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Highlights

Predicting gene expression levels from DINA sequences and post-
transcriptional information with transformers

Vittorio Pipoli, Mattia Cappelli, Alessandro Palladini, Carlo Peluso, Marta
Lovino, Elisa Ficarra

e Predicting gene expression levels is crucial due to its clinic applications.

e Post-transcriptional processes are essential in understanding the gene
expression regulatory mechanisms.

e Previous models do not include post-transcriptional information.

e We present Transformer DeepLncLoc (a transformer-based architec-
ture) to predict gene expression levels from DNA sequences and tran-
scription factors post transcriptional regulation.

e Transformer DeepLncLoc reached 0.76 of the R2 evaluation metric,
outperforming existing methods.

e Transcription factor post-transcriptional regulation resulted in a mas-
sive performance boost.
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Abstract

Background and Objectives: In the latest years, the prediction of gene ex-
pression levels has been crucial due to its potential applications in the clinics.
In this context, Xpresso and others methods based on Convolutional Neu-
ral Networks and Transformers were firstly proposed to this aim. However,
all these methods embed data with a standard one-hot encoding algorithm,
resulting in impressively sparse matrices. In addition, post-transcriptional
regulation processes, which are of uttermost importance in the gene expres-
sion process, are not considered in the model.

Methods: This paper presents Transformer DeepLncLoc, a novel method
to predict the abundance of the mRNA (i.e., gene expression levels) by
processing gene promoter sequences, managing the problem as a regression
task. The model exploits a transformer-based architecture, introducing the
DeepLnclLoc method to perform the data embedding. Since DeepLncloc is
based on word2vec algorithm, it avoids the sparse matrices problem.
Results: Post-transcriptional information related to mRNA stability and
transcription factors is included in the model, leading to significantly im-
proved performances compared to the state-of-the-art works. Transformer
DeepLncLoc reached 0.76 of R? evaluation metric compared to 0.74 of Xpresso.
Conclusion: The Multi-Headed Attention mechanisms which characterizes
the transformer methodology is suitable for modeling the interactions be-
tween DNA’s locations, overcoming the recurrent models. Finally, the inte-
gration of the transcription factors data in the pipeline leads to impressive
gains in predictive power.
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1. Introduction

Gene expression is the process of producing a functional product from the
instructions stored in the DNA. Predicting the abundance levels of these
products - so, predicting the gene expression levels - is crucial for several
applications, from drug discovery to pathway enrichment analysis.

Several studies proposed Machine Learning approaches to predict gene ex-
pression. This challenge can be addressed by exploiting sophisticated Deep
Learning architectures on DNA reference sequences [1], 2, [3] 4, [T1].

In detail, Convolutional Neural Networks (CNNs) were extensively adopted
to address specific tasks, ranging from predicting tissue-specific expression
from long promoter-proximal sequences (ExPecto, Zouh et al., 2018 [I]) to
predicting the gene expression raw counts from CAGE and ChIP-seq exper-
iments (Basenji, Kelley et al., 2018 [2]).

ExPecto [I] predicts tissue-specific expression from a wide regulatory region
of 40-kbp promoter-proximal sequences and which genes are mutated. On
the other hand, Basenji [2] is based on dilated convolutional filters that spot
longer relationships in the inputs concerning standard convolutions. How-
ever, the limited receptive field of the Convolutional Networks (CNN) can
not compete with the MultiHeaded Attention layer of a Transformer architec-
ture [6], even using dilated filters. In addition, its main limitation consists in
the use of cell line data that are more homogeneous than data from human
tissues.

Regarding the solutions for predicting gene expression levels directly from
the DNA sequence, Xpresso (Agarwal and Shendure [I1], 2018) is the most
complete, accessible, and reproducible project. Xpresso’s [11] architecture
is based on CNNs and, the hyperparameters were optimized using a meta-
heuristic approach. Indeed, a small change in one of the hyperparameters
can substantially decrease the performance and lower the stability and ro-
bustness of the architecture.

Cutting-edge deep architectures were then proposed bringing further im-
provements. The Enformer network (Avsec et al., 2021 [4]) takes steps for-
ward compared to Basenji by introducing a Transformer architecture [6] to
integrate long-range interactions in the genome.



A common limitation of all the cited models is the embedding of the input
sequences. Every model uses a one-hot encoding, which leads to sparse ma-
trices, which are not very informative.

Here, we propose some alternatives based on Word2Vec embeddings [9] and

a domain-specific embedding method called DeepLncLoc [§].

In addition, we present an innovative pipeline called Transformer DeepLncLoc.
Such a method relies on the transformer’s [6] capability of modeling long-
range dependencies and a task-aware embedding, overcoming the classical
CNN-based solutions. As its name suggests, it is built on top of the DeepLncLoc
embedding [8] and a vanilla Transformer Encoder Block [6].

Moreover, we propose two additional reference models, used as baselines for
further evaluation.

The baseline architectures are:

e LSTM DeepLncLoc is an LSTM-based network fed with DeepLncLoc
embedded data, used as a baseline for evaluating the DeepLncLoc em-

bedding method [g].

e DivideEtImpera is an experimental model whose aim is to find a
more stable Convolutional-based solution, which will be compared di-
rectly with Xpresso [11].

Furthermore, in this paper, transcription factors data are integrated with the
model, leading to a significant improvement in gene expression prediction.
Transcription factors are proteins that regulate the transcription rate of ge-
netic information from DNA to messenger RNA. Eukaryotic transcription
factors work by binding to their target DNA site, located near their target
genes, to recruit or block the transcription machinery onto the promoter re-
gion of the gene of interest. Their function relies on the ability to find their
target site quickly and selectively [16], [17].

The rest of the paper is structured as follows. refers to the data used
for the training phase of the models and their main characteristics. After-

wards we present the and their [Results. At the end, a
and part is provided.



Data

The dataset is obtained from the Xpresso paper[I1], and contains about
18000 gene sequences with their expression values already processed and eas-
ily usable.

Xpresso’s authors refers to these gene’s sequences with the name of promot-
ers, that are sequences of DNA located upstream the Transcription Start
Site (T'SS)[14], usually 100-1000 base pairs long, containing specific DNA
sequences that provide a secure initial binding site for RNA polymerase and
proteins called transcription factors recruiting RNA polymerase. Neverthe-
less, the actual dataset’s sequences contains other DNA regions with respect
to the promoters such as the neighborood of the TSS and the codifying part.
Indeed, in Xpresso, gene sequences contain 20000bp for each gene (10000bp
upstream and 10000 downstream the T'SS) and not the promoter part only.
Furthermore, Xpresso performs a fine-tuning of the promoter region, identi-
fying 7000bp upstream and 3500bp downstream the TSS as the best interval
to predict gene expression.

Xpresso model, in addition to the gene sequences, exploits for each gene some
extra information, named mRNA half-life features, to predict the gene ex-
pression levels.

The half-life of mRNAs is " the time required for degrading 50% of the existing
mRNA molecules” [12]. Knowledge of the half-life of mRNA could poten-
tially provide information about the stability of different types of mRNA.
The half-life of mRNA is challenging to be determined experimentally be-
cause an mRNA molecule is short-lived (between 3 and 8 minutes). How-
ever, equations describing the decay of mRNA and the growth of cells can
be used to estimate the mRNA half-life. Indeed, the information collected
in the Xpresso paper refer to 8 values that could explain the variability of
mRNA half-lives [11], such as: coding exon density, 5 UTR G/C content, 3’
UTR G/C content, ORF G/C content, 5" UTR length, 3’ UTR length, ORF
length, intron length. In molecular biology and genetics, GC-content (or
guanine-cytosine content) is the percentage of nitrogenous bases in a DNA
or RNA molecule that are either guanine (G) or cytosine (C)[19]. Within
two years of their discovery in 1977, introns were found to affect gene ex-
pression positively. Indeed, distributions of the length and matching rate of
optimally matched intron segments are consistent with sequence features of
miRNA and siRNA[20]. These results indicate that the interaction between
intron sequences and mRNA sequences is a kind of functional RNA-RNA



interaction[20]. In molecular genetics, an open reading frame (ORF) is the
part of a reading frame that can be translated. An ORF is a continuous
stretch of codons that may[21] begin with a start codon (usually AUG) and
ends at a stop codon (usually UAA, UAG, or UGA)[22]. In addition, an ATG
codon (AUG in terms of RNA) within the ORF (not necessarily the first)
may indicate where translation starts. One common use of open reading
frames (ORF's) is evidence to assist in gene prediction. Long ORFs are often
used, along with other evidence, to initially identify candidate protein-coding
regions or functional RNA-coding regions in a DNA sequence [23]. However,
the presence of an ORF does not necessarily mean that the region is always
translated. For example, in a randomly generated DNA sequence with an
equal percentage of each nucleotide, a stop-codon would be expected once
every 21 codons [23].

Trascription factors

As previously mentioned, a Transcription Factor (TF) is a protein that con-
trols the rate of transcription of genetic information from DNA to messenger
RNA by binding to a specific DNA sequence [16] [17]. Hence, such informa-
tion is related to the gene expression [I§].

Therefore, TFs are exploited in the proposed method and integrated into the
DL architecture.

Transcription factors information were retrieved from the ENCODE Tran-
scription Factor Targets|dataset [15], which provides the associations between
22449 distinct genes and their related transcription factors. Unfortunately,
the ENCODE database contains only 181 distinct transcription factors (con-
cerning the 1600 transcription factors present in the human genome) [29].
In this work, a presence-absence matrix is created leveraging the ENCODE
database [15], containing the transcription factor information. An example
of the TF matrix is reported in Table (1} where the rows correspond to the
22449 genes and the columns to the 181 transcription factors. The value in
position z;; is equal to 1 if gene 7 is targeted by transcription factor j, 0
otherwise.

Experimental conditions

In this work, three experimental conditions were considered to predict gene
expression levels:

e using gene sequence promoter information only;


https://maayanlab.cloud/Harmonizome/dataset/ENCODE+Transcription+Factor+Targets

TF-1 | TF-2 | TF-3 | .... | TF-M
GENE-1 0 1 1 1
GENE-2 1 1 0 . 1
GENE-N 0 0 0 e 0

Table 1: TF's table integrated in the proposed model. The rows correspond to the 22449
genes and the columns to the 181 transcription factors. The value in position z;; is equal
to 1 if gene ¢ is targeted by transcription factor j, 0 otherwise.

e using gene sequence promoters and half-life features information;

e using gene sequence promoters, half-life features and transcrip-
tion factors information.

Hence, the section refers to the performances of Transformer DeepLncLoc,
LSTM DeepLncLoc, and DivideEtImpera architectures in these three condi-
tions.

Methods

In this section, the base encoding DeepLncLoc is presented. Then, the pro-
posed method Transformer DeepLncLoc and the two baseline architectures
are described.

DeepLncLoc

DeepLncLoc [§] is a domain-specific embedding used to synthesize informa-
tion of long sequences of nucleotides in a compact fashion. It was initially
proposed in the paper ”DeepLncLoc: a deep learning framework for long
non-coding RNA subcellular localization prediction based on subsequence
embedding” [8].

The embedding process is defined as follows.

1. The sequences are divided in k-mer[10] of 3 to create a vocabulary. The
total number of distinct 3-mer for ATCG nucleotides is 64.
This vocabulary is then processed by the word2vec algorithm [9] which
associates each different 3-mer to a vector of length embedding size.
The result is an embedding matrix of shape (3-mer, embedding size),
which in our specific case is 64x64. Those values were found via hyper-
parameter tuning.



2. The data is cleverly reshaped to preserve the order of the sequences. Ini-
tially, the data are divided into consecutive slices of an arbitrary length
L, which is a hyperparameter: the values [50, 100, 105, 140, 150, 210]
were evaluated on the validation set, and the best value resulted in
being 210. Hence, the initial sequence of dimension 10500 will be em-
bedded into a matrix of 210 slices, and each slice will be 50 elements
long. Afterward, each subsequence is converted in a k-mer form, and
for each triplet, the respective embedding vector is associated. We can
represent each subsequence with a matrix, concatenating the vectors
calculated by word2vec [9] for each triplet.

3. As proposed in the original work, the mean of these vectors is taken
to represent each subsequence with a vector. Then, the vectors related
to the subsequences are concatenated to obtain the embedding of the
whole sequence. The final dimension of the embedding is a matrix
210x64, where 210 is the number of slices and 64 are the features for
each slice.
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Figure 1: DeepLncLoc

The main advantages of the DeepLncLoc [§] embedding are to avoid the
sparse matrix representation (typical of the one-hot encoding) thanks to
word2vec[9] and to compress the data exploiting a domain-aware approach
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making use of k-mer. In addition, it allows the usage of sequence processing
models that would not be possible to exploit on the raw sequences. This
dimensionality reduction is crucial in order to train complex many-to-one
sequence models. For instance, LSTM-based networks can employ many re-
sources and can be time-consuming: instead, feeding the networks with a
reduced feature matrix makes the training phase lighter and faster.

Transformer DeepLncLoc

The Transformer[6] is one of the newest Deep Learning models, state of
the art in the field of Natural Language Processing. The main pillars of
this architecture are: Embedding of the tokens (word2vec), [9], Positional
encoding (sinusoidal functions) [6], MultiHeadedAttention [6]. This paper
presents Transformer DeepLnclLoc, a transformer-based architecture com-
bining the DeepLncLoc embedding advantages [§] with the transformers’ [6]
capability in finding complex and long-range dependencies. The transformers
[6] build themselves the embedding given the sequences with a word2vec[9]
approach, and then they add a positional encoding for keeping track of
the position of the words. On the other hand, DeepLncLoc[8] is based
on word2vec[9] too, but it is an offline procedure. Therefore, the integra-
tion of the DeepLncLoc embedding with the transformer architecture is per-
formed using a BatchNormalization[32] layer just after the input layer to
solve numerical issues. Then, the classical transformer’s Positional Encoder
is applied. Subsequently, there is a Transformer Encoding Block, the One-
Dimensional Global Average Pooling, the concatenation with the Half-life
features and the last two dense layers to accomplish the regression task. Af-
ter the hyperparameter tuning, the best optimizer is Adam, and the best loss
is mean square error (MSE)[30].

LSTM DeepLncLoc

LSTM DeepLncLoc provides a baseline for the Transformer DeepLncLoc [§]
architecture. It consists of a Long Short term Memory (LSTM) [7] based
model fed with DeepLncLoc embedded data. Indeed, it is the simplest type
of processing that can be applied to a sequence. In detail, the model is
composed of a 100 units LSTM[7] feature extractor and fully connected layer
in order to allow the regression task. After the hyperparameter tuning, the
best optimizer is Adam, and the best loss is MSE[30)].



o ]
Promoters

[ Chunk1 ] [ Chunk10 ]
l l l \ Deeplncloc
[ Conv1D ] [ Conv1D ] [ ConviD ] .
[ MaxPool1D ] [ MaxPool1D ] [ MaxPool1D ] S
[ Conv1D ] x2 [ Conv1D ] x2 [ Conv1D ] x2
[ MaxPool1D ] [ MaxPool1D ] [ MaxPool1D ]

T

/ LSTM100 LSTM \
Deeplncloc

v

Conv1D
[ Concat H e ]
MaxPool1D

[ Concat ]4—[ Halflife J Dense90

D 1
ot | 2 -

Figure 3: LSTM DeepLncLoc Architecture.

Figure 2: DivideEtImpera architecture.
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Figure 4: Transformer DeepLncLoc Architecture.

DivideEtImpera
DivideEtImpera is based on classical Conv1D layers, devised to find a more
stable convolutional solution. It exploits a chunk separation of the input
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sequences (inspired to DeepLncLoc embedding) and a deeper convolutional
structure (128 filters per layer, 3 convolutional layers in total for each chunk
and 4 after the concatenation) which exploits only kernels of size 3, because
on average this allows extracting more complex features rather than a shallow
Convolutional Network with a big filter such Xpresso.[13].

The main idea behind this model is to reduce the main problem in subparts,
solve them and finally recombine everything and find the solution. We divide
our sequence into ten chunks (found by validation), apply five conv/pool
layers to each chunk separately, concatenate all the results, and then apply
five conv/pool layers again, and the final result is processed by the dense
layers . We tried different combinations of depth in every stage of the
network, ending up with 128 filters for each convolutional layer and a pool
size of 5 for each MaxPooling layer. Finally, we found out that the best
optimizer/loss combination is SGD [31] with MSE[30].

All the methods in this work are available on the github page.

Results

In this section, the evaluation of the models is done in three different experi-
mental conditions [Experimental conditions|, replicating the same evaluation
setting of the Xpresso paper for the sake of comparison. The latter consists
of using the R? metric for evaluation and keeping the best ten runs for each
model to build confidence intervals (CIs). In regression, the R? coefficient of
determination is a statistical measure of how well the regression predictions
approximate the real data points, computed as the ratio of the explained
variance to the total variance. [35]. By doing so, the stability of each model
and the performance can be clearly stated. We clarify the fact that we run
the Xpresso’s Google Colab notebook to obtain the Cls of the dataset com-
posed by promoter and halflife features, while for the other conditions, we
used an adapted version created for the sake of the project. The experiments
are grouped and evaluated considering the same input data.

First of all, the models are evaluated only on the promoter gene sequences,
and in Table can be seen the Cls.

Afterwards, the experiments are evaluated considering promoter gene se-
quences and the halflife features.

The models then are finally evaluated considering all the data available:
sequences, halflife data and transcription factors.
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Model LB (%) Mean (%) UB (%)
Xpresso 0.526 0.531 0.536
LSTM DeepLncLoc 0.574 0.580 0.585
DivideEtImpera 0.529 0.534 0.539
Transformer DeepLncLoc 0.588 0.596 0.603

Table 2: 95% Confidence Intervals based on R? scores produced from the best 10 inde-

pendent trials using only promoters sequences.

Model LB (%) Mean (%) UB (%)
Xpresso 0.559 0.567 0.574
Original Transformer 0.461 0.470 0.479
LSTM DeepLncLoc 0.603 0.606 609
DivideEtImpera 0.580 0.582 0.583
Transformer DeepLncLoc 0.608 0.610 0.612

Table 3: 95% Confidence Intervals based on R? scores produced from the best the best 10
independent trials using promoter sequences and halflife features.

Model LB (%) Mean (%) UB (%)
Xpresso 0.742 0.745 0.747
LSTM DeepLncLoc 0.753 0.755 0.758
DivideEtImpera 0.757 0.759 0.760

Transformer DeepLncLoc 0.756 0.760 0.764

Table 4: 95% Confidence Intervals based on R? scores produced from the best 10 inde-
pendent trials using promoter sequences, halflife features and transcription factors data.

Given the evident boost in performances due to the integration of transcrip-
tion factors, a vanilla Multi-Layer Perceptron has been trained on transcrip-
tion factors data only to assess their informative power. The evaluation’s
confidence interval is the following: (0.662, 0.670, 0.677).

In Figureﬂgﬂ it’s possible to have a visual evaluation of the models through
the scatter plot. Given the predicted expression level on the x axes ad the
median expression level on the y axes, ideally, the closer the points are to
the bisector, the better the model’s predictive power.
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Discussion

In this section, we discuss the results, making comparisons between the mod-
els’ performances and trying to highlight their strengths and weaknesses.

Firstly, by giving a glance at the results tables, we can state that Trans-
former DeepLncLoc outperforms every model considered in every experi-
mental condition (for more, please refer to section [Experimental conditions]).
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This result is because Transformer DeepLincLoc architecture mixes the meth-
ods that try to solve the main limitations of the classical approaches. In fact,
on the one hand, the DeepLncLoc|[§] embedding method is capable of mod-
eling and creating a compressed, dense, and domain-aware embedding. On
the other hand, the Transformer Encoder block [6] has a great predisposition
in long-range modeling dependencies. In addition, we can study and compare
the results of LSTM DeepLncLoc and DivideEtImpera to understand
better the effectiveness of the DeepLncLoc embedding. First of all, it is
essential to remark that the DeepLncLoc embedding works offline so that
you can compute the embedded version of the data one time, and then you
can train the models feeding them directly with the embedded data. Conse-
quently, if the embedding was computed in the right way, you need only an
algorithm capable of finding patterns in sequences, like a Recurrent model or
an Attention-based one. Indeed, implementing just a classic LSTM-based so-
lution on top of such embedding entails reaching leading performance [7]. On
the contrary, Divide EtImpera computes the embedding online every time that
its training routine is invoked. It has to accomplish two tasks instead of one
(computing the embedding and analyzing the resulting sequences), and for
this reason, the likelihood of failure increases, resulting in lower performance
on average. Similarly, this is the reason why Transformer DeepLncLoc
shifts the odds of failure just on the Transformer Encoder.

From these considerations, we can conclude that the embedding of the raw
sequences is a very crucial part of the process and that DeepLncLoc [§] of-
fers an excellent solution to the problem. Nevertheless, a Transformer based
solution [6] seems the perfect choice in order to analyze the embedded se-
quences, overtaking the performances of recurrent-based solutions thanks to
the Multi-Headed Attention’s capability to model longer relationships.

At this point, some useful considerations can be done about DivideEtIm-
pera. As already stated, the logic behind the design of this model is not in-
tended to create a competitive architecture like Transformer DeepLncLoc,
but to understand how to create stable embedding and feature extraction ex-
ploiting solely Convolutional Layers. Indeed, its peak performances are not
relevant like our LSTM or Transformer’s ones. Nevertheless, it is the sec-
ond performing model on the dataset integrated with Transcription Factors.
Moreover, this framework is more stable and less dependent on the tuning of
the hyperparameters with respect to Xpresso [I1]. This point is achieved
thanks to its peculiar deep chunking architecture, and in the end, it can be
seen like the Convolutional counterpart of DeepLncLoc [§].

13



The final considerations are related to the integration of the Transcription
Factors data. Thanks to the results shown in Table , we can state that
TF additional data gives a massive boost to all the models. Moreover, it is
essential to say that they achieve remarkable results also in a stand-alone
evaluation, as stated in the section.

The main reason of the results achieved by the TF are due to their main role
in the transcription regulation process. Indeed TF can either stimulate or
repress transcription of the related gene affecting the gene expression levels
[34].

Conclusion

The aim of this paper is to predict the abundance of the mRNA by process-
ing gene promoter sequences, handling the problem as a regression task.

A deep study of the existent models like Xpresso[l1] was performed in order
to spot their main weak points and to devise new models capable of over-
coming their performances.

The main drawback of the presented Convolutional-based solution is the em-
bedding type, usually a one-hot encoding, and the limited receptive field
typical of the Convolutional Neural Network. In this paper we used more
dense and task-aware embeddings like DeepLncLoc[8] and architectures ca-
pable of modeling complex long-range dependencies like Transformers[6]. By
analyzing the results, it is possible to understand that the Transformers can
generalize better concerning LSTM[7], hence they can reach better results,
and this is probably due to the multi-head attention layer that finds more
complex patterns for LSTM][T].

From the dataset perspective, the relevant finding is related to the transcrip-
tion factors capable of giving a massive boost in performance.

A possible future improvement is exhaustive hyperparameter research for
models and better integration between the additional data.

Competing interests

The authors declare that they have no competing interests.

Author’s contributions

Vittorio Pipoli: Conceptualization, Methodology, Software, Investigation,
Data Curation, Writing - Original Draft, Visualization, Validation, Writing -

14



Review & Editing Mattia Cappelli: Conceptualization, Methodology, Soft-
ware, Investigation, Data Curation, Writing - Original Draft, Visualization,
Validation, Writing - Review & Editing Alessandro Palladini: Concep-
tualization, Methodology, Software, Investigation, Data Curation, Writing -
Original Draft, Visualization, Validation, Writing - Review & Editing Carlo
Peluso: Conceptualization, Methodology, Software, Investigation, Data Cu-
ration, Writing - Original Draft, Visualization, Validation, Writing - Review
& Editing Marta Lovino: Conceptualization, Validation, Writing - Re-
view & Editing, Supervision, Project administration, Validation, Investiga-
tion Elisa Ficarra: Conceptualization, Funding acquisition, Supervision,
Project administration, Validation, Investigation

Appendix A. Implementation

All this work and the data are available through the GitHub repository. The
implementation has been possible thanks to Google Colaboratory. Further-
more, the project is fully coded in Python and the deep learning framework
adopted for the realization of the models is TensorFlow.
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