
Journal of Systems Architecture 154 (2024) 103239

A
1
n

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

GPU implementation of the Frenet Path Planner for embedded autonomous
systems: A case study in the F1tenth scenario
Filippo Muzzini a,∗, Nicola Capodieci a, Federico Ramanzin b, Paolo Burgio a

a University of Modena and Reggio Emilia - Department of Physics, Informatics and Mathematics, Via Campi 213/A, Modena, 41125, Italy
b University of Modena and Reggio Emilia - Department of Engineering ‘‘Enzo Ferrari’’, Via Pietro Vivarelli 1, Modena, 41125, Italy

A R T I C L E I N F O

Keywords:
Planning
Autonomous vehicle
Parallel
GPU
Racing

A B S T R A C T

Autonomous vehicles are increasingly utilized in safety-critical and time-sensitive settings like urban environ-
ments and competitive racing. Planning maneuvers ahead is pivotal in these scenarios, where the onboard
compute platform determines the vehicle’s future actions. This paper introduces an optimized implementation
of the Frenet Path Planner, a renowned path planning algorithm, accelerated through GPU processing. Unlike
existing methods, our approach expedites the entire algorithm, encompassing path generation and collision
avoidance. We gauge the execution time of our implementation, showcasing significant enhancements over the
CPU baseline (up to 22x of speedup). Furthermore, we assess the influence of different precision types (double,
float, half) on trajectory accuracy, probing the balance between completion speed and computational precision.
Moreover, we analyzed the impact on the execution time caused by the use of Nvidia Unified Memory and by
the interference caused by other processes running on the same system. We also evaluate our implementation
using the F1tenth simulator and in a real race scenario. The results position our implementation as a strong
candidate for the new state-of-the-art implementation for the Frenet Path Planner algorithm.
1. Introduction

Autonomous systems (ASs) are nowadays adopted in complex and
safety-critical scenarios, such as autonomous vehicles, warehouse fork-
lifts, off-road tractors, and trucks, to cite a few. The final target of a
completely autonomous vehicle is getting closer and closer, and we are
currently in the transition phase of leaving the control from the human
pilot to the onboard intelligence. In automotive cars, this is captured
and standardized by the transition between L3/L4 SAE levels [1].

As compared to the generation of ASs categorized as L1/L2, the
increased complexity and interaction with humans in the target en-
vironment require ASs to react quickly and provide timely responses
within stringent timing bounds, typically a few milliseconds. The time
constraint is important especially in the race context since the higher
velocities shorten the necessary time to plan and execute the maneu-
vers [2–4]. Failure to meet these deadlines may result in functional
failure and significant damage or loss of life.

In the context of autonomous vehicles, the key aspect for ensuring
functional and timing correctness is the capability to efficiently process
a significant amount of data within the onboard computing systems
in a timely fashion. Therefore, high-performance embedded computers
featuring highly parallel accelerators such as GPUs, FPGAs, or ASICs

∗ Corresponding author.
E-mail addresses: filippo.muzzini@unimore.it (F. Muzzini), nicola.capodieci@unimore.it (N. Capodieci), 254629@studenti.unimore.it (F. Ramanzin),

paolo.burgio@unimore.it (P. Burgio).

are key enabling technologies. These platforms are amenable to ac-
celerating the complex structures of modern Deep Neural Networks,
accomplishing the task of perceiving surrounding environment, and
reconstructing a detailed view of the world. Unfortunately, most of
the research effort is being spent in this direction, while other key
aspects, such as planning and control are less explored, especially with
reference to embedded systems. In this work, we partly bridge this
gap. After completing the perception phase, during which the vehicle
constructs a model of its surrounding environment, the vehicle must
then take a decision regarding its next action. This process is typically
split into two parts, a global and a local planner. The global part is
often called the mission, in which the long-term vehicle trajectory is
decided. Such a computation is performed sporadically, in an off-line
manner, using well-known algorithms [5] such as A*, RRT within a few
(tens of) seconds, and it is, therefore, less of our interest, as it does
not involve the challenges related to on-board computing. In racing
scenarios, this long-term trajectory is optimally calculated based on the
reconstructed map of the known racetrack. Local/online planners, on the
other hand, are what make these applications critical as unexpected
obstacles and other dangerous situations might compromise successful
navigation. Examples can be found in racing cars overtaking at high
vailable online 16 July 2024
383-7621/© 2024 The Author(s). Published by Elsevier B.V. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.sysarc.2024.103239
Received 12 April 2024; Received in revised form 26 June 2024; Accepted 12 July
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

2024

https://www.elsevier.com/locate/sysarc
https://www.elsevier.com/locate/sysarc
mailto:filippo.muzzini@unimore.it
mailto:nicola.capodieci@unimore.it
mailto:254629@studenti.unimore.it
mailto:paolo.burgio@unimore.it
https://doi.org/10.1016/j.sysarc.2024.103239
https://doi.org/10.1016/j.sysarc.2024.103239
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Journal of Systems Architecture 154 (2024) 103239F. Muzzini et al.

r
u
t
i
u
s

a
c
k
s
s
o
c
o
o
l
t
w
t
c
(
h
a
d
p
c
I
i
a
p
m
t
c
c
E
c
t
g

2

i
t
p
c
s
o
f
s
a
t
a
a
r
A
a
t
a

t
I

speed, where the control algorithm response time must be adequate
for such a maneuver.

This work is based on our preliminary experiments [6]. We will
focus on accelerating a well-known family of strategies for local plan-
ning, namely the ones based on Frenet coordinate systems, which prove
themselves to be highly effective, for instance, in accomplishing the
task of overtaking/obstacle avoidance at high speed in racing vehicles.
This algorithm is commonly used in racing competitions [7], such as
Roborace [8] or Indy Autonomous Challenge [2]. The reason for this
wide adoption has to be found on the Frenet coordinate system, as it
significantly simplifies the generation of trajectories with respect to
other planners, yet at the same time enables obstacle avoidance. Since
it generates a set of trajectories, the execution time of this approach
depends on the number of generated trajectories and typically it is per-
formed on high-performance computing platforms. Acceleration of this
algorithm will be carried out using an embedded computing platform
that features a GPU accelerator. We accelerate the algorithm through
the parallelization and optimization of its phases. In this manner, the
math behind the algorithm and its output does not change, hence re-
tains the property of its original formulation. The optimal acceleration
of path planning and obstacle avoidance is paramount due to the high
speeds (tens of km/h) at which the involved vehicles are moving. We
target a representative situation, where 1/10 scale cars are deployed
first in a simulator, and then in a real racetrack, and they shall perform
collision avoidance of static and dynamic objects at the highest possible
speed. We employ a realistic system, where computation is performed
on an embedded platform with a GPU accelerator of the NVIDIA family
(Jetson Xavier). The contribution of this paper is described as follows:

1. We propose a novel GPU implementation for the Frenet Path
Planner algorithm. To the best of our knowledge, the proposed
implementation is the most complete in terms of tasks executed
on GPU, as we present a GPU port for the entire algorithm
pipeline.

2. We test our proposed port using different precision types (double,
float, half), aiming at understanding the impact on execution
time latencies for every part of the algorithm giving more in-
sights concerning the preliminary experiments performed in [6].
Hence, testing the precision and feasibility of the generated tra-
jectories using the different data types, we see that half precision
shows the best speedup sacrificing a little in path precision.

3. We measure the impact of the proposed implementation both in
terms of execution time and precision compared to a baseline
CPU implementation.

4. We studied the impact of the use of Nvidia UM (Unified Memory)
and of the interference caused by other processes on the DRAM
system memory.

5. We deployed our implementation on a real F1tenth vehicle, and
safely tested it in the official racing simulator using a Hardware-
in-the-loop setup, to devise an accurate timing profile of the
application. Moreover, we show the benefits and limitations of
our implementation in a real-world racing scenario.

6. We made the source code of our implementation publicly avail-
able1 and, to the best of our knowledge, this represents the first
publicly available GPU-based Frenet Path Planner implementa-
tion.

The paper is structured as follows: in Section 2 we explore the
elated work on Planners, Frenet Path Planner, and we give the reader a
seful background on the GPU as accelerator. In Section 3 we describe
he Frenet Path Planner algorithm and in Section 4 we propose our new
mplementation on GPU. In Section 5 we detail the test we performed
sing our GPU implementation and we report the results in Section 6
howing the speedup over the CPU implementation and the impact of

1 https://github.com/HiPeRT/FrenetTenth
2

UM and interference caused by other concurrent processes. Moreover,
we show the impact of our implementation on the racing scenario on
both the F1tenth simulator and a real race. We draw our conclusions
in Section 7.

2. Related work

2.1. Planning

The Planning problem has been extensively studied in previous liter-
ture. Some approaches generate the path only considering the vehicle
onstraints. In [9,10], for example, a path is generated considering
inematic and dynamic constraints. The dynamic model is also con-
idered in [11], in which a spatio-temporal lattice with vehicle feasible
tates is proposed. Similarly in [12,13] the kinematics quantities are
ptimized to find the path. In the race context, a fully reactive planner
alled the Follow The Gap method (FTG) [14] is often used. It focuses
n avoiding any collision with any object by aiming at the center
f the maximum gap/‘‘hole’’ among scanned obstacles. It results in a
ess computationally intensive algorithm because it generates a single
rajectory, which depends solely on the distance between the track
alls/objects and sensor depth. However, this means that the (single)

arget trajectory that is selected might not be optimal, since FTG
annot implement more complex choices among multiple candidates
e.g., to avoid moving objects – typically opponents). Moreover, it is
ighly sensitive to noise and errors in the sensor scans, resulting in
quite ‘‘fuzzy’’ car behavior. This might cause drifts and unexpected

irection changes upon false positives/negatives sensed during the
erception phase. A more complex approach using model predictive
ontrol is proposed in [15]; this approach is also used in [16,17].
n [18] the problem is formulated as an optimization problem and it
s solved using the gradient descent method. In [19] the Euler spirals
re used to describe paths of non-holonomic vehicles. A new curvature
arametrization for this approach is presented in [20] and in [21] the
odel for generating velocity profiles is changed. Another approach is

o generate a single path and iteratively improve it [22]. Lastly, some
ontributions are based on the generation of different paths to then
hoose the best one [23,24] according to predefined metrics. The Rapid
xploring Random Tree algorithm [25] is used in [26,27]. In the first
ontribution, a closed loop system is simulated for sampling a tree of
rajectories, whereas in the latter the state space is explored along a
iven reference path.

.2. Frenet Path Planner

The contributions cited in the previous section show evident limits
n specific situations. An example of these situations is those related
o the nose-to-tail traffic [28]. Moreover, the researches cited in the
revious section also suffer from the inherent limits of dealing with
omplex formulation for curves and paths that derive when using Carte-
ian coordinates. For these reasons, more recent work has been focusing
n methods that account for time in order to improve the algorithms
or path planning but also exploiting a different coordinate system for
implifying the problem formulation. For instance, Frenet Coordinates,
lso known as Frenet Frame, can be exploited for these purposes. In [24]
he authors use Frenet Coordinates to split the generation of lateral
nd longitudinal movements. Moreover, also obstacles are considered
nd the method attempts to generate a collision-free trajectory. More
ecently in [29] the authors consider dynamic objects in Frenet Frame.
lso, our work exploits Frenet Coordinates for overcoming obstacles;
s far as performance is concerned our method will focus on an op-
imized GPU implementation in which the performance analysis will
lso account for different settings w.r.t. data type precision.

Still referring to performance, the authors in [30] do not consider
he obstacles and focus on the performance aspects of the method.
n [31] the authors parallelize on the CPU the path generation. A GPU

https://github.com/HiPeRT/FrenetTenth

Journal of Systems Architecture 154 (2024) 103239F. Muzzini et al.
implementation is used to accelerate the Path Planner in the already
cited contribution [20] and in [32]. The GPU is exploited also in the ac-
celeration of the A* algorithm [33] and in its randomized variant [34].
GPU acceleration is also exploited in the Path Planning of Unmanned
Aerial Vehicle (UAV) in [35,36]. The previously cited contributions did
not exploit Frenet Frame, whereas in [37] the authors accelerate on GPU
only the path generation on Frenet Coordinates omitting to port on GPU
other phases such as obstacle avoidance. Differently from [37], we also
ported both obstacle avoidance and the best path selection on the GPU.

2.3. Background on GPU and CUDA

GPUs were initially designed with the goal of accelerating graphic
workloads. However, the same kind of hardware can nowadays also be
exploited for general-purpose computing (GPGPU). A GPU is designed
as a SIMD processor (Single Instruction Multiple Data) able to process
large amounts of data in a massively parallel fashion. Typically, in order
to have a compute task to be executed on a GPU, it is necessary to
allocate memory on GPU visible-only memory spaces, copy the input
data from the host (CPU) to the GPU device memory, execute a kernel,
which is a program specifically coded for the GPU instruction set
architecture, to then copy back the results on the host memory. In order
to assist the programmer in exploiting the GPU capabilities, NVIDIA
released a proprietary programming model called CUDA (Compute
Unified Device Architecture). CUDA provides APIs and libraries able
to be accessed by high-level programming languages such as C++. In
CUDA and also in other GPU APIs, kernels are dispatched through a
programmer-specified launch configuration in which it is described the
degree of parallelism in which the work must be computed over a three
dimensional grid (X, Y, Z) of parallel threads [38]. A grid is therefore
composed of blocks of threads. Threads within a single block, are able
to share data and synchronize their operations. They can access a
special area of memory called Shared Memory and they can synchronize
using a special barrier (the CUDA syncthread directive). This barrier
ensures that all the threads of the same block have performed all the
instructions dispatched before such a barrier. In our path planning
problem, we exploit these features to ensure that all cost components of
a path are computed before reducing them to a single sum. Moreover,
the CUDA programming model allows the programmer to express an
added layer of parallelism through CUDA Streams. A CUDA Stream
is a queue of commands (compute kernel invocations and memory
movements) that must be executed sequentially in the order in which
they are enqueued. As a consequence of this, a single program that man-
ages more than one stream is able to submit commands concurrently,
so that they might execute in parallel [39]. In order to synchronize
the execution of commands among different Streams, a mechanism
called CUDA Events can be used. In our specific problem, we exploit
Streams to generate paths while the obstacle positions are copied to
the GPU memory for the future collision avoidance. As mentioned,
the data must be copied to GPU visible only memory before kernel
execution. This has to be done explicitly by the programmer. Moreover,
Nvidia supports an automatic mechanism to retrieve the necessary data
from the host when needed. This mechanism is called Nvidia Unified
Memory (UM). In this manner, explicit memory copies can be avoided:
when a kernel is launched the driver automatically copies the necessary
data chunks to the GPU memory. This implies that the kernel execution
time can increase since there is an overhead for memory copy but
this overhead can be masked by computation on already fetched data
chunks. This mechanism can result in a speedup or a slowdown with
respect to the use of explicit memory copies. Understanding whether
or not it is convenient to perform explicit copies or to rely on unified
memory is not trivial at all as it depends on the specific application [40–
42]. More specifically, unified memory approaches can bring benefit to
the total execution time only when the degree of compute instructions
within a kernel are spread in a way to mask the memory operations
from host memory. We therefore add this kind of analysis on our
specific case study.
3

Fig. 1. Frenet Path Planner. Reference path and possible endpoints.

3. Frenet Path Planner

3.1. Overview

The path planning phase of an autonomous driving system consists
in the generation of a path that the vehicles can safely follow. The
path might be represented as a continuous function that links the
starting point to the destination. It represents the positions that the
vehicle will occupy over time. Typically such a path is discretized and
it is represented as a list of path points. The path must be placed in
a drivable area and this implies that the vehicle must not move to
or invade spatial regions outside such an area. For instance, regions
outside the drivable area could be sidewalks or pedestrian-only areas,
or a wrong lane.

The path planning phase can be divided into two macro phases:
Global Planner and Local Planner. The Global Planner generates a refer-
ence path. It is used as a guide for the Local Planner. The global planner
does not consider obstacles on the road or vehicle constraints and does
not exploit information like speed or acceleration.

The Local Planner generates a more detailed path considering the
reference path generated by the Global Planner ; typically this path is
shorter and considers the obstacles that surround the vehicle beyond
the possible maneuvers that the vehicle is able to perform.

The Frenet Path Planner [24] uses the Frenet Coordinates (Section 3.2)
to compute the path and then converts it into the original World
coordinates. Considering Fig. 1, the reference path is the blue line,
which follows a road as shown in the figure. The vehicle is the red box
and it must reach one of the possible endpoints (yellow dots). Initially,
a set of possible paths that connect the actual vehicle position to one
of the endpoints is computed. In this phase, the Frenet Coordinates are
exploited to simplify the path generation (see Section 3.3). A cost is
then assigned to each path.

The cost is a function that considers each path point and returns a
scalar. A typical cost function is the cumulative jerk.

After assigning a cost to each generated path, the paths are con-
verted into the World coordinates and compared with the obstacles
located in the environment for collision check. Therefore, the path that
features the lowest cost and that does not show any potential collision
is chosen.

3.2. Frenet coordinates

Frenet Coordinates [43,44] describe the geometric properties of a
curve; in our case, the curve is the reference path that overlaps the
road. The Frenet Path Planner is based on the Frenet Coordinates in which
𝑠 and 𝑑 represent the World coordinates of the point (𝑥 and 𝑦) in the
new Frenet coordinates. 𝑠 is the longitudinal position along the reference
path, and 𝑑 is the lateral position with respect to the reference path
(see Appendix A.1 for more details).

Journal of Systems Architecture 154 (2024) 103239F. Muzzini et al.

𝑑
p

t
p
i

a
i
F
P

t
o
S
T
l
d
o
t

4

p
o
b
m
F
o
C
𝑃

3.3. Paths generation

Considering the actual vehicle position in the Frenet Coordinates (𝑠0,
0), a single path is a contiguous trajectory that links (𝑠0, 𝑑0) to a final
osition (𝑠𝑓 , 𝑑𝑓).

Because one path is not sufficient for the planner, it is important
o generate a set of paths that start from (𝑠0, 𝑑0) and terminate in a
ossible endpoint (𝑠𝑓 , 𝑑𝑓). This set is generated considering: (1) the
nitial state 𝑆0 = ⟨𝑠0, 𝑑0, �̇�0, �̇�0, 𝑑0⟩ in which �̇�0, �̇�0 are the longitudinal

and lateral instant velocity, 𝑑0 is the later instant acceleration; (2) the
following parameters:

• 𝐷𝑠: road width sampling length
• 𝐷𝑚𝑎𝑥: max road width
• 𝐷𝑚𝑖𝑛: min road width
• 𝑉𝑠: velocity sampling length
• 𝑉𝑚𝑎𝑥: max velocity
• 𝑉𝑚𝑖𝑛: min velocity
• 𝑉𝑡𝑎𝑟𝑔𝑒𝑡: desirable speed
• 𝑇𝑠: prediction time sampling length
• 𝑇𝑚𝑎𝑥: max prediction time
• 𝑇𝑚𝑖𝑛: min prediction time;

and (3) a candidate end state 𝑆𝑓 = ⟨𝑠𝑓 , 𝑑𝑓 , �̇�𝑓 , �̇�𝑓 , 𝑑𝑓 ⟩ in which �̇�𝑓
leads in the range [𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥] and 𝑑𝑓 leads in the range [𝐷𝑚𝑖𝑛, 𝐷𝑚𝑎𝑥].
Moreover, it is known that this state must be reached in the time 𝑡𝑓
that leads in the range [𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥].

So we can construct the set of possible paths that start from the
actual state and end in a possible end state. Each path is discretized
in 𝑓 points and for each of them, the position, velocity, acceleration,
and jerk for both 𝑠 and 𝑑 are computed. Eventually, the set of possible
paths 𝑃𝑆 is computed as in Algorithm 1.

Algorithm 1 Frenet Path Generation

Input: Initial state 𝑆0 =< 𝑠0, 𝑑0, �̇�0, �̇�0, 𝑑0 >
Output: Path set 𝑃𝑆
1: for 𝑑𝑓 ← 𝑟𝑎𝑛𝑔𝑒(𝐷𝑚𝑖𝑛, 𝐷𝑚𝑎𝑥, 𝐷𝑠) do
2: for 𝑡𝑓 ← 𝑟𝑎𝑛𝑔𝑒(𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥, 𝑇𝑠) do
3: 𝑃𝑡𝑚𝑝 = []
4: for 𝑡 ← 𝑟𝑎𝑛𝑔𝑒(0, 𝑡𝑓 , 𝑇𝑠) do
5: 𝑝 = 𝑝𝑎𝑡ℎ𝑃𝑜𝑖𝑛𝑡()
6: 𝑝.𝑡 = 𝑡
7: 𝑎3, 𝑎4, 𝑎5 ← 𝑠𝑜𝑙𝑣𝑒𝐿𝑖𝑛𝑒𝑎𝑟𝑆𝑦𝑠𝑡𝑒𝑚(𝑑𝑓 , 𝑆0) // Eq. (A.4)
8: 𝑝.𝑑 = 𝑑0 + �̇�0𝑡 + 𝑑0𝑡2 + 𝑎3𝑡3 + 𝑎4𝑡4 + 𝑎5𝑡5

9: 𝑝.�̇� = �̇�0 + 2𝑑0𝑡 + 3𝑎3𝑡2 + 4𝑎4𝑡3 + 5𝑎5𝑡4

10: 𝑝.𝑑 = 2𝑑0 + 6𝑎3𝑡 + 12𝑎4𝑡2 + 20𝑎5𝑡3

11: 𝑝.𝑑 = 6𝑎3 + 24𝑎4𝑡 + 60𝑎5𝑡2

12: 𝑃𝑡𝑚𝑝 ← 𝑝
13: end for
14: for �̇�𝑓 ← 𝑟𝑎𝑛𝑔𝑒(𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥, 𝑉𝑠) do
15: 𝑃 = []
16: for 𝑡 ← 𝑟𝑎𝑛𝑔𝑒(0, 𝑡𝑓 , 𝑇𝑠) do
17: 𝑝 ← 𝑃𝑡𝑚𝑝.𝑔𝑒𝑡(𝑡)
18: 𝑎3, 𝑎4 ← 𝑠𝑜𝑙𝑣𝑒𝐿𝑖𝑛𝑒𝑎𝑟𝑆𝑦𝑠𝑡𝑒𝑚(�̇�𝑓 , 𝑆0) // Eq. (A.5)
19: 𝑝.𝑠 = 𝑠0 + �̇�0𝑡 + �̈�0𝑡2 + 𝑎3𝑡3 + 𝑎4𝑡4

20: 𝑝.�̇� = �̇�0 + 2�̈�0𝑡 + 3𝑎3𝑡2 + 4𝑎4𝑡3

21: 𝑝.�̈� = 2�̈�0 + 6𝑎3𝑡 + 12𝑎4𝑡2

22: 𝑝.𝑠 = 6𝑎3 + 24𝑎4𝑡
23: 𝑃 ← 𝑝
24: end for
25: 𝑃𝑆 ← 𝑃
26: end for
27: end for
28: end for
4

Each path has an associated cost 𝐶 used to determine which of the
generated paths is the best.

Lastly, since the path is expressed in Frenet Coordinates 𝑠 and 𝑑, they
must be converted in the world coordinates 𝑥 and 𝑦.

The interested reader can get the details behind this algorithm
in Appendix A.2.

3.4. Collision check

The last part of the Frenet Planner is the Collision Check. In this part,
a path 𝑃 is tested for collisions against obstacles that might be present
in the environment. Details are in Appendix A.3

4. Our implementation

In this section we describe our novel GPU-based implementation of
Frenet Planner. This implementation is the same used in preliminary
experiments performed in [6]. The goal is to reduce the computational
time of the algorithm. The original implementation of the algorithm
does not meet the necessary performance metrics in embedded boards.
To understand these metrics, we need to consider racing scenarios,
where the entire control pipeline must react quickly and effectively. It
is crucial that the execution time of the planner aligns closely with the
sensor frequency. Previous implementations using CPUs [24,29], and
even those partially offloading the algorithm to the GPU [37], fail to
achieve this objective. We have redesigned the original algorithm to ex-
ploit GPU capabilities by implementing all its phases in parallel. Specif-
ically, we parallelized the loops in the original implementation and
computed the path cost and world coordinates alongside the path com-
putation (refer to Section 4.1 for details). This approach preserves the
original algorithm’s rationale while significantly improving completion
time through careful selection of parallelization mechanisms.

We have measured the total algorithm execution time and we
noticed that the Path Generation and Collision Check phases account
for the majority of the execution time: about 57% for Path Generation
and about 37% for Collision Check. Since both the Path Generation
nd the Collision Check phases perform the same work with different
ndependent data, it is reasonable to compute them in a parallel way.
or these reasons, we have implemented two CUDA kernels: one for
ath Generation and one for Collision Check. The first kernel receives

the system state (𝑠0, 𝑑0, �̇�0, �̇�0, 𝑑0) and computes the possible paths,
he second checks the paths computed by the first kernel against the
bstacles resulting in a subset of paths. Moreover, we exploit CUDA
treams to overlap kernel execution and memory copies as in Fig. 2(a).
he Path Selection phase is carried out on GPU employing the CuBLAS

ibrary2, which results in reduced computational time and minimized
ata transfer from the GPU to the CPU. By selecting the optimal path
n the GPU, only one trajectory is required to be transferred back to
he CPU, in contrast to all generated trajectories.

.1. Paths generation

The Path Generation phase presents several degrees of potential
arallelism. Regarding the original implementation, the mathematical
perations in this phase remain unchanged, but we enhanced efficiency
y parallelizing path computations. Additionally, we optimized perfor-
ance by integrating to the Path Generation kernel the conversion from

renet frame to world coordinates and paths’ cost assignment. These
ptimizations significantly reduce the execution time of this phase.
onsidering that the final scope of this phase is to construct the set
𝑆 (i.e. the set of generated paths), it is possible to compute each path

2 https://docs.nvidia.com/cuda/cublas/

https://docs.nvidia.com/cuda/cublas/

Journal of Systems Architecture 154 (2024) 103239F. Muzzini et al.
Fig. 2. Implementation flows.
𝑃 ∈ 𝑃𝑆 independently. Moreover, each point 𝑝 ∈ 𝑃 can be computed
independently.

Each path 𝑃 ∈ 𝑃𝑆 is computed starting from specific values of
𝑑𝑓 , 𝑡𝑓 , and �̇�𝑓 (lateral displacement, final time, and target velocity).
This corresponds to the three iterative constructs shown in Algorithm
1 (lines 1, 2, and 14). The path 𝑃 is composed of different points,
each of them calculated at different time 𝑡 (the innermost for cycle
in Algorithm 1 at lines 4 and 16). Since the values described above
and the consequent computations are independent, we have exploited
GPU parallelism to compute them concurrently.

We set up a CUDA kernel with a three-dimensional launch grid that
would allow us to compute each path concurrently (see Fig. 3(a)): in
x we have a block for each road width sampling 𝑑𝑓 , in y a block for
each time sampling 𝑡𝑓 , in z a block for each velocity sampling �̇�𝑓 . In
the end, each block corresponds to a single path 𝑃 and the amount of
blocks present in the grid is 𝐷𝑚𝑎𝑥−𝐷𝑚𝑖𝑛

𝐷𝑠
⋅ 𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛

𝑇𝑠
⋅ 𝑉𝑚𝑎𝑥−𝑉𝑚𝑖𝑛

𝑉𝑠
.

Moreover, we have mapped the computation of the points of a
path to a different thread of the block associated with the path itself.
By doing so, each thread computes the point of the path considering
a different value of 𝑡. The kernel launch configuration is (𝐷𝑚𝑎𝑥−𝐷𝑚𝑖𝑛

𝐷𝑠
,

𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛
𝑇𝑠

, 𝑉𝑚𝑎𝑥−𝑉𝑚𝑖𝑛
𝑉𝑠

) for grid and (𝑇𝑚𝑎𝑥𝑇𝑠
,1,1) for block. We choose this

configuration to exploit the shared memory among threads within the
same block, with the aim to efficiently compute the final path cost.
Since each path cost is independent of other paths we mapped each
path to a different block.

Each thread computes the values 𝑑, �̇�, 𝑑, 𝑑, 𝑠, �̇�, �̈�, 𝑠, 𝑥, and 𝑦
(lateral position, velocity, acceleration and jerk; longitudinal position,
velocity, acceleration and jerk; position in world coordinate) of its
assigned point. Moreover, the thread computes the cost components of
its associated point (𝑝.𝑠2 and 𝑝.𝑑2) that concur to the final cost 𝐶 of the
path.

Since all cost components 𝑝.𝑠2 and 𝑝.𝑑2 must be already computed
to calculate the cost 𝐶, we exploit the shared memory of GPU and CUDA
syncthreads function. Each thread stores the 𝑝.𝑠2 and 𝑝.𝑑2 to shared
memory and, before performing the sum over all points, we call the
syncthread function. After sync, we are sure that all of the cost parts
are calculated so it is possible to make the sum which is performed by
only one thread. More precisely, a thread compute all points component
𝑑, �̇�, 𝑑, 𝑑, 𝑠, �̇�, �̈�, 𝑠, 𝑥 and 𝑦 (in the same way described in algorithm
1). Moreover it computes 𝑝.𝑠2 and 𝑝.𝑑2. Then the syncthreads function
is called to ensure that all threads have computed the components.
Eventually, a selected thread performs the sum. To perform this sum,
the kernel is launched to allocate (𝑇𝑚𝑎𝑥𝑇𝑠

⋅ 𝑠𝑖𝑧𝑒𝑜𝑓 (𝑇)) of shared memory,
with 𝑇 being the chosen datatype (double, float, or half).
5

4.2. Collision check

The Collision Check kernel offers two degrees of parallelization: path
points and obstacles. Similarly to the previous phase, the mathematical
operations in this phase remain unchanged from the original imple-
mentation. We improved efficiency by parallelizing the collision checks
between path points and obstacles. Additionally, we set a maximum
cost for all the colliding paths, hence excluding colliding paths from
this selection procedure. These enhancements significantly reduce the
computational time required for this phase. Each point in a path must
be tested against collisions with every obstacle. Each collision check
is independent of the other, so all of these tests can be computed by
parallel GPU threads. The kernel is launched spreading all path points
on different threads; each block has a fixed dimension of 16 × 16 × 4
threads (resp. on x, y and z axes), for a total of 1024 threads per block
(𝑇𝑃𝐵). The grid is composed of an amount of blocks that is adequate
to cover the total number of points (𝑇𝑁𝑃) on axes x and y, the axis z
is used to map the obstacles (see Fig. 3(b)). The number of blocks for

axis x and y is
⌈

√

⌈

𝑇𝑁𝑃
𝑇𝑃𝐵

⌉

⌉

while the number of blocks on the z axis is

equal to the number of obstacles. The number of blocks of x and y axes
are calculated to be sure that all points have an associated thread. Each
block can manage 𝑇𝑃𝐵 points, so the number of blocks must be greater
than 𝑇𝑁𝑃∕𝑇𝑃𝐵. To distribute the needed blocks across both x and y
axes, the square root of the blocks’ number is computed and rounded
up. In this way, it is guaranteed that all points have an associated

thread. In the end, the kernel launch configuration is (
⌈

√

⌈

𝑇𝑁𝑃
16⋅16⋅4

⌉

⌉

,
⌈

√

⌈

𝑇𝑁𝑃
16⋅16⋅4

⌉

⌉

, #obstacles) for the grid and (16,16,4) for the block

where 𝑇𝑁𝑃 is 𝐷𝑚𝑎𝑥−𝐷𝑚𝑖𝑛
𝐷𝑠

⋅ 𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛
𝑇𝑠

⋅ 𝑉𝑚𝑎𝑥−𝑉𝑚𝑖𝑛
𝑉𝑠

⋅ 𝑇𝑚𝑎𝑥
𝑇𝑠

. In this case, the
use of shared memory is not needed so it is left to zero. In this way, we
cover all the possible interactions among obstacles and points. As far
as the launch configuration is concerned, we found experimentally that
setting it to (16,16,4) as block size is the configuration that minimizes
the kernel completion latency.

Each thread performs the collision test as detailed in Eq. (A.8) but
only considering one point and one obstacle. If the check fails, then
the path of the point is marked as collided and the cost of the path is
set to the maximum value to ensure that it will not be chosen as the
best path. When all paths are checked, the one with the smaller cost
is retrieved using a CUBlas API function call; specifically, by invoking
the function cublasI<T>amin3. This function takes in input an array of

3 https://docs.nvidia.com/cuda/cublas/index.html#cublasi-lt-t-gt-amin

https://docs.nvidia.com/cuda/cublas/index.html#cublasi-lt-t-gt-amin

Journal of Systems Architecture 154 (2024) 103239F. Muzzini et al.
Fig. 3. CUDA launch configurations.
values and return the index of the smaller item. The T depends on the
type of the array items: in our case, d for double and s for float and half.

Given that the paths that collide have the maximum cost and the
best path choice procedure returns the path with the smallest cost
value. If the retrieved best path is marked as collided, it means that
there are no feasible paths around the generated trajectories.

5. Experiments

We conducted a comprehensive set of experiments to evaluate our
implementation from various perspectives. In this section, we described
the hardware platforms tested as well as the experiments aimed at
assessing performance in terms of precision and completion times. All
these settings are explained in this section and results are shown and
commented in Section 6.

5.1. Hardware platforms

We target two hardware platforms for experiments. The first is an
NVIDIA Xavier AGX. We performed on this board all experiment instead
that requires the F1tenth setup. This embedded board is equipped with
a CUDA-capable GPU (512 NVIDIA cores) and an ARM CPU (8 cores).
It features 32 GB of DDR SDRAM shared between CPU and GPU. This
embedded board is more powerful than the board used in the F1tenth
vehicle and it is more representative of the board mounted in real-size
vehicles.

The second is the hardware adopted by F1tenth. This hardware is
the Nvidia Jetson Xavier NX. This board is equipped with a 6-core ARM
CPU, 8 GB of RAM shared between CPU and GPU, and 384-core NVIDIA
Volta GPU. This board is a cut-down version of the NVIDIA Jetson
Xavier AGX mentioned before.

5.2. Algorithm execution time

We compared our implementation with a publicly available CPU
implementation of the Frenet Planner4 as the baseline (CPU); with a
parallel CPU implementation that exploits OpenMP (CPUOMP); and
with an implementation of [37] that represents the state-of-the-art GPU
implementation (GPUSotA).

The execution time of the algorithm is a critical factor in safety-
critical systems like autonomous vehicles, where rapid execution is
essential for timely reactions to prevent risky situations such as colli-
sions. The primary goal of a planner is to avoid collisions and compute
feasible paths. The algorithm’s execution time must correlate with the
vehicle’s speed; higher speeds necessitate faster reaction times. In high-
speed scenarios, such as racing, faster algorithm execution allows the
vehicle to achieve higher speeds, making it crucial to minimize the
planner’s execution time. Previous Frenet implementations are able
to complete the circuit under test without collisions provided that

4 https://github.com/arvindjha114/frenet_planner_agv
6

Table 1
Comparison of Frenet Frame based Path Planners. Execution time is measured by setting
the algorithm to generate 1024 paths and 64 points for each of them.

[24] [29] [37] Our

Path Generation CPU CPU GPU GPU
Collision Check CPU CPU no GPU
Best path choice CPU CPU CPU GPU
Available code no yes no yes
Prog. Language – Python C++/CUDA C++/CUDA
Execution Time (ms) 68.48 4158.89 67.42 7.75

their speed is limited by the performance of the execution time of
the algorithm (Table 1). On the contrary, our solution features an
optimized computational time, hence enabling its use at higher speeds
and resulting in shorter lap times. We performed the comparison by
varying the precision type (half, float, double). These precision types
have different data sizes as defined by IEEE standard [45] and this
means a different amount of data to exchange between CPU and GPU
but also different accuracy in the results.

We chose to present a comparison with these implementations
because the source code of CPU implementation is available, it im-
plements the algorithm described in the original Frenet Path Planner
paper [24], and it is written in C++. The parallel OpenMP imple-
mentation fully exploits CPU compute power due to parallelism, hence
making this a suitable attempt at a fair comparison. The implementa-
tion of [37] is the state-of-the-art of GPU implementation. In Table 1,
we report a summary of Frenet Path Planner implementations avail-
able in the literature. The other previous contribution for which the
code is made available is [29]. In this case, their code is written in
Python, thus performance cannot be fairly compared to our C++/CUDA
implementation.

Note that the source code of the state-of-the-art GPU implementa-
tion [37] is not available (see Table 1). Moreover, the authors reported
performance related to an older embedded system. Hence, the results
reported in [37] are not comparable with ours. For these reasons,
we have implemented the proposal of [37] to compare the execution
time of the entire pipeline (same implementation used in preliminary
experiments [6]) on the same board. There are also other differences,
such as the fact that they do not exploit GPU for the Collision check
phase, and the authors split the Path generation phase into three kernels:
one that computes the paths, one that computes the cost and one that
converts the path points from Frenet coordinates to World coordinates.
The authors report the execution times of each kernel separately. In
our implementation only one kernel is used to compute paths, cost, and
perform the coordinate conversion: by doing so we are able to reduce
the kernels’ launch overhead, so the reported times include all of these
tasks. Moreover, the authors in [37] compute the trajectory selection
(based on the cost) on the CPU. This implies the copy of all generated
trajectories from GPU to CPU. In our proposal, this selection phase is
performed on GPU, hence, only the best selected trajectory is copied to
the CPU.

https://github.com/arvindjha114/frenet_planner_agv

Journal of Systems Architecture 154 (2024) 103239F. Muzzini et al.

_
1

We performed two types of measures. One considering the overall
processing time (as in preliminary experiments [6]) and one consider-
ing the distinct subparts. More specifically, we measured the time of
the Path generation phase and the time taken by Collision check phase
separately. Since in our implementation, the kernel that computes the
paths (Section 4.1) also performs the cost computation and the con-
version of Frenet coordinates to World coordinates, we compare our Path
Generation kernel with the sum of the three tasks as described in the
baseline implementation. We do not report the CPUOMP and GPUSotA
results for these two distinct subparts because the overall results show
that they are very close to the baseline CPU implementation, so we
focus more on the latter.

In this study, two tests are performed; one varying the number of
generated paths while maintaining a fixed path length, and the other
varying lengths while maintaining a fixed number of generated paths.
For each test, we have performed 100 iterations, and we report the
average time and the speedup with respect to the CPU implementation
using the same precision type.

The results of these experiments are reported in Section 6.1.

5.3. Ablation study

In the previous experiment, we measured the speedup of each
individual phase implemented on the GPU compared to its CPU coun-
terpart. In this experiment, we analyze the impact of porting each phase
to the GPU on the overall pipeline, assessing the speedup from input to
output when only one phase is offloaded to the GPU. In some instances,
porting only a single phase results in increased data transfers between
the CPU and GPU, which can affect the overall speedup. Our analysis
focuses on the implementation using the double precision data type.

The results of these experiments are reported in Section 6.2.

5.4. Algorithm precision

In the first experiment, we measured how different precision types
affect the algorithm completion times. Trivially, using fewer bits to
represent input and output data leads to a significant reduction in
execution times. However, using a less precise data type can compro-
mise the quality of the output trajectory. Therefore, we measured the
precision of trajectories generated using double, float, and half data
types, similar to our experiments on execution time. Our goal is to
identify an optimal trade-off between execution time and the quality of
the results. In this experiment, we, therefore, investigate how reducing
data type precision affects the quality of the computed trajectories.
We aim to measure the trajectory degradation caused by using less
precise data types. In addition to execution time, the quality of the
trajectory is crucial. A quickly computed but less precise trajectory can
still pose risks, as poor trajectory quality may fail to avoid collisions
effectively. We compared the trajectories generated using the different
data precision formats in both CPU and GPU implementations with
respect to trajectories generated by the CPU double implementation
(henceforth our baseline). We compare paths generated by different
precision types but with the same parameters (𝐷𝑠, 𝐷𝑚𝑎𝑥, 𝐷𝑚𝑖𝑛, 𝑉𝑠, 𝑉𝑚𝑎𝑥,
𝑉𝑚𝑖𝑛, 𝑉𝑡𝑎𝑟𝑔𝑒𝑡, 𝑇𝑠, 𝑇𝑚𝑎𝑥, 𝑇𝑚𝑖𝑛) and the Frenet algorithm was set to generate
1024 different paths, each of them with 1024 path points. On top of
this, we have simulated a vehicle that follows the selected path but
when it reaches a new location it generates again the path to follow.
In this way, the generated paths will always feature a different initial
state and this is the typical behavior of a vehicle that uses the Frenet
path planner. We repeat the generation 300 times and we compare each
point of each selected path. We have used the Average Trajectory Error
(ATE) which is the average displacement error of each point of the path.
The displacement error is computed as the Euclidean Distance.

Typically, the vehicle follows the selected path for the first points
and then recomputes it based on the new state, i.e. its new position;
therefore, it is unlikely that the vehicle will reach the ending points
7

that were initially generated. For this reason, it does make sense to
measure the average error of the path traveled by the vehicle using the
sequence of selected paths computed during the trip. We measured the
ATE of the trajectory of the simulated vehicle that moves as described
above.

The results of these experiments are reported in Section 6.3.

5.5. Impact of Nvidia UM

The CUDA API exposes two main ways to use data in the GPU
context: explicit copies (COPY) and Unified Memory (UM). The first
copies all data before kernel execution, and the second copies data
only when requested by the computation during the execution of the
kernel. The choice between these two methods can affect the software’s
execution time, so we aim to measure the impact of this decision.

We tested these two approaches in our implementation to find
the best way to perform copies. Since the size of data to transfer is
important we tested both approaches varying the number of obstacles
and consequently, the amount of data to be copied. Moreover, we
tested the impact of data prefetching on UM behavior. On the board
used in our test, the prefetch behavior is performed by calling the
cudaStreamAttachMemAsync function5. Using this function the driver
can optimize the memory coherence operations.

The results of these experiments are reported in Section 6.4.

5.6. Impact of interference

The Frenet Path Planner is only one of the parts of an autonomous
vehicle. This means that other processes (such as localization or percep-
tion) will execute concurrently with the planner on the same hardware.
The execution of more processes on the same board can result in mem-
ory interference since more process tries to access it. This behavior can
reduce the performance of the planner increasing the execution time.
We aim to measure the impact on the planner’s execution time when
other processes are using the system DRAM memory. This scenario
is common in autonomous vehicles, and the resulting slowdown can
potentially create risky situations. We tested how our implementation
performs in this situation. We are interested in the worst-case scenario
so, since the board has 8 cores, we execute our planner with other 7
memory-intensive processes proposed in [46]. We test two variants of
interfering processes: one that runs on CPU and generates high-memory
traffic using memset (CPU interference); the other that uses the CUDA
API cudaMemset to use the GPU (GPU interference). To reduce the effect
of the CPU processes scheduler we pinned each process on a different
core.

The results of these experiments are reported in Section 6.5.

5.7. Experiments on the F1tenth setup

To assess the effectiveness of our approach, we set up a test repre-
sentative of racing scenarios, namely a racing simulator for 1:10 scale
vehicles. We aim to evaluate our implementation on a real vehicle
in a racing scenario, with the primary objectives of completing a lap
without crashes and achieving maximum speed.

During the F1tenth challenge6 [47], participants set up an au-
tonomous vehicle in scale, and (among the other trials) must perform
collision avoidance of static objects, and overtaking other vehicles in
head-to-head sessions. That is where the Frenet planner plays a key role,
and we validated its effectiveness using the simulator.

In a simulated scenario, we were capable of generating corner cases
that stress specific configurations of the path planner. We connected the

5 https://docs.nvidia.com/cuda/cuda-runtime-api/group_
CUDART__HIGHLEVEL.html#group__CUDART__HIGHLEVEL_
g496353d630c29c44a2e33f531a3944d1

6 https://f1tenth.org

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__HIGHLEVEL.html#group__CUDART__HIGHLEVEL_1g496353d630c29c44a2e33f531a3944d1
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__HIGHLEVEL.html#group__CUDART__HIGHLEVEL_1g496353d630c29c44a2e33f531a3944d1
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__HIGHLEVEL.html#group__CUDART__HIGHLEVEL_1g496353d630c29c44a2e33f531a3944d1
https://f1tenth.org

Journal of Systems Architecture 154 (2024) 103239F. Muzzini et al.
Fig. 4. F1tenth simulated scenario. Obstacles in red.
Table 2
Parameters used in tests on F1tenth.
𝐷𝑚𝑖𝑛 𝐷𝑚𝑎𝑥 𝐷𝑠 𝑇𝑚𝑖𝑛 𝑇𝑚𝑎𝑥 𝑇𝑠 𝑉𝑚𝑖𝑛 𝑉𝑚𝑎𝑥 𝑉𝑡𝑎𝑟𝑔𝑒𝑡 𝑉𝑠

−1.0 1.0 0.05 2.0 2.0 0.1 4.5 5.5 5.0 1.0

target embedded board to a workstation running the simulator, hence
implementing Hardware-in-the-Loop (HiL) configuration, where (negli-
gible) communication delays are traded for timing accurate execution
on the real production hardware7

All the experiments conducted over the racing scenario were ex-
ecuted with the use of a simulator, which is also the main software
environment publicly provided by the F1tenth Autonomous Racing
Community. It is called F1tenth gym simulator8. This tool provides
several fundamental services that can be exploited during any kind
of research that involves active testing in a full Hardware-in-the-Loop
use case. Besides a graphic interface, it automatically manages every
communication, perception, map distribution, throttle, and steering
so that it is possible to recreate an artificial space optimized and
configured to cooperate with the algorithms written by the user. It uses
the Robot Operative System 2 (ROS2) [48] to automatically manage the
communication between the hardware in which the algorithm executes
and the simulator engine. In this way, it is possible to reconstruct an
artificial space in the simulator without the algorithm knowing that is
a simulated scenario instead of a real setting. Moreover, this simulator
features a more advanced simulation engine and physical model that
enable a more realistic simulation compared to the test performed in
Section 6.3.

The experiments are conducted to evaluate the Frenet Path Planner
performance on the F1tenth vehicle. For this purpose the parameters
are set to typical race values, these parameters are shown in Table 2.
It results in the generation of 240 paths, each of them containing 21
points.

We measure the frequency in which the system is able to publish
a new trajectory and the maximum speed that the vehicle can sustain
before crashing. The first measure tells us how the algorithm is reactive
on this board, and the second is useful to estimate the reachable
improvement for racing using the novel implementation.

The simulation scenario is set with obstacles placed after a turn
as shown in Fig. 4(a). This setup is constructed to test the algorithm
in stressful situations since the time needed to detect and avoid the
obstacle is very short.

We tested the algorithm in the aforementioned scenario varying
the precision type on both CPU and GPU versions. To measure the
maximum speed reached by the vehicle, the simulation is repeated
increasing the target speed of the algorithm, and consequently of the
vehicle, until the vehicle is not able to react in time to avoid the

7 This is a typical choice for autonomous systems engineers to test their
driving stacks.

8 https://github.com/f1tenth/f1tenth_gym_ros
8

obstacle and crashes (as in Fig. 4(b)). The target speed is initially set
to 1 m/s and it is increased by 0.01 m/s at each simulation iteration.

The results of these experiments are reported in Section 6.6.

6. Results

In this section, we present the results of the experiments described
earlier.

6.1. Algorithm execution time

We report the execution time of our implementation and other im-
plementations varying the number of generated paths and the number
of points of each path.

The average overall execution times for these two variants are
reported in Fig. 5, with Fig. 5(a) displaying the results for the varying
number of generated paths and Fig. 5(b) displaying the results for the
varying path length. The first consideration, as expected, is that the
GPU implementation is significantly faster than the CPU implementa-
tion. Moreover, our implementation outperforms the GPUSotA (with a
reduction of time of about 8x). This result is also expected since we
parallelized the collision check phase. The GPUSotA introduces also a
huge memory copy overhead and it results slower than the CPUOMP
implementation considering the overall execution time. This latter
implementation is faster than the baseline CPU implementation but
remains slower than our implementation. We report also the speedup
of our implementation over the baseline CPU implementation varying
the precision types. The results are reported in Figs. 5(c) and 5(d). The
precision type impacts the execution time, indeed, the execution time
is higher using double precision than using float or half. The execution
times of the latter two types are similar but half type produces a lower
execution time. Indeed, on GPU, using the float precision type the
times, on average, are reduced by about 74 ms with respect to double
in the first experiment, and about 36 ms in the second; using the half
precision type, the reduction is by about 3 ms with respect to float in
the first experiment, and about 1 ms in the second. The trend of all
implementations is linear but the CPU implementation shows a steeper
trend due to its serialized processing. In the first experiment (varying
the number of generated paths) the speedup with respect to the CPU
implementation is constant for double (around 11x), increases up to
20x for float precision, and up to 22x for half precision (Fig. 5(c)).
In the second experiment (varying the path length) the speedup is
less constant but has the same average values as the first experiment
(Fig. 5(d)).

Considering the Path generation phase only, the situation is similar.
Fig. 6(a) reports the average time of this phase varying the number of
generated paths, Fig. 6(b) reports the same times but varying the path
length. The speedup of this phase is higher than the overall speedup
(Figs. 6(c) and 6(d)): varying the number of generated paths the
speedup is around 19x considering double precision, 29x considering
float and 31x considering half ; varying the path length the speedup for

double reaches a plateau at a path length of 288 points (around 17x),

https://github.com/f1tenth/f1tenth_gym_ros

Journal of Systems Architecture 154 (2024) 103239F. Muzzini et al.
Fig. 5. Overall average execution time (ms) and Speedup against CPU.
Table 3
Percentage of phases time over overall time.

CPU
⟨double⟩

CPU
⟨float⟩

CPU
⟨half⟩

GPU
⟨double⟩

GPU
⟨float⟩

GPU
⟨half⟩

Path Generation 56.9 53.5 55.0 32.7 38.1 38.3
Collision Check 36.9 44.6 44.5 67.1 61.7 60.7
Other 6.2 1.9 0.5 0.1 0.2 1.0

other precision types have not a constant speedup but always around
25x.

Considering the check collision phase only, the situation is similar.
Fig. 7(a) reports the average time of this phase varying the number of
generated paths, Fig. 7(b) reports the same times but varying the path
length. In this case, the speedup of this phase is lower than the overall
speedup (Figs. 7(c) and 7(d)): varying the number of generated paths
the speedup is around 6x considering double precision, 15x considering
float and 16x considering half ; varying the path length the speedup
grows until the path length is 224, then it decreases to a plateau around
the path length of 544 (around 6x) for double type. Other types have
fluctuations but the average speedup is about 17x.

The overall execution times and related speedup discussed above
also include other phases (i.e. the selection of the best path based on
the cost). In Table 3 the percentage of the single phases with respect to
the overall execution time is reported. In the CPU implementation, most
of the execution time is caused by the Path generation phase. Instead,
in the GPU implementation the highest percentage of execution time
is taken by Collision check phase. The GPU implementation of Path gen-
eration phase is constructed exploiting shared memory and minimizing
the critical operations of a GPU accelerated application, i.e. accesses
9

to global memory and branch divergence. Moreover, the merging of
World coordinates conversion in the same kernel of Path generation
reduces the overhead of kernel launches. These aspects contribute to
the huge execution time reduction of this phase with respect to the CPU
implementation. On the other hand, the kernel of Collision check phase
has an intrinsic branch divergence due to the fact that the instruction
flow significantly changes according to whether a collision takes place
or not. In summary, the speedup of this phase is lower compared to the
speedup of the Path Generation phase. This is the cause that the majority
of the execution time for the CPU version is spent in the Path Generation
phase, while for the GPU version, most of the execution time is spent
in the Collision Check phase.

We elected to implement data transfers between the host (CPU)
and the device (GPU) using explicit copies to have more control over
these operations and be able to execute them in parallel to the ker-
nel execution using streams. This implies that there is an additional
overhead in the GPU version due to the memory copy of the results
to the CPU. This overhead is included in the Other phases reported in
Table 3. Trivially, in the CPU implementation, the overhead caused by
moving data between CPU and GPU is not present, so with the term
Other phases with regards to the CPU implementation, we refer to the
best path selection procedure. The table shows that the percentage of
Other phases is still lower for the GPU implementation. This is due to
two factors: first, in our implementation, memory copies are performed
concurrently with the kernel computation as we exploited different
CUDA streams. In this way, most of the memory copy overhead is
mostly hidden by actual computation. Secondly, the Other phases also
include the computation of the best path (i.e. best path choice), that in
the GPU case is performed by exploiting the CUDA cublas library and
results in better performance with respect to the CPU implementation.

Journal of Systems Architecture 154 (2024) 103239F. Muzzini et al.
Fig. 6. Average execution time of path generation phase (ms) and Speedup against CPU.
-

Performing tasks on a GPU, such as the best path choice, can reduce
the number of memory copies between the CPU and GPU. Indeed, if
a task requires input data generated on the GPU by a previous task,
performing an intermediate task on the CPU would require two copies
that could be avoided by performing the intermediate task on the
GPU. Additionally, the final output of a pipeline typically has a smaller
size than the intermediate tasks, which means that there would be a
smaller amount of data to copy. For example, in the Frenet Path Planner,
performing the best path choice on the CPU would require copying
more trajectory data from the GPU to the CPU, increasing the time
required for this operation.

Moreover, the bottleneck task in the pipeline may change when
it is implemented on a GPU. This is because different tasks may be
more or less parallelizable on a GPU, and GPU implementations may be
susceptible to branch divergence and memory access issues. As a result,
after the entire pipeline has been ported to the GPU, the bottleneck task
may be different than it was in the CPU implementation.

6.2. Ablation study

In this experiment, we assessed the effect of offloading only one
phase to the GPU on the overall speedup. Offloading a single phase may
involve additional memory copies, potentially resulting in a speedup
different from the one reported in the previous section. In Table 4 we
report the speedup of the entire pipeline obtained by porting only one
phase at a time to the GPU.

Path generation. Offloading this specific phase to the GPU yields the
greatest speedup, consistent with our findings from the previous section
where this phase demonstrated the highest acceleration. Porting only
10
this phase necessitates an additional copy operation from the GPU
to the CPU for the generated trajectory, as the subsequent phase is
executed on the CPU.

Check collision. Offloading only this phase to the GPU yields minimal
speedup. This phase itself achieves a lower speedup compared to the
previous phase. Furthermore, porting only this phase involves copying
the generated trajectory from the CPU to the GPU, and subsequently
copying back the feasible trajectories from the GPU to the CPU, as the
first and last phases are executed on the CPU.

Path selection. Offloading only this final phase to the GPU results in
minimal speedup. Porting only this phase involves copying the feasible
trajectory returned by the previous phase from the CPU to the GPU, and
this additional copy operation effectively negates the speedup gained
from offloading this phase to the GPU.

Ultimately, our implementation optimizes the entire pipeline, achiev
ing the highest speedup by offloading all phases to the GPU, which
minimizes the need for memory copies.

Considering individual phases, Path Generation achieves the highest
speedup both within its phase and across the entire pipeline. This
phase is predominantly compute-bound compared to the other two
phases, which exhibit more memory-bound characteristics (as indi-
cated by the NVidia Nsight Compute Roofline tool9), allowing the GPU
to effectively leverage parallelism. The Check Collision phase, while
less compute-bound, consistently operates within the compute-bound
region as reported by NVidia Nsight Compute. In contrast, the Path

9 https://docs.nvidia.com/nsight-compute/ProfilingGuide/#roofline-charts

https://docs.nvidia.com/nsight-compute/ProfilingGuide/#roofline-charts

Journal of Systems Architecture 154 (2024) 103239F. Muzzini et al.
Fig. 7. Average execution time of collision check phase (ms) and Speedup against CPU.
Table 4
Overall speedup achieved offloading only one phase
on the GPU.

Speedup

Path Generation 2.5
Check Collision 1.5
Path Selection 1.1

Selection phase, utilizing cuBlas functions, operates within the memory-
bound region. The interested reader can see the graphs about roofline
model in Appendix B.

6.3. Algorithm precision

In this experiment, we measured the precision error in the output
trajectory introduced by using different precision types. Our baseline is
the trajectory computed on CPU using the double format.

As expected the ATE is 0 m for GPU double implementation. On the
other hand half precision shows a larger error (0.7747 m in GPU and
0,6183 m in CPU) due to the fact that the reduced precision impacts
the results. The error in the float versions is negligible (0.0005 m in
GPU and 0,0027 m in CPU). The small difference between CPU and
GPU versions using the same data type is the result of the different
hardware architectures.

We also report in Fig. 8 the errors for each point of the path, from 0
to 1024. For each point, we report the mean error measured in each of
the 300 paths. We can see that the error within a trajectory increases
11
as the vehicle move further from the path starting point, hence, the
precision error tends to maximize towards the last points.

The precision errors are more significant towards those final points,
but the trajectory is constantly re-generated, and the path final points
are almost never reached. For this purpose, we measured the ATE of
the trajectory of the simulated vehicle that moves following the path
regenerated when the state changes.

By doing so we obtain the following errors: 0.5993 m for half GPU
(0,4801 m on CPU), 0.0001 m for float GPU (0,0025 on CPU), and
always 0 m for double GPU.

Qualitatively, the errors reported for float and half precision do not
impact the quality of the generated trajectory due to the fact that the
average error is small. Indeed, in Fig. 9 we see the generated trajectory
in three scenarios: one in a curve, one in the presence of obstacles, and
one in a very sharp turn. Note that the obstacle is dynamic and moving
while the algorithm runs. We only report one simulation frame, but
we observe that collisions are avoided for the entire simulation. The
trajectories are almost the same, but a closer look reveals negligible
differences (see Figs. 9(b) and 9(f)). Due to the small magnitude of
their difference, it is obvious that even in the half precision case, the
trajectory is followed and the obstacle is avoided.

To conclude, by decreasing data precision we obtain noticeable
performance improvements in terms of execution times (especially
using GPU). This comes at the cost of larger ATE values. This outcome is
a result of the GPU’s intrinsic computational capabilities. Theoretically,
given the hardware used in the experiments, two half-precision (FP16)
operations can be mapped onto the same floating-point ALU, while
a double-precision (FP64) operation requires two floating-point units.

Journal of Systems Architecture 154 (2024) 103239F. Muzzini et al.
Fig. 8. Trajectory error for each point.
However, this trade-off means that computations using different data
types yield variable precision in the results. The choice of precision
within data types depends on the context; our experiments, however,
clearly show how the float version on GPU easily represents the best
choice, as it leads to an extremely low ATE compared to the huge
execution time reduction (60% of time reduction respect to double on
GPU). The half version shows a higher ATE error towards the final
points of generated trajectories, but the performance gain compared to
the float version is not significant (only 4% of time reduction respect
to float on GPU).

6.4. Impact of nvidia UM

In this experiment, we measured the impact of using Unified Mem-
ory instead of explicit copies.

Results are shown in Figs. 10.
The figures have the overall execution time on the 𝑌 -axis and the

amount of transferred data on the 𝑋-axis.
The execution times of double precision are higher than in the

float and half cases but the trend is always the same. The execution
time scales linearly with the amount of objects to be transferred. The
increase in time depends both on the computational part of the check
phase and on the data copy phase.

Both methods (UM and explicit copies) scale in the same way but the
UM always shows the worst execution time. This means that the over-
head introduced by the UM system is higher than the time needed for
the explicit copy. UM system performs data transfer when it is needed if
this operation can be overlapped with other computational instructions
of the kernel, the overhead can be mitigated by this overlapping. We
recall that the majority of data copies regarding the obstacles that are
needed in the collision check kernel. Our implementation is optimized
to perform this copy during the path generation kernel using two
different CUDA streams, so the overhead of explicit copy is mitigated
by the concurrent execution of that kernel.

To summarize, in our implementation, the explicit copy is prefer-
able to the UM system since, with the additional control that the
programmer has using the explicit copies, we were able to overlap
the copies and the kernel execution. Moreover, we found that the
prefetching operation does not help the execution time in UM behavior.
This is because the UM behavior requires some synchronous operations
that are synchronized with other GPU work (e.g. other streams) and
cudaStreamAttachMemAsync is able to reduce the amount of synchro-
nization since it hints the driver that the memory is used only by a
stream10. In our application, and in particular at the point in which
the memory is used, there is only one stream active, so the effect of
cudaStreamAttachMemAsync is very limited.

10 https://docs.nvidia.com/cuda/cuda-for-tegra-appnote/index.html#
effective-usage-of-unified-memory-on-tegra
12
6.5. Impact of interference

In this experiment, we measured the slowdown introduced by other
processes that run on the same board and use the same memory causing
interference.

We report the overall execution time. On the 𝑋-axis there is the
amount of data copied, and on the 𝑌 -axis there is the execution time
in milliseconds. We conduct the experiments using all precision types
(double, float, and half). Results are shown in Fig. 11.

We can see that interference has an impact on the execution time.
Both UM and explicit copy strategies suffer from this behavior so the
explicit copy remains preferable also when there are processes that as
source of heavy interference.

The interference caused by GPU processes has a higher impact on
the execution time. Profiling the application with the Nvidia NSight-
System tool11, we see that this is due to the GPU context switch, rather
than actual memory interference. A GPU context is spawned from each
CPU process that is accessing the GPU, and by default, only one GPU
context can reside within the GPU copy or execution engine [39] at a
given time. Hence, a context switch is the operation undertaken by the
GPU scheduler for selecting which context (i.e. GPU application) must
be resident in the GPU [49]. In our case, there are different processes
that use the GPU, so each of them is scheduled for a fixed timeslice
(about 1 ms) in a round-robin fashion. Fig. 12 is a screenshot of the
Nvidia NSight-System during the analysis of the concurrent execution
of our planner and the other seven interference processes that use GPU.
We take the Context analysis line in which green boxes are our planner,
grey boxes are other processes. The alternation of contexts is evident
and there is no overlapping among contexts. This behavior increases
the execution time of our path planner, and for Jetson boards, there
is no way to tune the length of such timeslices. Indeed, on Jetson
board, unlike the Nvidia DRIVE platform12, there is not the possibility
to set the GPU scheduler policy, the timeslices of each GPU context
or processes priority. The only possibility given to the programmer
on Jetson boards is to manage the priority of different CUDA streams
in the same context. However, there are only two levels of stream
priority [39], hence this solution might not be practical for every
application scenarios.

The slowdown in time execution caused by interference of the CPU
processes is lower. Since system memory in the Jetson board is phys-
ically shared between the CPU and the integrated GPU, all processes
(CPU and GPU) access the same DRAM banks causing interference.
Note that when our path planner runs using the double precision type,

11 https://developer.nvidia.com/nsight-systems
12 https://nvidianews.nvidia.com/news/nvidia-introduces-drive-agx-orin-

advanced-software-defined-platform-for-autonomous-machines

https://docs.nvidia.com/cuda/cuda-for-tegra-appnote/index.html#effective-usage-of-unified-memory-on-tegra
https://docs.nvidia.com/cuda/cuda-for-tegra-appnote/index.html#effective-usage-of-unified-memory-on-tegra
https://developer.nvidia.com/nsight-systems
https://nvidianews.nvidia.com/news/nvidia-introduces-drive-agx-orin-advanced-software-defined-platform-for-autonomous-machines
https://nvidianews.nvidia.com/news/nvidia-introduces-drive-agx-orin-advanced-software-defined-platform-for-autonomous-machines

Journal of Systems Architecture 154 (2024) 103239F. Muzzini et al.
Fig. 9. Generated trajectory: GPU with different data types vs. CPU.
the slowdown is lower. The double computation is more complex and
requires more time to be performed, as the Jetson Xavier integrated
GPU features half the number of Double Precision (DP) specialized
units compared to single precision [50]. This means that the memory is
accessed with a lower frequency as operations might be stalled waiting
for accessing DP units; since the memory accesses can be executed
concurrently with the computation, this results in a lower interference
impact.

In summary, other processes that run on the same board might affect
the execution time of the planner. While CPU co-running processes
affect execution times through memory interference, GPU co-running
contexts significantly increase the execution time of the observed pro-
cess due to difficult to manage GPU scheduling mechanisms. In case
13
there is the need to have multiple GPU accelerated processes running
on the same autonomous platform, the system engineer must either re-
organize all of its GPU implementations within a single process and
explicitly schedule streams, or multiple CUDA function calls can be
intercepted and scheduled with an ad-hoc software module acting on a
separate process [51].

6.6. Experiments on the f1tenth setup

We tested our implementation on the real setup of the F1tenth.
We measured the maximum speed the vehicle could reach using our
implementation compared to the baseline implementation on the CPU.
Moreover, we report the operating frequency reached by the planning
node.

Journal of Systems Architecture 154 (2024) 103239F. Muzzini et al.
Fig. 10. Average overall execution time (ms). Explicit copies vs UM.
In Table 5 we report the results of the experiment.
The reported frequency values follow our expectations and are

consistent with the trend shown in Section 6. Our GPU implementation
is faster than the baseline CPU implementation and by reducing the
precision type, the frequency of trajectory publishing of the algorithm
increases. The reported frequencies are related to the entire ROS node
execution, so they include the overhead of message reception and
transmission. For this reason, the frequencies do not significantly vary
if the precision type changes; the execution time differences reported
in Section 5 are dominated by the communication overhead, so any
further optimization would imply a complete rewrite of the software
stack to replace the communication middleware, which is not necessary
for our setup, since we already meet our performance requirements,
i.e., the sensor frequency.

The most interesting result is the maximum speed the vehicle can
achieve before crashing. The unexpected result arises from the fact
that, in the GPU version, the highest maximum speed is achieved by
the double implementation. In the described scenario, a more reactive
algorithm would normally perform better by avoiding collisions at
higher speeds compared to less reactive algorithms. Consequently, it
is expected that the half precision version of the algorithm will exhibit
the highest maximum speed as seen in the CPU variants. On the other
hand, looking at the results of the different precision types on GPU,
the maximum achieved speed decreases when the frequency increases.
This can be counter-intuitive, but the error introduced by the less
precise types must be considered. The error introduced by float and
half precision type reported in Section 6.3 is low and, as reported in
the same Section, does not impact the overall trajectory quality. On
the other hand, using the F1tenth simulator we are able to see the
effective impact of this error in a more realistic scenario. This implies
that frequency is an important factor just up to a specific point, beyond
which increasing the frequency does not necessarily result in a higher
maximum velocity. Rather, the latter factor is primarily influenced
14

by the accuracy of the trajectory. We outperformed our performance
Table 5
Result using the F1tenth simulator.

CPU
⟨double⟩

CPU
⟨float⟩

CPU
⟨half⟩

GPU
⟨double⟩

GPU
⟨float⟩

GPU
⟨half⟩

Frequency (Hz) 98 102 110 170 190 200
max speed (m/s) 2,2 2,25 2,27 2,44 2,36 2,31

constraints (i.e., to 170 Hz), so we can use this extra performance as a
‘‘trading token’’ for maximizing accuracy

In the end, the reported results show that in the CPU version
the vehicle behavior is more affected by the frequency. In the GPU
implementation, the error, albeit low, impacts the accuracy of the
trajectory of the vehicle. So the increased frequency does not enable
the vehicle to avoid sudden obstacles if the generated trajectory is less
precise. This leads us to believe that the best speed/accuracy trade-off
is achieved by using the double version of our GPU implementation,
as it leads to a higher computational frequency without sacrificing the
trajectory precision.

Moreover, we used our local path planner implementation in a real
F1tenth racing. The race was inserted into the International Conference
of Robotics and Automation (ICRA) 2023, held in London (UK)13. We
had two different opportunities to test the planner: during test sessions
and the head-to-head competition.

During the head-head competition, two cars raced on the same
track. Our planner worked well and we performed several overtaking.
In this phase, we won some races and we lost versus the vice-champion
for a couple of centiseconds. Moreover, our cars never lost track demon-
strating that our implementation achieved very good precision in gen-
erated trajectory.

In the test session, all cars are on the same track. This is not a
competition phase but, since more cars mean more obstacles, was a

13 https://www.icra2023.org/ accessed on 22 January 2024

https://www.icra2023.org/

Journal of Systems Architecture 154 (2024) 103239F. Muzzini et al.
Fig. 11. Average overall execution time (ms) with CPU and GPU interference.
Fig. 12. GPU context switch when more process uses the GPU. Green slots are the path planner process, grey slots are other interference processes.
good scenario to test our local path planner. In this scenario, some cars
were stopped while others were running, so there were both dynamic
and static obstacles. Moreover, in some cases, cars were very close to
each other, making it very difficult to avoid them at high speed. Our
car was able to avoid all of these situations making a very difficult
slalom demonstrating that our implementation is robust against more
obstacles.

Another opportunity to test our planner was in an exhibition race
performed at the ‘‘We Make Future 2023’’ in Rimini (Italy)14. At this
venue, we were able to set up a very large and complex track, with
both 15–20 mt straights, and sectors with very sharp turns. On this
track, we performed a race with three cars that competed on the same
track at the same time. Our car was able to avoid collisions also in

14 https://www.wemakefuture.it/2023/ accessed on 22 January 2024.
15
this situation and proved it can achieve maximum acceleration in long
straights, meaning that the planner can generate the faster trajectory
when there are no obstacles.

We report a short video of our planner behavior at this link15. Our
car is highlighted with the red triangle. The first snippet is an overtake
performed in the ‘‘We Make Future 2023’’ exhibition, and the second
is an obstacle avoidance demonstration performed during the test laps
at the ICRA 2023 race.

Tests in these real scenarios demonstrate that the achieved exe-
cution time meets the time constraints of a real racing; indeed our
car was able to react promptly when other vehicles were perceived
also in tricky scenarios such as blind turns or more cars close to each

15 https://drive.google.com/file/d/1O8KTBydvntkzGCeDFYesudMBngfTvz_
r/view?usp=sharing

https://www.wemakefuture.it/2023/
https://drive.google.com/file/d/1O8KTBydvntkzGCeDFYesudMBngfTvz_r/view?usp=sharing
https://drive.google.com/file/d/1O8KTBydvntkzGCeDFYesudMBngfTvz_r/view?usp=sharing

Journal of Systems Architecture 154 (2024) 103239F. Muzzini et al.
other. Some limitations has been found: since the car’s sensor cannot
perceive obstacles abreast the vehicle, during the overtake the planner
can compute a turn to return quickly on the best trajectory. This means
that the car will cut the road to the opponent. This is not safe and must
be avoided. One solution involves a F1tenth equipment redesign that
would introduce more sensors so to be able to cover the blind spots of
the car. In this way, the system will be able to see opponents during the
overtake. Unfortunately, this is not a possible solution since the F1tenth
rules impose fixed equipment for all racing cars. So is not possible
to add more sensors and the problem must be tackled using software
techniques only. We argue that it is possible to solve the problem by
adding opponents’ trajectory prediction to the system. In this way, the
planner can also consider the next obstacle position when it computes
the paths. We plan to implement this in future research.

7. Conclusion

In this work, we proposed a novel and optimized GPU implementa-
tion of the Frenet Path Planner algorithm. To the best of our knowledge,
this is the first implementation that ports the entire algorithm pipeline
on GPU. Moreover, we release the source code of our implementation.

We investigated the execution time of our implementation com-
pared to the baseline CPU implementation and we obtain a speedup
of up to 22x. Moreover, we investigated the execution time using
different data types: double, float, half. Regarding this aspect, we also
investigated the impact on trajectory precision when varying these data
types and we conducted an ablation study about the contribution of
the offloading of each phase to the GPU. Furthermore, we analyzed
the impact on the execution time using the Nvidia Unified Memory
approach; we then investigated the algorithm performance when other
co-running processes were interference on both system DRAM and GPU
compute resources.

Finally, we tested our implementation on a simulated racing sce-
nario based on the F1tenth competition but also in two real racing
events.

The results confirm that using our implementation with float or
half is convenient since the execution time decreases about 60% with
respect to double and synthetic experiments suggested that the error
over trajectory is not enough to compromise the algorithm efficacy.
By testing this in high-speed real world races, however, such as the
F1tenth competition, we realized how the sacrificed precision given by
the error introduced when moving from double to half or float impact
the maximum achieved speed in the presence of obstacles appearing
suddenly in the track. In this cases, we showed that using the double
precision type is the best trade-off.

In future work, we plan to integrate a trajectory prediction func-
tionality able to account for the surrounding vehicles; this constitutes
a promising approach in order to manage dynamic obstacles.

CRediT authorship contribution statement

Filippo Muzzini: Writing – review & editing, Writing – original
draft, Software, Methodology, Investigation, Conceptualization. Nicola
Capodieci: Writing – review & editing, Writing – original draft, Su-
pervision. Federico Ramanzin: Writing – original draft, Software,
Methodology, Investigation, Conceptualization. Paolo Burgio: Writing
– review & editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Link to open source code inside article.
16
Fig. A.13. Frenet coordinates.

Appendix A. Frenet Path Planner details

A.1. Frenet frame

Considering the position of a point on the curve at time 𝑡 as 𝑟(𝑡)
and 𝑙(𝑡) as the arc length traveled by the point at time 𝑡, it is possible
to represent 𝑡 as a function of 𝑙 using a function 𝑡 = 𝑓 (𝑙) so 𝑟(𝑡) can
be rewritten as 𝑟(𝑓 (𝑙)); in this way, time is not needed. The Frenet

Coordinates is formed by 𝑠 =
𝑑𝑟
𝑑𝑙

‖

𝑑𝑟
𝑑𝑙 ‖

, that is the tangent unit vector;

𝑑 =
𝑑𝑠
𝑑𝑙

‖

𝑑𝑠
𝑑𝑙 ‖

, that is the normal unit vector and 𝑏, that is the bi-normal
unit vector (𝑠 × 𝑑).

In the Frenet Path Planner 𝑠 and 𝑑 assume a different meaning,
they are used to represent the World coordinates of the point (𝑥 and
𝑦) in the new Frenet coordinates. Considering a point 𝑄 in the World
coordinates (𝑥, 𝑦); the 𝑠 represents the traveled distance on the reference
path (𝑅𝐸𝐹) and 𝑑 represents the orthogonal displacement from the 𝑄
projection on reference path (see Fig. A.13). The conversion from World
coordinates to Frenet coordinates can be done by projecting the point 𝑄
on the curve (calling it 𝑈). Because the curve can be seen as a 2D spline
function, it is possible to compute the projection and 𝑠 as the point
on the spline that minimizes the distance from 𝑄 using the Newton
Method. At this point, it is possible to retrieve 𝑑 as the distance 𝑄𝑈 (see
Fig. A.13). In the Frenet Planner the reference path can be represented
as a 2D spline, that is composed of two splines, one for each dimension
(𝑅𝐸𝐹𝑥, 𝑅𝐸𝐹𝑦).

A.2. Paths generation

The link that connects the actual state (𝑠0, 𝑑0) to the final state
(𝑠𝑓 , 𝑑𝑓) is a curve and it can be determined by the coefficients of
a fifth-degree polynomial for the lateral component (𝑑) and using a
fourth-degree polynomial for the longitudinal component (𝑠).

The sampling length of each of these values must be considered as
in Eq. (A.1) where 𝑎 ∈ 𝑁 .

�̇�𝑓 ∈ [𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥] | �̇�𝑓 = 𝑎 ⋅ 𝑉𝑠
𝑑𝑓 ∈ [𝐷𝑚𝑖𝑛, 𝐷𝑚𝑎𝑥] | 𝑑𝑓 = 𝑎 ⋅𝐷𝑠

𝑡𝑓 ∈ [𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥] | 𝑡𝑓 = 𝑎 ⋅ 𝑇𝑠

(A.1)

So we can construct the set of possible end states 𝑆𝑆𝑓 that include
all possible 𝑆𝑓 subject to the constraints expressed in (A.1). The path
that starts from 𝑆0 and ends in 𝑆𝑓 for each 𝑆𝑓 ∈ 𝑆𝑆𝑓 is computed
solving two different systems (one for 𝑑 and one for 𝑠) as in Eqs. (A.2)
and (A.3).

⎧

⎪

⎨

⎪

⎩

𝑑(𝑡) = 𝑑0 + �̇�0𝑡 +
1
2𝑑0𝑡

2 + 𝑎3𝑡3 + 𝑎4𝑡4 + 𝑎5𝑡5

�̇�(𝑡) = �̇�0 + 𝑑0𝑡 + 3𝑎3𝑡2 + 4𝑎4𝑡3 + 5𝑎5𝑡4

𝑑(𝑡) = 𝑑0 + 6𝑎3𝑡 + 12𝑎4𝑡2 + 20𝑎5𝑡3
(A.2)

{

�̇�(𝑡) = �̇�0 + �̈�0𝑡 + 3𝑎3𝑡2 + 4𝑎4𝑡3
2

(A.3)

�̈�(𝑡) = �̈�0 + 6𝑎3𝑡 + 12𝑎4𝑡

Journal of Systems Architecture 154 (2024) 103239F. Muzzini et al.
Fig. B.14. Roofline graph of Path Generation kernel.
Fig. B.15. Roofline graph of Collision Check kernel.
Fig. B.16. Roofline graph of Path Selection kernel (launched by the cuBlas function).
The coefficients 𝑎3, 𝑎4, 𝑎5 in the first system and 𝑎2, 𝑎3 in the second can
be found considering the variation of position, velocity, and accelera-
tion from 𝑆0 and 𝑆𝑓 . They are obtained by solving the linear systems
in Eqs. (A.4) and (A.5).

⎡

⎢

⎢

⎣

𝑇 3 𝑇 4 𝑇 5

3𝑇 2 4𝑇 3 5𝑇 4

6𝑇 12𝑇 2 20𝑇 3

⎤

⎥

⎥

⎦

×
⎡

⎢

⎢

⎣

𝑎3
𝑎4
𝑎5

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑑𝑓 − (𝑑0 + �̇�0𝑇 + 1
2𝑑0𝑇

2)
�̇�𝑓 − (�̇�0 + 𝑑0𝑇)

𝑑𝑓 − 𝑑0

⎤

⎥

⎥

⎦

(A.4)

[

3𝑇 2 4𝑇 3

6𝑇 12𝑇 2

]

×
[

𝑎3
𝑎4

]

=
[

�̇�𝑓 − (�̇�0 + �̈�0𝑇)
�̈�𝑓 − �̈�0

]

(A.5)

Once the functions to retrieve position, velocity, and acceleration
for both 𝑠 and 𝑑 are constructed, it is possible to discretize the path in
𝑓 points, so to define a list of path points 𝑃 = [𝑝0, 𝑝1,… , 𝑝𝑓]. Such a
discretization is performed with 𝑇𝑠. Eventually, the set of possible paths
𝑃𝑆 is computed as in Algorithm 1.

Each path 𝑃 = [𝑝0, 𝑝1,… , 𝑝𝑓] has an associated cost used to deter-
mine which of the generated paths is the best. The cost 𝐶 is computed
as in Eq. (A.6).

𝐽𝑠 =
∑

𝑝∈𝑃
𝑝.𝑠2

𝐽𝑑 =
∑

𝑝∈𝑃
𝑝.𝑑2

𝑑𝑠 = (𝑉𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑝𝑓 .�̇�)2

𝐶𝑑 = 𝑘𝑗 ⋅ 𝐽𝑑 + 𝑘𝑡 ⋅ 𝑡𝑓 + 𝑘𝑑 ⋅ 𝑝𝑓 .𝑑
2

𝐶𝑠 = 𝑘𝑗 ⋅ 𝐽𝑠 + 𝑘𝑡 ⋅ 𝑡𝑓 + 𝑘𝑑 ⋅ 𝑑𝑠

𝐶 = 𝐾𝑙𝑎𝑡 ⋅ 𝐶𝑑 +𝐾𝑙𝑜𝑛 ⋅ 𝐶𝑠

(A.6)

𝐽𝑠 represents the sum of longitudinal jerk and 𝐽𝑑 of the lateral jerk. 𝑑𝑠
is the squared difference between the end speed and the desired speed
17
𝑉𝑡𝑎𝑟𝑔𝑒𝑡. 𝐶𝑑 is the cost on the lateral side and it is composed of the lateral
jerk and the distance of the last point 𝑝𝑓 from the reference path. 𝐶𝑠 is
the cost on the longitudinal side and it is composed of the longitudinal
jerk and the speed difference 𝑑𝑠. Moreover, both 𝐶𝑠 and 𝐶𝑑 considers
also the final time of the path 𝑡𝑓 . This penalizes long paths in terms of
time, indeed, a path with a huge 𝑡𝑓 implies that the endpoint will be
reached slowly, so it is preferable to a path with smaller 𝑡𝑓 . The final
cost 𝐶 is the sum of the lateral and the longitudinal costs. Each cost
component has a multiplication factor as a parameter: such a parameter
is used to tune the importance of each cost component. In particular,
𝑘𝑗 is the multiplication factor for the jerk components, 𝑘𝑡 for the time
components, and 𝑘𝑑 for the displacement components. Moreover, 𝐾𝑙𝑎𝑡
and 𝐾𝑙𝑜𝑛 are the multiplication factors for lateral and longitudinal costs.

The path 𝑃 is expressed in Frenet Coordinates, therefore it must be
reconverted back to World coordinates. The conversion of a point 𝑝 ∈ 𝑃
is shown in Eq. (A.7).

𝐼𝑥 = 𝑅𝐸𝐹𝑥(𝑝.𝑠)

𝐼𝑦 = 𝑅𝐸𝐹𝑦(𝑝.𝑠)

𝑦𝑎𝑤 = 𝑎𝑡𝑎𝑛2(�̇�𝐸𝐹𝑦(𝑝.𝑠), �̇�𝐸𝐹𝑥(𝑝.𝑠))

𝑥 = 𝐼𝑥 − (𝑝.𝑑 ⋅ 𝑠𝑖𝑛(𝑦𝑎𝑤))

𝑦 = 𝐼𝑦 − (𝑝.𝑑 ⋅ 𝑐𝑜𝑠(𝑦𝑎𝑤))

(A.7)

Where 𝑅𝐸𝐹𝑥 and 𝑅𝐸𝐹𝑦 are the components of the reference curve as
a Spline.

A.3. Collision check

Considering a set of obstacles 𝑂𝐵 = {𝑜𝑏1, 𝑜𝑏2,… , 𝑜𝑏𝑛} and an
obstacles radius 𝑂𝑅, a path 𝑃 is considered acceptable if and only if

Journal of Systems Architecture 154 (2024) 103239F. Muzzini et al.
each path point 𝑝 ∈ 𝑃 has a distance larger than a safe distance 𝑆𝐷
from each obstacle as in Eq. (A.8).
√

(𝑝.𝑥 − 𝑜𝑏.𝑥)2 + (𝑝.𝑦 − 𝑜𝑏.𝑦)2 − 𝑂𝑅 > 𝑆𝐷 𝑝 ∈ 𝑃 , 𝑜𝑏 ∈ 𝑂𝐵 (A.8)

Eventually, a subset of paths 𝑃𝑆′ ⊆ 𝑃𝑆 containing the acceptable
paths is constructed. From 𝑃𝑆′ the best path, based on the cost 𝐶
computed in Eq. (A.6), is then extracted.

Appendix B. Roofline model

See Figs. B.14–B.16.

Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.sysarc.2024.103239.

References

[1] Sae International, Taxonomy and definitions for terms related to driving au-
tomation systems for on-road motor vehicles, SAE Int. 4970 (724) (2018)
1–5.

[2] Ayoub Raji, Alexander Liniger, Andrea Giove, Alessandro Toschi, Nicola Musiu,
Daniele Morra, Micaela Verucchi, Danilo Caporale, Marko Bertogna, Motion
planning and control for multi vehicle autonomous racing at high speeds, in:
2022 IEEE 25th International Conference on Intelligent Transportation Systems,
ITSC, IEEE, 2022, pp. 2775–2782.

[3] Tim Stahl, Alexander Wischnewski, Johannes Betz, Markus Lienkamp, Multilayer
graph-based trajectory planning for race vehicles in dynamic scenarios, in:
2019 IEEE Intelligent Transportation Systems Conference, ITSC, IEEE, 2019, pp.
3149–3154.

[4] Micaela Verucchi, Luca Bartoli, Fabio Bagni, Francesco Gatti, Paolo Burgio,
Marko Bertogna, Real-time clustering and LiDAR-camera fusion on embedded
platforms for self-driving cars, in: 2020 Fourth IEEE International Conference on
Robotic Computing, IRC, IEEE, 2020, pp. 398–405.

[5] David González, Joshué Pérez, Vicente Milanés, Fawzi Nashashibi, A review of
motion planning techniques for automated vehicles, IEEE Trans. Intell. Transp.
Syst. 17 (4) (2015) 1135–1145.

[6] Filippo Muzzini, Nicola Capodieci, Federico Ramanzin, Paolo Burgio, Optimized
local path planner implementation for GPU-accelerated embedded systems, IEEE
Embedded Syst. Lett. (2023).

[7] Min Seong Kim, Jeon Hyeok Lee, Taek Lim Kim, Tae-Hyoung Park, Frenet
frame based local motion planning in racing environment, in: 2023 23rd
International Conference on Control, Automation and Systems, ICCAS, IEEE,
2023, pp. 951–957.

[8] Rudolf Reiter, Martin Kirchengast, Daniel Watzenig, Moritz Diehl, Mixed-integer
optimization-based planning for autonomous racing with obstacles and rewards,
IFAC-PapersOnLine 54 (6) (2021) 99–106.

[9] Bruce Donald, Patrick Xavier, John Canny, John Reif, Kinodynamic motion
planning, J. ACM 40 (5) (1993) 1048–1066.

[10] Steven M. LaValle, James J. Kuffner, Randomized Kinodynamic Planning, Int. J.
Robot. Res. 20 (5) (2001) 378–400.

[11] Julius Ziegler, Christoph Stiller, Spatiotemporal state lattices for fast trajectory
planning in dynamic on-road driving scenarios, in: 2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IEEE, St. Louis, MO, USA, 2009,
pp. 1879–1884.

[12] Ji-wung Choi, Renwick E. Curry, Gabriel Hugh Elkaim, Continuous curvature
path generation based on Bézier curves for autonomous vehicles, IAENG Int. J.
Appl. Math. 40 (2) (2010).

[13] Julius Ziegler, Philipp Bender, Thao Dang, Christoph Stiller, Trajectory planning
for Bertha — A local, continuous method, in: 2014 IEEE Intelligent
Vehicles Symposium Proceedings, IEEE, MI, USA, 2014, pp. 450–457.

[14] Volkan Sezer, Metin Gokasan, A novel obstacle avoidance algorithm:‘‘Follow the
Gap Method’’, Robot. Auton. Syst. 60 (9) (2012) 1123–1134.

[15] Mihail Pivtoraiko, Ross A. Knepper, Alonzo Kelly, Differentially constrained
mobile robot motion planning in state lattices, J. Field Robotics 26 (3) (2009)
308–333.

[16] Christian Gotte, Martin Keller, Carsten Hass, Karl-Heinz Glander, Alois Seewald,
Torsten Bertram, A model predictive combined planning and control approach
for guidance of automated vehicles, in: 2015 IEEE International Conference on
Vehicular Electronics and Safety, ICVES, IEEE, Yokohama, Japan, 2015, pp.
18

69–74.
[17] Sterling J. Anderson, Sisir B. Karumanchi, Karl Iagnemma, Constraint-based
planning and control for safe, semi-autonomous operation of vehicles, in: 2012
IEEE Intelligent Vehicles Symposium, IEEE, Alcal de Henares, Madrid, Spain,
2012, pp. 383–388.

[18] P. Fiorini, Z. Shiller, Time optimal trajectory planning in dynamic environments,
in: Proceedings of IEEE International Conference on Robotics and Automation,
vol. 2, IEEE, Minneapolis, MN, USA, 1996, pp. 1553–1558.

[19] Alonzo Kelly, Bryan Nagy, Reactive Nonholonomic trajectory generation via
Parametric Optimal control, Int. J. Robot. Res. 22 (7–8) (2003) 583–601.

[20] Matthew McNaughton, Chris Urmson, John M. Dolan, Jin-Woo Lee, Motion plan-
ning for autonomous driving with a conformal spatiotemporal lattice, in: 2011
IEEE International Conference on Robotics and Automation, IEEE, Shanghai,
China, 2011, pp. 4889–4895.

[21] Wenda Xu, Junqing Wei, John M. Dolan, Huijing Zhao, Hongbin Zha, A real-time
motion planner with trajectory optimization for autonomous vehicles, in: 2012
IEEE International Conference on Robotics and Automation, IEEE, St Paul, MN,
USA, 2012, pp. 2061–2067.

[22] Thomas Heil, Alexander Lange, Stephanie Cramer, Adaptive and efficient lane
change path planning for automated vehicles, in: 2016 IEEE 19th International
Conference on Intelligent Transportation Systems, ITSC, IEEE, Rio de Janeiro,
Brazil, 2016, pp. 479–484.

[23] Felix von Hundelshausen, Michael Himmelsbach, Falk Hecker, Andre Mueller,
Hans-Joachim Wuensche, Driving with tentacles: Integral structures for sensing
and motion, J. Field Robotics 25 (9) (2008) 640–673.

[24] Moritz Werling, Julius Ziegler, Sören Kammel, Sebastian Thrun, Optimal trajec-
tory generation for dynamic street scenarios in a frenet frame, in: 2010 IEEE
International Conference on Robotics and Automation, IEEE, Anchorage, AK,
2010, pp. 987–993.

[25] Steven M. LaValle, et al., Rapidly-exploring Random Trees: A New Tool for Path
Planning, Ames, IA, USA, 1998.

[26] Y. Kuwata, G.A. Fiore, J. Teo, E. Frazzoli, J.P. How, Motion planning for urban
driving using RRT, in: 2008 IEEE/RSJ International Conference on Intelligent
Robots and Systems, IEEE, Nice, 2008, pp. 1681–1686.

[27] Ulrich Schwesinger, Martin Rufli, Paul Furgale, Roland Siegwart, A sampling-
based partial motion planning framework for system-compliant navigation along
a reference path, in: 2013 IEEE Intelligent Vehicles Symposium (IV), IEEE, Gold
Coast City, Australia, 2013, pp. 391–396.

[28] Luke Fletcher, Seth Teller, Edwin Olson, David Moore, Yoshiaki Kuwata,
Jonathan How, John Leonard, Isaac Miller, Mark Campbell, Dan Huttenlocher,
et al., The MIT–Cornell collision and why it happened, J. Field Robotics 25 (10)
(2008) 775–807.

[29] Majid Moghadam, Gabriel Hugh Elkaim, An Autonomous driving framework
for Long-Term Decision-Making and Short-Term trajectory planning on Frenet
Space, in: 2021 IEEE 17th International Conference on Automation Science and
Engineering, CASE, IEEE, Lyon, France, 2021, pp. 1745–1750.

[30] Michiel J. Van Nieuwstadt, Richard M. Murray, Real-time trajectory generation
for differentially flat systems, Int. J. Robust Nonlinear Control: IFAC-Affil. J. 8
(11) (1998) 995–1020.

[31] E. Burns, S. Lemons, W. Ruml, R. Zhou, Best-first heuristic search for multicore
machines, J. Artificial Intelligence Res. 39 (2010) 689–743.

[32] Steffen Heinrich, Andre Zoufahl, Raul Rojas, Real-time trajectory optimization
under motion uncertainty using a GPU, in: 2015 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, IROS, IEEE, Hamburg, Germany, 2015,
pp. 3572–3577.

[33] Avi Bleiweiss, GPU accelerated pathfinding, in: Proceedings of the 23rd ACM
SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware, 2008, pp.
65–74.

[34] Joseph T. Kider, Mark Henderson, Maxim Likhachev, Alla Safonova, High-
dimensional planning on the GPU, in: 2010 IEEE International Conference on
Robotics and Automation, IEEE, Anchorage, AK, 2010, pp. 2515–2522.

[35] Ugur Cekmez, Mustafa Ozsiginan, Ozgur Koray Sahingoz, A UAV path planning
with parallel ACO algorithm on CUDA platform, in: 2014 International Confer-
ence on Unmanned Aircraft Systems, ICUAS, IEEE, Orlando, FL, USA, 2014, pp.
347–354.

[36] Daniele Palossi, Andrea Marongiu, Luca Benini, On the accuracy of near-optimal
GPU-based path planning for UAVs, in: Proceedings of the 20th International
Workshop on Software and Compilers for Embedded Systems, ACM, Sankt Goar
Germany, 2017, pp. 85–88.

[37] Jörg Fickenscher, Sandra Schmidt, Frank Hannig, Mohamed Bouzouraa, Jürgen
Teich, Path planning for highly automated driving on embedded GPUs, J. Low
Power Electron. Appl. 8 (4) (2018) 35.

[38] Nicola Capodieci, Roberto Cavicchioli, Andrea Marongiu, A taxonomy of modern
GPGPU programming methods: on the benefits of a unified specification, IEEE

Trans. Comput.-Aided Des. Integr. Circuits Syst. 41 (6) (2021) 1649–1662.

https://doi.org/10.1016/j.sysarc.2024.103239
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb1
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb1
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb1
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb1
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb1
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb2
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb2
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb2
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb2
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb2
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb2
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb2
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb2
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb2
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb3
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb3
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb3
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb3
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb3
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb3
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb3
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb4
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb4
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb4
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb4
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb4
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb4
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb4
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb5
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb5
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb5
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb5
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb5
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb6
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb6
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb6
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb6
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb6
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb7
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb7
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb7
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb7
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb7
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb7
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb7
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb8
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb8
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb8
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb8
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb8
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb9
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb9
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb9
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb10
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb10
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb10
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb11
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb11
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb11
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb11
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb11
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb11
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb11
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb12
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb12
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb12
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb12
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb12
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb13
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb13
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb13
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb13
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb13
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb14
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb14
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb14
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb15
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb15
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb15
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb15
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb15
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb16
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb16
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb16
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb16
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb16
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb16
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb16
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb16
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb16
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb17
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb17
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb17
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb17
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb17
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb17
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb17
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb18
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb18
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb18
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb18
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb18
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb19
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb19
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb19
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb20
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb20
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb20
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb20
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb20
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb20
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb20
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb21
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb21
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb21
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb21
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb21
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb21
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb21
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb22
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb22
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb22
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb22
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb22
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb22
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb22
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb23
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb23
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb23
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb23
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb23
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb24
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb24
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb24
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb24
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb24
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb24
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb24
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb25
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb25
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb25
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb26
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb26
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb26
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb26
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb26
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb27
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb27
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb27
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb27
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb27
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb27
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb27
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb28
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb28
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb28
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb28
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb28
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb28
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb28
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb29
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb29
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb29
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb29
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb29
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb29
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb29
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb30
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb30
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb30
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb30
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb30
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb31
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb31
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb31
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb32
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb32
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb32
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb32
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb32
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb32
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb32
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb33
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb33
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb33
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb33
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb33
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb34
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb34
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb34
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb34
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb34
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb35
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb35
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb35
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb35
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb35
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb35
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb35
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb36
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb36
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb36
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb36
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb36
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb36
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb36
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb37
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb37
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb37
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb37
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb37
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb38
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb38
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb38
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb38
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb38

Journal of Systems Architecture 154 (2024) 103239F. Muzzini et al.
[39] Ignacio Sañudo Olmedo, Nicola Capodieci, Jorge Luis Martinez, Andrea
Marongiu, Marko Bertogna, Dissecting the CUDA scheduling hierarchy: a perfor-
mance and predictability perspective, in: 2020 IEEE Real-Time and Embedded
Technology and Applications Symposium, RTAS, IEEE, 2020, pp. 213–225.

[40] Yongbin Gu, Wenxuan Wu, Yunfan Li, Lizhong Chen, Uvmbench: A comprehen-
sive benchmark suite for researching unified virtual memory in gpus, 2020, arXiv
preprint arXiv:2007.09822.

[41] Jake Choi, Hojun You, Chongam Kim, Heon Young Yeom, Yoonhee Kim,
Comparing unified, pinned, and host/device memory allocations for memory-
intensive workloads on Tegra SoC, Concurr. Comput.: Pract. Exper. 33 (4) (2021)
e6018.

[42] Soroush Bateni, Zhendong Wang, Yuankun Zhu, Yang Hu, Cong Liu, Co-
optimizing performance and memory footprint via integrated cpu/gpu memory
management, an implementation on autonomous driving platform, in: 2020 IEEE
Real-Time and Embedded Technology and Applications Symposium, RTAS, IEEE,
2020, pp. 310–323.

[43] F. Frenet, Sur les courbes a double courbure, J. math. pures appl. (1852)
437–447.

[44] J.-A. Serret, Sur quelques formules relatives à la théorie des courbes à double
courbure, J. math. pures appl. (1851) 193–207.

[45] IEEE standard for floating-point arithmetic, 2019, pp. 1–84, http://dx.doi.org/10.
1109/IEEESTD.2019.8766229, IEEE Std 754-2019 (Revision of IEEE 754-2008).

[46] Nicola Capodieci, Roberto Cavicchioli, Ignacio Sañudo Olmedo, Marco Solieri,
Marko Bertogna, Contending memory in heterogeneous SoCs: Evolution in
NVIDIA Tegra embedded platforms, in: 2020 IEEE 26th International Conference
on Embedded and Real-Time Computing Systems and Applications, RTCSA, IEEE,
2020, pp. 1–10.

[47] Matthew O’Kelly, Varundev Sukhil, Houssam Abbas, Jack Harkins, Chris Kao,
Yash Vardhan Pant, Rahul Mangharam, Dipshil Agarwal, Madhur Behl, Paolo
Burgio, Marko Bertogna, F1/10: an open-source autonomous cyber-physical
platform, 2019, CoRR abs/1901.08567, arXiv:1901.08567, http://arxiv.org/abs/
1901.08567.

[48] Anis Koubaa (Ed.), Robot operating system (ROS): the complete reference (vol-
ume 6), in: Studies in Computational Intelligence, vol. 962, Springer International
Publishing, Cham, 2021.

[49] Nicola Capodieci, Roberto Cavicchioli, Marko Bertogna, Aingara Paramakuru,
Deadline-based scheduling for GPU with preemption support, in: 2018 IEEE
Real-Time Systems Symposium, RTSS, IEEE, 2018, pp. 119–130.

[50] Hamid Tabani, Fabio Mazzocchetti, Pedro Benedicte, Jaume Abella, Fran-
cisco J Cazorla, Performance analysis and optimization opportunities for Nvidia
automotive GPUS, J. Parallel Distrib. Comput. 152 (2021) 21–32.

[51] Cheol-Ho Hong, Ivor Spence, Dimitrios S. Nikolopoulos, GPU virtualization and
scheduling methods: A comprehensive survey, ACM Comput. Surv. 50 (3) (2017)
1–37.
19
Filippo Muzzini is a postdoc researcher at the HiPeRT-
Lab of the University of Modena and Reggio Emilia, Italy.
His scientific interests are about distributed systems and
algorithms optimization in parallel and heterogeneous em-
bedded systems with emphasis in the fields of autonomous
vehicles and smart cities.

Nicola Capodieci is an associate researcher at the HiPeRT-
Lab of the University of Modena and Reggio Emilia, Italy.
His main research interests range from distributed systems
to languages, architectures and programming models for
GPUs with applications in real-time embedded systems.

Federico Ramanzin is a graduate student collaborating
with the HiPeRT-Lab of the University of Modena and
Reggio Emilia, Italy. His main research interests are about
trajectory planning for autonomous vehicle in embedded
system.

Paolo Burgio has been with HiPeRT-Lab, University of
Modena and Reggio Emilia, Modena, Italy, since 2014.
His research interests include next-generation predictable
systems based on heterogeneous many-cores and GP-GPUs,
with an eye on compilers, and parallel programming mod-
els. Burgio has a Ph.D. in Electronics Engineering from
the Universitá di Bologna, Italy, and the Université de
Bretagne-Súd, France. He is a member of IEEE.

http://refhub.elsevier.com/S1383-7621(24)00176-0/sb39
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb39
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb39
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb39
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb39
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb39
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb39
http://arxiv.org/abs/2007.09822
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb41
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb41
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb41
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb41
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb41
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb41
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb41
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb42
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb42
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb42
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb42
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb42
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb42
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb42
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb42
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb42
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb43
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb43
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb43
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb44
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb44
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb44
http://dx.doi.org/10.1109/IEEESTD.2019.8766229
http://dx.doi.org/10.1109/IEEESTD.2019.8766229
http://dx.doi.org/10.1109/IEEESTD.2019.8766229
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb46
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb46
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb46
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb46
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb46
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb46
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb46
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb46
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb46
http://arxiv.org/abs/1901.08567
http://arxiv.org/abs/1901.08567
http://arxiv.org/abs/1901.08567
http://arxiv.org/abs/1901.08567
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb48
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb48
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb48
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb48
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb48
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb49
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb49
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb49
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb49
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb49
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb50
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb50
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb50
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb50
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb50
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb51
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb51
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb51
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb51
http://refhub.elsevier.com/S1383-7621(24)00176-0/sb51

	GPU implementation of the Frenet Path Planner for embedded autonomous systems: A case study in the F1tenth scenario
	Introduction
	Related Work
	Planning
	Frenet Path Planner
	Background on GPU and CUDA

	Frenet Path Planner
	Overview
	Frenet Coordinates
	Paths Generation
	Collision Check

	Our Implementation
	Paths Generation
	Collision Check

	Experiments
	Hardware platforms
	Algorithm Execution Time
	Ablation Study
	Algorithm Precision
	Impact of Nvidia UM
	Impact of interference
	Experiments on the F1tenth setup

	Results
	Algorithm Execution Time
	Ablation Study
	Algorithm Precision
	Impact of Nvidia UM
	Impact of interference
	Experiments on the F1tenth setup

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix A. Frenet Path Planner Details
	Frenet Frame
	Paths Generation
	Collision Check

	Appendix B. Roofline Model
	Appendix C. Supplementary data
	References

