝑚𝑘 ⇀ 𝜇̄. Since 𝑆(𝑡) is compact, for every
𝑡 > 0, 𝑆(𝑡)𝜇𝑚𝑘 → 𝑆(𝑡)𝜇̄.

By (4.2), for every fixed 𝑡 ∈ (0 , 𝑇 ]

𝑥𝑚𝑘 (𝑡) = 𝑆(𝑡)[𝑥0 + 𝜇𝑚𝑘 ] + ∫

𝑡

1
𝑚𝑘

𝑆(𝑡 − 𝑠)𝑓 (𝑠 , 𝑥𝑚𝑘 (𝑠))𝑑𝑠

for sufficiently large 𝑘.
Therefore by (𝑓2), (𝑓3) and the dominated convergence theorem

𝑥̄(𝑡) = 𝑆(𝑡)[𝑥0 + 𝜇̄] + ∫

𝑡

0
𝑆(𝑡 − 𝑠)𝑓 (𝑠 , 𝑥̄(𝑠))𝑑𝑠 (4.3)

for every 𝑡 ∈ (0 , 𝑇 ]. Since, by (4.3), 𝑥̄ ∈ ([0 , 𝑇 ] , 𝑋) and, by (𝑔′3), 𝜇̄ ∈ 𝑔(𝑥̄), we conclude that 𝑥̄ is a mild solution of (1.3)–(3.1),
proving the theorem. □

5. Nonlocal transport equations

In this section we consider a semilinear, nonlocal transport equation of the form

⎧

⎪

⎨

⎪

⎩

𝑢𝑡(𝑡 , 𝑦) + 𝑎 ⋅ ∇𝑢(𝑡, 𝑦) = 𝛷
(

∫R𝑛 |𝑢(𝑡 , 𝜉)|
𝑝𝑑𝜉

)

𝓁 (𝑡 , 𝑢(𝑡 , 𝑦))

𝑢(0, 𝑦) = 𝑢0(𝑦) +
𝑚
∑

𝑖=1
𝛽𝑖𝑢(𝑡𝑖 , 𝑦)

(5.1)

𝑦 ∈ R𝑛, 𝑡 ∈ [0 , 𝑇 ], where 𝑎 ∈ R𝑛, 𝑡1,… , 𝑡𝑚 ∈ [0 , 𝑇 ], 𝛽1,… , 𝛽𝑚 ∈ R and 𝑢0 ∈ 𝐿𝑝(R𝑛), 1 < 𝑝 <∞.
Equation in (5.1) is a nonlinear version of the known transport equation (see e.g. [17,28]) which is still intensely studied because

of its several applications such as the transport of particles, the study of traffic flows etc. In some cases, as in the equation in (5.1),
the nonlinear term contains a nonlocal part (see e.g. [29,30]).

Consider the following assumptions on maps 𝛷 ∶ R → R and 𝓁 ∶ [0 , 𝑇 ] × R → R:

(𝛷) 𝛷 is continuous and 𝛷(R) ⊆ [0, 1];
(𝓁1) the map 𝓁(⋅ , 𝜂) ∶ [0 , 𝑇 ] → R is Lebesgue measurable for every 𝜂 ∈ R;
(𝓁2) there exists 𝐿 ∈ 𝐿1(0 , 𝑇 ) such that |𝓁(𝑡 , 𝜂1) − 𝓁(𝑡 , 𝜂2)| ≤ 𝐿(𝑡)|𝜂1 − 𝜂2| for a.e. 𝑡 ∈ [0 , 𝑇 ] and for every 𝜂1, 𝜂2 ∈ R;
(𝓁3) 𝜂 𝓁(𝑡 , 𝜂) ≤ 0, for a.e. 𝑡 ∈ [0 , 𝑇 ] and for every 𝜂 ∈ R.

Using Corollary 3.3 we will prove the following existence result for (5.1).

Theorem 5.1. Suppose that 𝛷 and ℎ satisfy the assumptions (𝛷), (𝓁1)–(𝓁3). Therefore, if
𝑚
∑

𝑖=1
|𝛽𝑖| + ‖𝐿‖1 < 1 (5.2)

the problem (5.1) admits a solution 𝑢 ∈ ([0 , 𝑇 ] , 𝐿𝑝(R𝑛)), 1 < 𝑝 <∞.

Proof. In order to apply Corollary 3.3 we will define the abstract formulation of (5.1) as a nonlocal Cauchy problem (1.3)–(3.1).
The separable Banach space 𝑋 is 𝐿𝑝(R𝑛), 1 < 𝑝 <∞.
The operator 𝐴 ∶ 𝐷(𝐴) → 𝐿𝑝(R𝑛), with 𝐷(𝐴) = 𝑊 1,𝑝(R𝑛), is the linear operator 𝐴𝑧 = −𝑎 ⋅ ∇𝑧; 𝐴 is the generator of the 𝐶0 group

of contractions

𝑆(𝑡)𝑥(𝑦) = 𝑥(𝑦 − 𝑡𝑎) (5.3)
11
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for 𝑥 ∈ 𝐿𝑝(R𝑛), 𝑦 ∈ R𝑛 and 𝑡 ∈ R ([17, Example 4.4.1 and Theorem 4.4.1]); therefore, (A) is proved, moreover this group is not
ompact.

The function 𝑓 ∶ [0 , 𝑇 ] × 𝐿𝑝(R𝑛) → 𝐿𝑝(R𝑛) is

𝑓 (𝑡, 𝑥)(𝑦) = 𝛷
(

∫R𝑛
|𝑥(𝜉)|𝑝𝑑𝜉

)

𝓁 (𝑡 , 𝑥(𝑦))

and 𝑓 is well defined. In fact, by (𝓁2), the map 𝑦 ⟼ 𝑓 (𝑡, 𝑥)(𝑦) is measurable in 𝛺 for all 𝑡 ∈ [0 , 𝑇 ] and 𝑥 ∈ 𝐿𝑝(𝛺); moreover, by
(𝛷), (𝓁2) and (𝓁3) we have that 𝓁(𝑡, 0) = 0 for a.e. 𝑡 ∈ [0 , 𝑇 ] and

∫R𝑛
|𝑓 (𝑡, 𝑥)(𝑦)|𝑝 𝑑𝑦 ≤ ∫R𝑛

|𝓁 (𝑡 , 𝑥(𝑦)) |𝑝 𝑑𝑦 ≤ 𝐿(𝑡)𝑝 ∫R𝑛
|𝑥(𝑦)|𝑝 𝑑𝑦

for every 𝑡 ∈ [0 , 𝑇 ] and 𝑥 ∈ 𝐿𝑝(R𝑛).
Concerning the nonlocal condition, 𝑥0 = 𝑢0(⋅) and 𝑔 ∶ ([0 , 𝑇 ] , 𝐿𝑝(R𝑛)) → 𝐿𝑝(R𝑛) is the single-valued function defined by

𝑔(𝑢)(𝑦) =
𝑚
∑

𝑖=1
𝛽𝑖𝑢(𝑡𝑖)(𝑦), 𝑦 ∈ R𝑛.

It remains to prove that (𝑓 ), (𝑔), (3.2), (H1) and (3.11) are satisfied.

Assumption (𝑓1). Since 𝐿𝑝(R𝑛), 1 < 𝑝 < ∞ is separable, by Petty’s Measurability Theorem it is enough to show that, for every
𝑥 ∈ 𝐿𝑝(R𝑛) and 𝑧 ∈ 𝐿𝑝′ (R𝑛), 1

𝑝 +
1
𝑝′ = 1, the map 𝑡 ↦ ⟨𝑓 (𝑡, 𝑥) , 𝑧⟩ is measurable in [0, 𝑇 ]. We have

⟨𝑓 (𝑡, 𝑥) , 𝑧⟩ = 𝛷
(

∫R𝑛
|𝑥(𝜉)|𝑝𝑑𝜉

)

∫R𝑛
𝓁 (𝑡 , 𝑥(𝑦)) 𝑧(𝑦) 𝑑𝑦.

By (𝓁1) and (𝓁2) the map (𝑡 , 𝑦) ↦ 𝓁 (𝑡 , 𝑥(𝑦)) is measurable. Hence, also the map 𝜓 ∶ [0 , 𝑇 ]×R𝑛 → R defined by 𝜓(𝑡 , 𝑦) = 𝓁(𝑡 , 𝑥(𝑦))𝑧(𝑦)
is measurable. Moreover, by (𝓁2) and (𝓁3)

|𝜓(𝑡 , 𝑦)| = |𝓁(𝑡 , 𝑥(𝑦))𝑧(𝑦)| ≤ 𝐿(𝑡)|𝑥(𝑦)||𝑧(𝑦)|, 𝑡 ∈ [0, 𝑇 ], 𝑦 ∈ R𝑛;

therefore 𝜓 is integrable in [0 , 𝑇 ] × R𝑛. Hence, by Fubini’s Theorem, the map

𝑡 ↦ ∫R𝑛
𝓁 (𝑡 , 𝑥(𝜉)) 𝑧(𝜉) 𝑑𝜉

is measurable in [0 , 𝑇 ], proving the measurability of 𝑡 ↦ ⟨𝑓 (𝑡, 𝑥) , 𝑧⟩.

Assumption (𝑓2). Let {𝑥𝑛}𝑛 ⊂ 𝐿𝑝(R𝑛) be a sequence converging to 𝑥̄ in 𝐿𝑝-norm. Therefore, for a.e. 𝑡 ∈ [0 , 𝑇 ],

|𝑓 (𝑡 , 𝑥𝑛)(𝑦) − 𝑓 (𝑡 , 𝑥̄)(𝑦)| ≤ 𝛷
(

‖𝑥𝑛‖𝑝
𝑝) |

|

|

𝓁
(

𝑡 , 𝑥𝑛(𝑦)
)

− 𝓁 (𝑡 , 𝑥̄(𝑦))||
|

+ |

|

|

𝛷
(

‖𝑥𝑛‖𝑝
𝑝) −𝛷

(

‖𝑥̄‖𝑝
𝑝)|
|

|

|𝓁 (𝑡 , 𝑥̄(𝑦))|

and, by (𝛷) and (𝓁2), we obtain that

‖𝑓 (𝑡 , 𝑥𝑛) − 𝑓 (𝑡 , 𝑥̄)‖𝑝 ≤ 𝐿(𝑡)‖𝑥𝑛 − 𝑥̄‖𝑝 +
|

|

|

𝛷
(

‖𝑥𝑛‖𝑝
𝑝) −𝛷

(

‖𝑥̄‖𝑝
𝑝)|
|

|

‖𝓁 (𝑡 , 𝑥̄(⋅)) ‖𝑝.

Since 𝛷 is continuous, ‖𝑓 (𝑡 , 𝑥𝑛) − 𝑓 (𝑡 , 𝑥̄)‖𝑝 → 0 as 𝑛→ ∞.

Assumption (𝑓3). By (𝛷), (𝓁2) and (𝓁3) we have that, for a.e. 𝑡 ∈ [0 , 𝑇 ] and for every 𝑥 ∈ 𝐿𝑝(R𝑛),

‖𝑓 (𝑡, 𝑥)‖𝑝 ≤ 𝛷
(

∫R𝑛
|𝑥(𝜉)|𝑝𝑑𝜉

)

‖𝓁 (𝑡 , 𝑥(⋅))‖𝑝 ≤ 𝐿(𝑡)‖𝑥‖𝑝.

Therefore (𝑓3) holds with 𝓁𝜌 = 𝜌𝐿.

Assumption (𝑔1). It is obviously satisfied, since 𝑔 is singlevalued.

Assumption (𝑔2). If 𝑢 ∈ ([0 , 𝑇 ] , 𝐿𝑝(R𝑛)), ‖𝑢‖ ≤ 𝑅, we have

‖𝑢0 + 𝑔(𝑢)‖𝑝 ≤ ‖𝑢0‖𝑝 + 𝑅
𝑚
∑

𝑖=1
|𝛽𝑖|.

By (5.2), ∑𝑚
𝑖=1 |𝛽𝑖| < 1, therefore, there exists 𝑅̄ such that, for every 𝑅 ≥ 𝑅̄, ‖𝑢0 + 𝑔(𝑢)‖𝑝 < 𝑅.

Assumption (𝑔3). The map 𝑔 is Lipschitz continuous, in fact,

‖𝑔(𝑢2) − 𝑔(𝑢1)‖𝑝 ≤
𝑚
∑

𝑖=1
|𝛽𝑖|‖𝑢2(𝑡𝑖) − 𝑢1(𝑡𝑖)‖𝑝 ≤

𝑚
∑

𝑖=1
|𝛽𝑖|‖𝑢2 − 𝑢1‖

for every 𝑢1, 𝑢2 ∈ ([0 , 𝑇 ] , 𝐿𝑝(R𝑛)). In particular, the graph of 𝑔 is closed.

Assumption (𝑔4). Let 𝐶 be a bounded subset of ([0 , 𝑇 ] , 𝐿𝑝(R𝑛)). For every 𝑡 ∈ [0 , 𝑇 ], we set 𝐶(𝑡) = {𝑢(𝑡) ∶ 𝑢 ∈ 𝐶}. By the definition
of 𝑔, 𝑔(𝐶) ⊆ ∑𝑚

𝑖=1 𝛽𝑖𝐶(𝑡𝑖), therefore from (iv) and (v) of Proposition 2.4 it follows that

𝜒(𝑔(𝐶)) ≤
𝑚
∑

𝜒(𝛽𝑖𝐶(𝑡𝑖)) ≤
𝑚
∑

|𝛽𝑖|𝜒(𝐶(𝑡𝑖)) ≤
𝑚
∑

|𝛽𝑖| sup 𝜒(𝐶(𝑡)).
12
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We conclude that (𝑔4) holds with 𝑘𝑔 =
∑𝑚
𝑖=1 |𝛽𝑖|.

Assumption (3.2). By (2.2) and (𝓁3), for every 𝑥 ∈ 𝐿𝑝(R𝑛) we have

⟨𝐽 (𝑥) , 𝑓 (𝑡, 𝑥)⟩ = 1
‖𝑥‖𝑝

𝑝−2
𝛷
(

∫R𝑛
|𝑥(𝜉)|𝑝𝑑𝜉

)

∫R𝑛
|𝑥(𝜉)|𝑝−2𝑥(𝜉)𝓁 (𝑡 , 𝑥(𝜉)) 𝑑𝜉 ≤ 0,

so (3.2) holds for every 𝑅 > 0.

Assumption (H1). Consider a bounded subset 𝐸 of 𝐿𝑝(R𝑛). As in Example 3.6 we can prove that 𝜒(𝑓 (𝑡 , 𝐸)) ≤ 𝐿(𝑡)𝜒(𝐸) for a.e.
𝑡 ∈ [0 , 𝑇 ]. Therefore assumption (H1) holds with 𝑘𝑓 = 𝐿.

Since (3.11) is equivalent to (5.2), all the assumptions of Corollary 3.3 are satisfied and we conclude that problem (5.1) admits
a mild solution. □

6. Nonlocal parabolic equations

We will show how our results apply to the Dirichlet problem
{

𝑢𝑡(𝑡 , 𝑦) = 𝛥𝑢(𝑡 , 𝑦) − 𝑏𝑢(𝑡 , 𝑦) + ∫𝛺 𝜂(𝑦 , 𝜉)𝑢(𝑡 , 𝜉) 𝑑𝜉 + ℎ(𝑡 , 𝑢(𝑡 , 𝑦)) in 𝛺
𝑢(𝑡 , 𝑦) = 0 in 𝜕𝛺

(6.1)

here 𝑡 ∈ [0 , 𝑇 ], 𝛺 ⊂ R𝑛 is open, bounded, with 2 boundary, 𝑏 > 0, 𝜂 ∈ 𝐿∞(𝛺 ×𝛺) and ℎ ∶ [0 , 𝑇 ] ×𝛺 → R.
We will consider an initial condition of the form

𝑢(0 , 𝑦) ∈ 𝐾(‖𝑢(𝑡∗ , ⋅)‖1)∫

𝑇

0
𝑢(𝑡 , 𝑦) 𝑑𝜈(𝑡) for a.e. 𝑦 ∈ 𝛺, (6.2)

where 𝑡∗ ∈ (0 , 𝑇 ] is fixed, 𝐾 ∶ [0 ,+∞) ⊸ R is a u.s.c. multimap and 𝜈 is a signed Borel measure in [0 , 𝑇 ] with total variation |𝜈| ≤ 1.

Remark 6.1. Notice that if 𝐾 ≡ {1} and 𝜈 is the normalized Lebesgue measure we obtain the mean value condition

𝑢(0 , 𝑦) = 1
𝑇 ∫

𝑇

0
𝑢(𝑡 , 𝑦) 𝑑𝑡 for a.e. 𝑦 ∈ 𝛺.

If 𝐾 ≡ {1} and 𝜈 is a linear combination of Dirac masses, 𝜈 = ∑𝑛̄
𝑖=1 𝛼𝑖𝛿𝑡𝑖 , |𝜈| =

∑𝑛̄
𝑖=1 |𝛼𝑖| ≤ 1, we obtain the multipoint condition

𝑢(0 , 𝑦) =
𝑛̄
∑

𝑖=1
𝛼𝑖𝑢(𝑡𝑖 , 𝑦) for a.e. 𝑦 ∈ 𝛺.

In order to rewrite problem (6.1)–(6.2) as an abstract Cauchy problem, we identify 𝑢 with function 𝑡 ↦ 𝑢(𝑡, ⋅). In the following
we denote by 𝐴 the Laplace operator with domain 𝐷(𝐴) = 𝑊 1,𝑝

0 (𝛺) ∩𝑊 2,𝑝(𝛺) for 1 ≤ 𝑝 < +∞. It is known that 𝐴 is the generator
of a compact 𝐶0-semigroup of contractions {𝑆(𝑡)}𝑡≥0 (see e.g. [17, Theorem 4.1.3]) which does not depend on 𝑝 (see [17, Lemma
7.2.1]).

In order to apply the results in Section 4, we take 𝑋 = 𝐿𝑝(𝛺), 1 < 𝑝 < +∞. Nevertheless, since 𝛺 is a bounded set, we will be
able to find solutions of problem (6.1) in ([0 , 𝑇 ] , 𝐿1(𝛺)).

We look for a mild solution 𝑢 ∈ ([0 , 𝑇 ] , 𝐿𝑝(𝛺)) of the problem (1.3)–(3.1), where

𝑓 (𝑡 , 𝑥)(𝑦) = −𝑏𝑥(𝑦) + ∫𝛺
𝜂(𝑦 , 𝜉)𝑥(𝜉) 𝑑𝜉 + ℎ(𝑡 , 𝑥(𝑦)) for a.e. 𝑦 ∈ 𝛺 and 𝑡 ∈ [0 , 𝑇 ]

and

𝑔(𝑢) = 𝐾(‖𝑢(𝑡∗)‖1)∫

𝑇

0
𝑢(𝑡) 𝑑𝜈(𝑡)

for every 𝑢 ∈ ([0 , 𝑇 ] , 𝐿𝑝(𝛺)) (the last integral is a Bochner integral).

Remark 6.2. We remark that the multifunction 𝑔 ∶ ([0 , 𝑇 ] , 𝐿𝑝(𝛺)) ⊸ 𝐿𝑝(𝛺) is well-defined, since 𝛺 is bounded. Moreover,
in general 𝑔 does not admit a continuous selection, so our initial condition is really multivalued. To show this let the multimap
𝐾 ∶ [0 ,+∞) ⊸ R be defined by

𝐾(𝑠) =

⎧

⎪

⎨

⎪

⎩

{0} if 0 ≤ 𝑠 < 𝑟̄
[0 , 1] if 𝑠 = 𝑟̄
{1} if 𝑟̄ < 𝑠

for a fixed 𝑟̄ > 0 and let the measure 𝜈 be the normalized Lebesgue measure. It is easy to see that for every selection 𝜎 of 𝑔, if
𝑢̄ ∈ ([0 , 𝑇 ] , 𝐿𝑝(𝛺)) is such that ‖𝑢̄(𝑡∗)‖1 = 𝑟̄ and ∫ 𝑇0 𝑢̄(𝑡) 𝑑𝑡 ≠ 0, then 𝜎 is discontinuous in 𝑢̄. In fact

(

1 ± 1) 𝑢̄ → 𝑢̄ as 𝑛→ ∞,
13

𝑛
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𝑅

in ([0 , 𝑇 ] , 𝐿𝑝(𝛺)) but, 𝜎
((

1 − 1
𝑛

)

𝑢̄
)

= 0 for every 𝑛 ∈ N and

𝜎
((

1 + 1
𝑛

)

𝑢̄
)

= 1
𝑇 ∫

𝑇

0

(

1 + 1
𝑛

)

𝑢̄(𝑡)𝑑𝑡→ 1
𝑇 ∫

𝑇

0
𝑢̄(𝑡) 𝑑𝑡 ≠ 0 as 𝑛→ ∞.

Theorem 6.3. Consider the problem (6.1)–(6.2). Suppose that the multimap 𝐾 and the maps ℎ and 𝜂 satisfy the following assumptions

(K1) 𝐾(𝑠) is closed and convex, for every 𝑠 ∈ [0 ,+∞);
(K2) 𝐾(𝑠) ⊆ [−1 , 1], for every 𝑠 ∈ [0 ,+∞)
(K3) 𝐾 ∶ [0 ,+∞) ⊸ R is u.s.c.;
(h1) the function ℎ(⋅ , 𝜂) ∶ [0 , 𝑇 ] → R is measurable with respect to the Lebesgue measure on [0 , 𝑇 ] for every 𝜂 ∈ R;
(h2) the function ℎ(𝑡 , ⋅) ∶ R → R is continuous for almost every 𝑡 ∈ [0 , 𝑇 ];
(h3) there exist two constants 𝐿 > 0 and 𝑐 ≥ 0 such that |ℎ(𝑡 , 𝜁 )| ≤ 𝐿|𝜁 | + 𝑐 for almost every 𝑡 ∈ [0 , 𝑇 ] and for every 𝜁 ∈ R;
(𝜂1) 𝜂 ∈ 𝐿∞(𝛺 ×𝛺), 0 ≤ 𝜂(⋅ , ⋅) ≤ 1 a.e. in 𝛺 ×𝛺.

Then, if

𝑏 > 𝐿 + |𝛺| (6.3)

the problem (6.1)–(6.2) admits a solution 𝑢 ∈ ([0 , 𝑇 ] , 𝐿1(𝛺)).

Proof. We will prove that, in this framework, problem (1.3)–(3.1) satisfies all the assumptions of Theorem 4.2 for all 1 < 𝑝 <∞.
We have already remarked that 𝐴 is the generator of a compact 𝐶0 semigroup of contractions on 𝐿𝑝(𝛺).
For every 𝑥 ∈ 𝐿𝑝(𝛺) and for a.e. 𝑡 ∈ [0 , 𝑇 ], 𝑓 (𝑡 , 𝑥) ∈ 𝐿𝑝(𝛺). In fact, by (ℎ2) and (𝜂1), the map 𝑦⟼ 𝑓 (𝑡, 𝑥)(𝑦) is measurable in 𝛺

for all 𝑡 ∈ [0 , 𝑇 ] and 𝑥 ∈ 𝐿𝑝(𝛺). Moreover, by (ℎ3),

|𝑓 (𝑡 , 𝑥)|(𝑦) ≤ (𝑏 + 𝐿)|𝑥(𝑦)| + 𝑐 + ‖𝑥‖1 ∈ 𝐿𝑝(𝛺). (6.4)

Assumption (𝑓1). Reasoning as in the same step in Section 5, we can prove that the map

𝑡 ↦ ⟨𝑓 (𝑡, 𝑥) , 𝑧⟩ = ∫𝛺

[

−𝑏𝑥(𝑦) + ∫𝛺
𝜂(𝑦 , 𝜉)𝑥(𝜉) 𝑑𝜉 + ℎ(𝑡 , 𝑥(𝑦))

]

𝑧(𝑦) 𝑑𝑦

is measurable in [0 , 𝑇 ] for every 𝑥 ∈ 𝐿𝑝(𝛺) and 𝑧 ∈ 𝐿𝑝′ (𝛺), 1
𝑝 +

1
𝑝′ = 1; hence (𝑓1) is satisfied.

Assumption (𝑓2). We have to prove that, given a sequence {𝑥𝑛}𝑛 ⊂ 𝐿𝑝(𝛺) convergent to 𝑥̄, 𝑓 (𝑡 , 𝑥𝑛) → 𝑓 (𝑡 , 𝑥̄) as 𝑛 → ∞, for a.e.
𝑡 ∈ [0 , 𝑇 ]. By the definition of 𝑓 and Hölder inequality

‖

‖

𝑓 (𝑡 , 𝑥𝑛) − 𝑓 (𝑡 , 𝑥̄)‖‖𝑝 ≤ 𝑏‖𝑥𝑛 − 𝑥̄‖𝑝 +
‖

‖

‖

‖

∫𝛺
𝜂(⋅ , 𝜉)(𝑥𝑛(𝜉) − 𝑥̄(𝜉)) 𝑑𝜉

‖

‖

‖

‖𝑝

+ ‖ℎ(𝑡 , 𝑥𝑛(⋅)) − ℎ(𝑡 , 𝑥̄(⋅))‖𝑝 ≤ (𝑏 + |𝛺|)‖𝑥𝑛 − 𝑥̄‖𝑝 + ‖ℎ(𝑡 , 𝑥𝑛(⋅)) − ℎ(𝑡 , 𝑥̄(⋅))‖𝑝.

Obviously ‖𝑥𝑛−𝑥̄‖𝑝 → 0. As to the second summand in the r.h.s. every subsequence of {𝑥𝑛}𝑛 admits a subsequence {𝑥𝑛𝑘}𝑘 converging
a.e. to 𝑥̄ in 𝛺 and the convergence is dominated by 𝜆 ∈ 𝐿𝑝(𝛺) ([31, Theorem 4.9]). Since, for a.e. 𝑡 ∈ [0 , 𝑇 ], ℎ(𝑡 , ⋅) is continuous,
ℎ(𝑡 , 𝑥𝑛𝑘 ) → ℎ(𝑡 , 𝑥̄) a.e. in 𝛺. Moreover, by (ℎ3)

|ℎ(𝑡 , 𝑥𝑛𝑘 (𝑦))| ≤ 2𝑝−1
(

𝐿𝑝|𝑥𝑛𝑘 (𝑦)|
𝑝 + 𝑐𝑝

)

≤ 2𝑝−1 (𝐿𝑝𝜆(𝑦)𝑝 + 𝑐𝑝) for a.e. 𝑦 ∈ 𝛺.

Therefore ℎ(𝑡 , 𝑥𝑛𝑘 ) → ℎ(𝑡 , 𝑥̄) in 𝐿𝑝(𝛺) By the arbitrariness of the subsequence of {𝑥𝑛}𝑛, ℎ(𝑡 , 𝑥𝑛) → ℎ(𝑡 , 𝑥̄) in 𝐿𝑝(𝛺) for a.e. 𝑡 ∈ [0 , 𝑇 ].

Assumption (𝑓3). By (6.4)

‖𝑓 (𝑡 , 𝑥)‖𝑝 ≤ (𝑏 + 𝐿)‖𝑥‖𝑝 + (𝑐 + ‖𝑥‖1)|𝛺|

1∕𝑝 ≤ (𝑏 + 𝐿 + |𝛺|)‖𝑥‖𝑝 + 𝑐|𝛺|

1∕𝑝

herefore (𝑓3) is true for 𝓁𝜌(𝑡) = (𝑏 + 𝐿 + |𝛺|)𝜌 + 𝑐|𝛺|

1∕𝑝 for every 𝑡 ∈ [0 , 𝑇 ].

ssumption (𝑔1). Since 𝐾 is convex valued, also 𝑔(𝑢) is convex, for every 𝑢 ∈ ([0 , 𝑇 ] , 𝐿𝑝(𝛺)).

Assumption (𝑔2). In this case 𝑥0 = 0. Given 𝑅 > 0, let us consider 𝑢 ∈ ([0 , 𝑇 ] , 𝐿𝑝(𝛺)) with ‖𝑢(𝑡)‖𝑝 ≤ 𝑅 for every 𝑡 ∈ [0 , 𝑇 ]. By (𝐾2),
or every 𝜆 ∈ 𝐾(‖𝑢(𝑡∗)‖1) we have that

‖

‖

‖

‖

‖

𝜆∫

𝑇

0
𝑢(𝑡) 𝑑𝜈(𝑡)

‖

‖

‖

‖

‖𝑝
≤ ∫

𝑇

0
‖𝑢(𝑡)‖𝑝 𝑑𝜈(𝑡) ≤ 𝑅

nd (𝑔2) is proved.

ssumption (𝑔′3). For every 𝑅 > 0, consider a sequence {𝑢𝑛}𝑛 ⊂ ([0 , 𝑇 ] , 𝐿𝑝(𝛺)) and 𝑢̄ ∈ ([0 , 𝑇 ] , 𝐿𝑝(𝛺)) such that max0≤𝑡≤𝑇 ‖𝑢𝑛(𝑡)‖𝑝 ≤
for every 𝑛 ∈ N and

lim ‖𝑢 (𝑡) − 𝑢̄(𝑡)‖ = 0
14

𝑛→∞ 𝑛 𝑝
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for every 𝑡 ∈ (0 , 𝑇 ]. We have to prove that, for every sequence {𝑥𝑛}𝑛, 𝑥𝑛 ∈ 𝑔(𝑢𝑛) for every 𝑛 ∈ N, there exists a subsequence {𝑥𝑛𝑘}𝑘
uch that 𝑥𝑛𝑘 → 𝑥̄ ∈ 𝑔(𝑢̄) as 𝑘 → ∞. By the definition of 𝑔, for every 𝑛 ∈ N there exists 𝜆𝑛 ∈ 𝐾(‖𝑢𝑛(𝑡∗)‖1) such that

𝑥𝑛 = 𝜆𝑛 ∫

𝑇

0
𝑢𝑛(𝑡) 𝑑𝜈(𝑡).

ince 𝛺 ⊂ R𝑛 is bounded, 𝑢𝑛(𝑡∗) → 𝑢̄(𝑡∗) in 𝐿𝑝(𝛺), 1 ≤ 𝑝 < ∞; in particular ‖𝑢𝑛(𝑡∗)‖𝑝 → ‖𝑢̄(𝑡∗)‖𝑝, 1 ≤ 𝑝 < ∞ as 𝑛 → ∞, so, by (𝐾3),
here exists a convergent subsequence {𝜆𝑛𝑘} such that 𝜆𝑛𝑘 → 𝜆̄ ∈ 𝐾(‖𝑢̄(𝑡∗)‖1). Setting

𝑥̄ = 𝜆̄∫

𝑇

0
𝑢̄(𝑡) 𝑑𝜈(𝑡) ∈ 𝑔(𝑢̄)

e have

‖𝑥𝑛𝑘 − 𝑥̄‖𝑝 =
‖

‖

‖

‖

‖

∫

𝑇

0
𝜆𝑛𝑘𝑢𝑛𝑘 (𝑡) − 𝜆̄𝑢̄(𝑡) 𝑑𝜈(𝑡)

‖

‖

‖

‖

‖𝑝
≤ ∫

𝑇

0
‖𝜆𝑛𝑘𝑢𝑛𝑘 (𝑡) − 𝜆̄𝑢̄(𝑡)‖𝑝 𝑑𝜈(𝑡)

≤ ∫

𝑇

0
|𝜆𝑛𝑘 |‖𝑢𝑛𝑘 (𝑡) − 𝑢̄(𝑡)‖𝑝 + |𝜆𝑛𝑘 − 𝜆̄|‖𝑢̄(𝑡)‖𝑝 𝑑𝜈(𝑡)

≤ ∫

𝑇

0
‖𝑢𝑛𝑘 (𝑡) − 𝑢̄(𝑡)‖𝑝 + 𝑅|𝜆𝑛𝑘 − 𝜆̄| 𝑑𝜈(𝑡)

nd ‖𝑢𝑛𝑘 (𝑡) − 𝑢̄(𝑡)‖𝑝 + 𝑅|𝜆𝑛𝑘 − 𝜆̄| ≤ 4𝑅 for every 𝑡 ∈ [0 , 𝑇 ]. Therefore (𝑔′3) follows by Dominated Convergence Theorem.
Finally, it remain to prove the transversality condition (3.2). The duality mapping in 𝐿𝑝(𝛺) is defined in (2.2), therefore, by (ℎ3),

or every 𝑥 ∈ 𝐿𝑝(𝛺)

⟨𝐽 (𝑥) , 𝑓 (𝑡, 𝑥)⟩ = 1
‖𝑥‖𝑝

𝑝−2 ∫𝛺
|𝑥(𝑦)|𝑝−2𝑥(𝑦)𝑓 (𝑡 , 𝑥)(𝑦) 𝑑𝑦

= −𝑏‖𝑥‖𝑝
2 + 1

‖𝑥‖𝑝
𝑝−2 ∫𝛺

|𝑥(𝑦)|𝑝−2𝑥(𝑦)
[

∫𝛺
𝜂(𝑦 , 𝜉)𝑥(𝜉) 𝑑𝜉 + ℎ(𝑡 , 𝑥(𝑦))

]

𝑑𝑦

≤ −𝑏‖𝑥‖𝑝
2 +

‖𝑥‖1
‖𝑥‖𝑝

𝑝−2 ∫𝛺
|𝑥(𝑦)|𝑝−1 𝑑𝑦 + 1

‖𝑥‖𝑝
𝑝−2 ∫𝛺

𝐿|𝑥(𝑦)|𝑝 + 𝑐|𝑥(𝑦)|𝑝−1 𝑑𝑦.

ow, by Hölder inequality,

∫𝛺
|𝑥(𝑦)|𝑝−1 𝑑𝑦 ≤ |𝛺|

1∕𝑝(‖𝑥‖𝑝)𝑝−1 and ‖𝑥‖1 ≤ |𝛺|

1−1∕𝑝
‖𝑥‖𝑝,

herefore

⟨𝐽 (𝑥) , 𝑓 (𝑡, 𝑥)⟩ ≤ (−𝑏 + 𝐿 + |𝛺|)(‖𝑥‖𝑝)2 + 𝑐|𝛺|

1
𝑝
‖𝑥‖𝑝.

By (6.3), (𝑏 − 𝐿 − |𝛺|) > 0, therefore, choosing 𝑅 > 𝑐|𝛺|

1
𝑝

𝑏−𝐿−|𝛺|

, for every 𝑥 ∈ 𝐿𝑝(𝛺), ‖𝑥‖𝑝 = 𝑅,

⟨𝐽 (𝑥) , 𝑓 (𝑡, 𝑥)⟩ ≤ (−𝑏 + 𝐿 + |𝛺|)𝑅2 + 𝑐|𝛺|

1
𝑝𝑅 < 0.

y continuity, there exists 𝜀 > 0 such that, for every 𝑥, 𝑅 − 𝜀 < ‖𝑥‖𝑝 < 𝑅, ⟨𝐽 (𝑥) , 𝑓 (𝑡, 𝑥)⟩ < 0. Therefore condition (3.2) is satisfied.
We have proved that for every 𝑝 > 1 all the assumptions of Corollary 3.3 are satisfied, therefore the abstract problem admits a

ild solution 𝑢 ∈ ([0 , 𝑇 ] , 𝐿𝑝(𝛺)), where 𝐿𝑝(𝛺) ⊂ 𝐿1(𝛺). Since the semigroup generated by 𝐴 does not depend on 𝑝, we conclude
that 𝑢 is a solution also in 𝐿1(𝛺), proving the theorem. □

Our techniques also applies to more general parabolic equations, where the Laplace operator is replaced by a strongly elliptic
differential operator in divergence form (see e.g. [3]).
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