
IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 53, NO. 2, APRIL 2023 315

A General Pipeline for Online Gesture Recognition in
Human–Robot Interaction

Valeria Villani , Member, IEEE, Cristian Secchi , Senior Member, IEEE, Marco Lippi ,
and Lorenzo Sabattini , Senior Member, IEEE

Abstract—Recent advances in robotics have allowed the intro-
duction of robots assisting and working together with human sub-
jects. To promote their use and diffusion, intuitive and user-friendly
interaction means should be adopted. In particular, gestures have
become an established way to interact with robots since they allow
to command them in an intuitive manner. In this article, we focus
on the problem of gesture recognition in human–robot interaction
(HRI). While this problem has been largely studied in the literature,
it poses specific constraints when applied to HRI. We propose a
framework consisting in a pipeline devised to take into account
these specific constraints. We implement the proposed pipeline
considering, as an example, an evaluation use case. To this end,
we consider standard machine learning algorithms for the classifi-
cation stage and evaluate their performance considering different
performance metrics for a thorough assessment.

Index Terms—Classification algorithms, gesture recognition,
human-robot interaction.

I. INTRODUCTION

OVER the last years, progress in the design and develop-
ment of robotic systems has led to advanced solutions

that are entering our daily lives in several application fields,
such as social assistance, surveillance, tour guidance, reha-
bilitation, and search and rescue. From the point of view of
human–robot interaction (HRI), in addition to the requirements
for safe interaction, this trend has further implications on the
modalities used to communicate with robots. First, it is important
that communication from and to the robot is quick, smooth,
colocated and requires low attentional demand. In other words,
for efficient HRI, communicating to the robot and understanding
its messages should not be a bottleneck and should not increase
the overall complexity of teaming up with a robotic agent, as
it is usually in human–human communication. Moreover, given
the fact that most robotic assistants are intended to be used by
people without expertise in robotics, it is also important that
intuitive communication is enabled, so that users do not have to

Manuscript received 28 September 2022; accepted 3 December 2022. Date
of publication 18 January 2023; date of current version 15 March 2023. This
article was recommended by Associate Editor Y. Liu. (Corresponding author:
Valeria Villani.)

This work involved human subjects or animals in its research. The author(s)
confirm(s) that all human/animal subject research procedures and protocols are
exempt from review board approval.

The authors are with the Department of Sciences and Methods for Engi-
neering, University of Modena and Reggio Emilia, 41121 Reggio Emilia, Italy
(e-mail: valeria.villani@unimore.it; cristian.secchi@unimore.it; marco.lippi@
unimore.it; lorenzo.sabattini@unimore.it).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/THMS.2022.3227309.

Digital Object Identifier 10.1109/THMS.2022.3227309

learn commands that are specific for the robot. In this regard,
gestures represent a valid candidate for intuitive communication
with robots.

Gesture-based interaction with machines or robots has been
proposed by a large body of the literature, in both everyday
and industrial applications [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10]. The problem of gesture-based interaction can be split
in two specific problems: recognizing gestures and mapping
gestures into commands to the interaction system. The focus of
our article is on the first specific problem applied to the domain of
robotics, that is, gesture recognition in the context of HRI. While
gesture recognition has long been an active area of research in
computer vision and machine learning [11], the use of gestures
for interaction with robots poses specific constraints. These
constraints define the prerequisites for successful gesture-based
HRI. To improve the use of gestures for HRI it is, then, beneficial
that approaches to gesture recognition are compliant by design
with such constraints. The second specific problem refers to
designing how gestures can be translated into commands to
the robot, possibly in an intuitive manner [2]. While these two
specific problems are independent, they jointly address the gen-
eral problem of gesture-based interaction with robots. Building
upon these lines, in this article, we propose a pipeline for online
gesture recognition in HRI. The approach has been designed to
be general and can be applied to any set of gestures for interacting
with any robot. To the best of our knowledge, this is the first
attempt in this direction, since existing approaches have been
designed to address specific use case scenarios. Conversely, we
design the proposed pipeline starting from the understanding of
how gesture-based interaction, in general, can be applied to HRI;
no additional constraints or requirements derived by specific
use cases are included to design the pipeline. As a result, the
proposed pipeline is application agnostic.

To achieve this, in Section III-A we first discuss the specific
constraints of gesture recognition for HRI, which have to be
taken into account to use gesture-based interaction in daily life.
Then, having these constraints in mind, in Section III-B, we
propose an algorithmic pipeline to implement gesture recog-
nition in HRI. To show and discuss the application of the pro-
posed pipeline, we consider the experimental scenario presented
in [2], [12], and [13]. In particular, we assess the capability
of the pipeline to generalize across multiple subjects having
different level of acquaintance with the use of gestures. Indeed,
prospectively, the use of gestures for interacting with robots
should be designed in such an intuitive way that it is available

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-7619-0101
https://orcid.org/0000-0002-2098-0099
https://orcid.org/0000-0002-9663-1071
https://orcid.org/0000-0002-2734-5549
mailto:valeria.villani@unimore.it
mailto:cristian.secchi@unimore.it
mailto:marco.lippi@penalty -@M unimore.it
mailto:marco.lippi@penalty -@M unimore.it
mailto:lorenzo.sabattini@unimore.it
https://doi.org/10.1109/THMS.2022.3227309

316 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 53, NO. 2, APRIL 2023

to any user, and does not require specific prior experience with
gestures.

The rest of this article is organized as follows. Section II
reports the state-of-the-art on gesture recognition in HRI. In Sec-
tion III, we discuss how HRI constrains the use of gesture-based
interaction and, building upon such discussion, we present the
proposed pipeline. Then, Section IV focuses on the classification
stage, which is the core of the proposed approach. In Section V,
the experimental setting considered to validate the proposed
architecture is presented. Then, in Section VI, we report the
results of implementing the proposed pipeline to the considered
use case. Finally, Section VII concludes this article.

II. GESTURE RECOGNITION FOR HRI

A large part of existing approaches to gesture recognition in
the domain of HRI relies on the use of vision systems [14],
[15]. In [5], a stereo camera is mounted on the head of a per-
sonal service robot for elderly assistance. Whole-body gestures,
such as walking or raising a hand, are then recognized from
estimated 3-D human body components. Burke and Lasenby
[6] proposed the use of a Kinect sensor to detect pantomimic
hand gestures that control an unmanned aerial vehicle (UAV).
Xu et al. [8] focused on the problem of background subtrac-
tion when using RGB-D cameras for hand gesture detection
in home-like dynamic environment. Kim et al. [7] proposed
a vision-based gesture recognition to address the problem of
HRI at a long distance, approximately 5 m from the camera.
Sigalas et al. [9] have considered to classify the arm trajectories,
seen as sequences of motor primitives. To this end, RGB video
sequences are used, with the subject standing in front of the
robot in a constrained setup. The same requirement, which is
the subject standing in front of the robot, is set by Cicirelli
et al. [10], despite the use of multiple Kinect cameras to monitor
the surrounding environment. Chandarana et al. [16] used the
infrared-based leap motion controller to detect hand gestures
for teleoperating UAVs. UAV trajectories are built combining
gestures that define portions of flight paths. Generally speaking,
vision-based approaches require proper lighting conditions and
camera angles, and the user has to be in the field of view of the
camera. Hence, these characteristics pose a limitation to the use
of such approaches in real-world HRI applications.

To overcome the limitations linked to the use of vision systems
and given the recent advances in pervasive computing, wearable
devices have been used to detect and recognize gestures [17]. In-
deed, unobtrusive, wireless, and inexpensive body worn sensors,
such as accelerometers and gyroscopes, possibly integrated in
inertial measurement units (IMUs), are available on everyday
mobile and ubiquitous systems, such as smartwatches, wrist
bands, and mobile phones. They provide information about body
movements and, hence, can be used to track user activity [18],
[19]. In addition, they have been used for gesture recognition
for human–machine interaction in several works [3], [20], [21].
For what concerns gesture-based interaction with robots, Neto
et al. [4] proposed the use of five IMUs and an ultra-wideband
positioning system to capture the human upper body shape and
the relative position between the human and the robot. Villani

et al. [2], [12] used inertial data recorded with a smartwatch
to control both wheeled and aerial robots. Gestures are used to
provide high-level commands, such as take off, land, or stop,
whereas robot velocity is determined by mapping user’s wrist
movements. A similar setting was considered by Carfì et al. [22].
However, their framework was not designed for HRI. Indeed,
gestures were executed in steady conditions, which means that
the user was in a fixed predetermined pose between consecutive
gestures. This condition limits the possibility to use this interac-
tion means while the user is performing everyday activities. In
addition, intersubject robustness of the classification approach
was assessed to a limited extent since it was tested with gestures
performed by the same subjects involved in the training phase.

Furthermore, wearable sensors based on surface electromyo-
graphy (sEMG) are being used for gesture recognition [23], [24],
[25]. Quite often, IMU and EMG data are combined together to
improve gesture recognition. Indeed, while inertial data provide
information about hand position, EMG sensors allow to fully
understand complex finger or hand gestures. This is the case,
for example, of the work by Jiang et al. [26], where sEMG
and IMU sensing fusion allows to recognize several air and
surface gestures with two distinct force levels. Georgi et al. [27]
proposed the simultaneous usage of IMU and EMG sensors for
gesture-based interfaces and Hidden Markov Models are used as
classifiers to discriminate between the defined gesture classes.

From an algorithmic point of view, most approaches to ges-
ture recognition resort to machine learning techniques to deal
with high-dimensional, multimodal streams of data that are
characterized by a large variability. Different machine learning
algorithms applied to gesture recognition have been compared
in [24], [28], and [29]. Comparisons by Trigueiros et al. [28]
and Wahid et al. [24] focused on hand gestures, as most of the
approaches proposed in the literature (e.g., [20], [21], [23], and
[27]), whereas realistic daily life activities are considered by
Sagha et al. [29].

The abovementioned approaches consider the use of gestures
for HRI in specific case studies and cannot be easily scaled to
other applications. Our aim in this article is to address the prob-
lem of gesture-based HRI from a general perspective, identifying
the specific constraints of this application domain and proposing
a pipeline that can be applied to any case study, with some fine
tuning.

III. PROPOSED ARCHITECTURE

We hereby describe the proposed pipeline for online gesture
recognition in HRI. It addresses several constraints specific for
gesture-based interaction with robots. A diagram representing
the proposed architecture is depicted in Fig. 1.

A. Specific Constraints of Gesture Recognition in HRI

As introduced in Section I, when dealing with gesture recog-
nition in HRI, it is important that using gestures does not limit the
user interacting with the robot, insofar gestures are not perceived
as a slowdown for the interaction. As a result, the use of gestures
in the context of HRI poses the following specific constraints for
the problem of gesture recognition.

VILLANI et al.: GENERAL PIPELINE FOR ONLINE GESTURE RECOGNITION IN HUMAN–ROBOT INTERACTION 317

Fig. 1. Flowchart for the proposed pipeline for online gesture detection and classification in HRI. The proposed pipeline can be implemented in ROS, which can
deal with data acquisition, data processing, gesture recognition, and communication with the robotic platform.

1) Gesture-based interaction should rely on a lean infrastruc-
ture that requires poor or no installation and does not limit
the user’s freedom to move around and/or with the robot.

2) Gesture recognition should be performed online and not
introduce any perceivable delay between the execution
of a gesture and its effect, meant as command to the
robot. In other words, the algorithmic pipeline in charge
of gesture recognition should be fast enough, requiring
limited computational burden. Moreover, the architecture
should guarantee immediate communication of a detected
gesture to the robot.

3) It should be possible to detect gestures online and in
dynamic conditions, while users are performing other
ordinary activities and movements.

4) The system should be easily adapted to different users,
thus requiring robust generalization capabilities.

5) While seeking to improve gesture recognition perfor-
mance, it is particularly important to minimize the rate
of false positives since they would initiate an unintended
communication towards the robot.

It is noteworthy that some of these constraints are general for
gesture-based interaction and apply also to other domains, as
discussed, for example, in [14] and [30]. Nevertheless, as regards
HRI, they define the prerequisites for successful gesture-based
HRI. These constraints are summarized in the left column of
Table I, whereas the right column describes how the proposed
system tackles them. More details are given in the following
sections.

B. Overview of the Proposed Pipeline

To track the movements of the user, we consider inertial data
recorded by a wrist-worn device, and thus focus on forearm
gestures. This allows to comply with constraint C1 since wear-
able devices recording inertial data are not cumbersome to wear
and are easily available on the market. Inertial data are then
analyzed, by considering sliding windows of fixed length, with
one sample shift. Recorded data are continuously processed
and the occurrence of a gesture is continuously verified, thus

TABLE I
SPECIFIC CONSTRAINTS OF GESTURE RECOGNITION IN HRI AND PROPOSED

APPROACHES TO COMPLY WITH THEM

complying with C3. In particular, to search for gestures, for
each sliding window a set of statistical features are computed for
each of the measured signals. The extracted features represent
the input for the classification stage. In this article, we start
considering different classical classification algorithms, such as
K-nearest neighbors (KNN), support vector machines (SVMs),
random forests (RF), and neural networks (NNs). Among them,
we then select the algorithm that best complies with the specific
constraints for gesture-based HRI, in a validation use case. To
select the most appropriate algorithm for the considered appli-
cation domain, different performance metrics are considered,
tailoring the severity of false positives in HRI, so as to comply
with C5. Moreover, starting from the results achieved in our
case study, the determination of the classification stage is driven
by considerations related to the need for intersubject robustness
and computational burden, thus complying with C2 and C4. The
right column of Table I summarizes how the proposed pipeline
complies with the specific constraints for gesture-based HRI.

With reference to Fig. 1, all the considered algorithms share
the same general structure. They require previous training and
validation with respect to the specific gestures of the considered
use case. As output, each algorithm provides a score referred to
the probability that one of the considered gestures occurred in
the current sliding window. A threshold is set on such scores; the
threshold can be tuned in order to balance between false positives

318 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 53, NO. 2, APRIL 2023

and false negatives. If the confidence of the classifier is below
such threshold, then the process moves to the following sliding
window. Otherwise, in case the confidence of the classifier is
above the threshold for at least one gesture, a decision is not
taken immediately, but the system checks for the same condition
also in the subsequent sliding windows. If the condition is met,
then a decision is taken and the corresponding command is sent
to the robot. The rationale behind this behavior is to improve
the robustness of the detection phase. Since consecutive sliding
windows are shifted by one sample, it is likely that a gesture
occupies more than one window, depending on the sampling
frequency of the recording device. Hence, it is likely that when
a gesture is performed, it is recognized by the classification algo-
rithm in several consecutive windows, whose number depends
on the duration of the gesture and the device sampling frequency.
On the other side, if a gesture is detected in a window only, it is
likely to be a false positives and should be discarded.

IV. CLASSIFICATION STAGE

The classification stage of the proposed architecture consists
in a machine learning module that receives as input the statistical
features computed on the current sliding window and provides as
output a decision whether a gesture is recognized or not. In this
section, we overview the general setting of supervised machine
learning, and we briefly describe four classic algorithms that
have been tested in our experimental evaluation.

Broadly speaking, in a classification task, the goal is to pre-
dict the category y ∈ Y , sometimes also named class, label, or
output, of a given observed examplex ∈ X , which instead repre-
sents the input of the system. In a supervised setting, we are given
a collection D of m input/output pairs D = {(xi, yi)}mi=1 and
we aim to fit a function f : X → Y so that we can then predict
the category ŷ of a given, novel (not previously seen) example x̂.
Clearly, different machine learning approaches exploit different
definitions for function f , as well as different algorithms and
techniques to learn such a function. To identify the best ap-
proach for the proposed HRI pipeline, we have compared classic
machine learning approaches, namely KNN, SVMs, RF, and
NNs. However, other different classification algorithms can be
considered. In all these cases, we have considered a setup where
each input instance x is described by a vector of real numbers,
which are the characteristics, or features of that instance.

The parameters chosen to implement each approach are dis-
cussed in Section V-C, with reference to the considered datasets.

A. K-Nearest Neighbors

Based on the concept of distance between examples, the KNN
classifier is not properly a learning algorithm. In fact, given
a test example x̂ to be classified, the algorithm looks for the
K examples in the training set that are the closest ones to x̂
according to a chosen metric (e.g., the Euclidean distance). The
prediction is then performed via a majority voting procedure
among the classes of the KNN. Although very simple, this
algorithm can work well in practice, when the distance computed
on the feature vectors is highly discriminative of the target

class. The parameter K defines the size of the neighborhood
to consider for classification.

B. Support Vector Machines

SVMs are another classic method for supervised classification
in machine learning. Considering binary classification, SVMs
are trained to learn a discriminative function that best separates
positive and negative examples, with the maximum possible
margin [31]. Given a collection of m training samples, such
a discriminative function is computed as

f(x) =
m∑

i=1

αiK(xi, x) + b (1)

where αi are the learnable model parameters, and the kernel
function K(·, ·) aims to measure the similarity between exam-
ples. Function K is, in general, a nonlinear function so that the
classifier can model nonlinear dependencies between features
and class. Decision function f only depends on those training
examples whose corresponding coefficient αi is different from
zero: these are called support vectors. In general terms, the
decision function f defines a hyperplane, which constitutes the
decision boundary that used to classify the data points. Data
points falling on either side of the hyperplane can be attributed
to different classes. This idea can be extended to the case of
multiclass classification, breaking down the multiclassification
problem into multiple binary classification problems. Two ap-
proaches can be selected to this end: In the one-versus-one
approach, a binary classifier is set per each pair of classes,
regardless of the other classes; in the one-versus-rest, a binary
classifier is set per each class, to distinguish it from the rest of
data.

A commonly used kernel function for SVM classifiers is the
radial basis function (RBF). The RBF kernel function for two
points x1 and x2 computes the similarity or how close they are
to each other, as a function of their Euclidean distance. It is
specified by means of two parameters: C and γ. While C sets
a tradeoff between misclassification of training examples and
simplicity of the decision surface, γ defines the width of the
radial functions.

C. Random Forests

An RF [32] consists in a collection of individual Decision
Trees (DTs) [33], whose predictions are combined typically
through a voting process. A DT inductively learns a set of
explainable classification rules by imposing conditions of the
values of the features describing the examples. When creating a
RF, each DT is trained from a distinct set ofn examples randomly
sampled from the original training set, and by testing only m out
ofM features at each node in the tree. The process of combining
the outcome of individual classifiers into a single prediction is
usually named as an ensemble approach, and it is known to
typically improve the performance of the overall system, as well
as to reduce overfitting. Each individual DT in the RF produces
a class prediction and the class with most votes becomes the
prediction of the model, as in classic ensemble approaches.

VILLANI et al.: GENERAL PIPELINE FOR ONLINE GESTURE RECOGNITION IN HUMAN–ROBOT INTERACTION 319

Fig. 2. Gestures considered in this study: from left to right, up, down, circle,
left, and right. Animated examples can be seen in the multimedia attachment
to [2].

D. Neural Networks

An NN [34] is a nonlinear function transforming a set of
input variables in a set of output variables via a set of adjustable
parameters. In particular, an NN is a combination of nonlin-
ear basis functions. Each basis function is itself a nonlinear
function (called activation function) of a linear combination
of the inputs, and the coefficients in such combination are
adaptive weights that can be learned to fit the training data.
Several layers of adaptive weights can be stacked to form a deep
network.

V. EXPERIMENTAL IMPLEMENTATION

In this section, we present the experimental setting that was
considered to implement the pipeline shown in Fig. 1. We first
introduce the validation use case and describe different sets
of features extracted from the raw signals; then, we illustrate
the adopted training and evaluation procedure, and finally the
performance metrics employed at prediction time.

A. Use Case

To validate the proposed pipeline, we considered the gesture-
based HRI approach introduced in [2]. In particular, the sce-
nario consists in recognizing the following Ngest = 5 gestures,
depicted in Fig. 2:

1) up: sharp movement upward in a plane parallel to the
sagittal one;

2) down: sharp movement downward in a plane parallel to
the sagittal one;

3) circle: movement in a circular shape in a plane parallel
to the frontal one;

4) left: sharp movement to the left, from sagittal plane to
frontal one, in a plane parallel to the transverse one;

5) right: sharp movement to the right, from sagittal plane to
frontal one, in a plane parallel to the transverse.

Examples can be seen in the multimedia attachment to [2].
These gestures are meant to be performed with the right arm,
with the subject wearing an IMU on the right wrist. As our
input device, we considered a commercial multipurpose smart-
watch, namely the Samsung Gear S device. Data used in the
analysis presented in this article consist of triaxial inertial mea-
surements recorded by the smartwatch, namely x ∈ R10, and
include timestamp, angular velocities, and linear accelerations
(raw and with automatically compensated gravity). Data are
accessed by means of a Tizen interface and are provided on an
uneven sampling grid. On average, approximately 25 samples
per second are provided.

As regards the overall software architecture, data are recorded
via Tizen and sent via Wi-Fi to an external computer, for ease
of implementation. The classification stage is implemented in
Python, using the scikit-learn library [35] and Tensor-
flow 2.0.0 [36].

Robotic Operating System (ROS) can be, then, used for imple-
menting the remaining of the pipeline [37]. It is an open-source
hardware-independent middleware widely used in robotics and
consists in a set of software libraries and tools that allow com-
munication with robots, actuators, sensors, and other devices
commonly used in robotic applications. Since it supports Python,
it can deal with data acquisition, data processing, gesture recog-
nition, and communication with the robotic platform. To this
end, a publish–subscribe pattern can be used that can efficiently
handle communication events, such as arriving messages and
inform the robot about the detection of a gesture.

B. Feature Extraction

Starting from the data provided by the wrist-worn device,
synthetic features are extracted and passed to the classification
stage as input data. We considered three sets of features, which
were compared as possible different inputs for the classification
algorithms. The first two feature sets, denoted in the following
as F1 and F2, were defined as follows. Set F1 includes standard
statistics computed in the domain of time, for each inertial
quantity: mean value, standard deviation, maximum value, and
minimum value. These are customarily used in many gesture
recognition applications (for example, see work in [38]). Fol-
lowing [24] and [26], setF2 includes mean absolute value, count
of slope sign changes, count of zero crossings, and waveform
length, given as follows:

1) mean absolute value: 1
L

∑L
k=1 |xk|;

2) slope sign change: (xk − xk−1)(xk+1 − xk) < 0;
3) zero crossing: xkxk+1 < 0;
4) waveform length:

∑L
k=2 |xk − xk−1|;

where L is the number of samples in a sliding window.
Set F3 is obtained from the union of F1 and F2 and, hence,

consists of eight features.
As a result, for each feature set, each input sequence for

classification (both for training and test datasets) is represented
by 36 features for F1 and F2 and 72 features for F3, since the
abovementioned features were computed for each of the nine
inertial quantities measured by the smartwatch.

C. Training and Evaluation

All the considered classification algorithms were trained by
considering a labelled dataset of 300 gestures, which included 60
trials per gesture. Such gestures were all performed by the same
subject, denoted in the following as S0, standing in steady state.
The dataset contains inertial samples that refer to the execution
of the gestures, only: samples between two consecutive gestures
were manually excluded. The composition of the training dataset
is detailed in Table II. In order to tune the hyperparameters of
the different classifiers, an inner k-fold cross-validation on the
training set was conducted.

320 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 53, NO. 2, APRIL 2023

TABLE II
COMPOSITION OF THE TRAINING AND TEST DATASET

TABLE III
ARCHITECTURES FOR NNS CONSIDERED IN THE CLASSIFICATION STAGE

Based on preliminary experiments, in the analyses reported in
this article, for KNN we tested values forK = 5, 7, 10, 15. Since
the two hyperparameters, C and γ, have to be jointly chosen,
we exploited a grid search with an internal cross-validation1

as customary in this kind of applications. We finally selected
C = 0.1 and γ = 10−6. As for RF, we considered a total of
100 trees in our model. For NN, we considered three different
architectures, summarized in Table III. Each network was trained
using the Adam optimizer [39] with batch normalization, and
the hyperparameters (learning rate, momentum, and number of
training epochs) were set with Bayesian optimization.2

To test the algorithms under analysis, we considered streams
of inertial data containing gestures. In other words, consecutive
gestures were separated by a nonconstant number of samples in
which the user moved in a natural manner, as described in the
following. The goal was to replicate real-life scenarios in which
the subject is free to move while interacting with a robot. Occur-
rences of gestures were manually annotated to serve as ground
truth. To deal with online classification, and following [2], input
data were provided to the algorithms by considering sliding
windows of length L = 35 samples, with one sample shift. As a
result, the test set includes Ntest = 200 gestures performed with
the subjects moving in a natural manner between consecutive
gestures (e.g., walking, waving, and drinking). These gestures

1We used the GridSearchCV class of scikit-learn.
2We used the library Keras Tuner.

were performed by 12 subjects, namely S1, S2, . . . , S12, dif-
ferent from the one contributing to the training set. They were
not told the movements to execute between gestures, but were
left free to chose. An equal number of the five gestures under
consideration was included. The composition of the test set is
detailed in Table II.

All the algorithms were implemented in a multiclass con-
figuration. This implies that the detection of a gesture is ac-
cepted only if the confidence of the classifier is above a certain
threshold that can be tuned in order to balance between false
positives and false negatives. To this end, different thresholds
have been considered. In the case of RF, performance has been
computed considering three different thresholds, namely σ1,
σ2, and σ3, on the predicted probabilities for each class, to
be used as a confidence level for gesture recognition. Specif-
ically, for each input sequence, Ngest-predicted probabilities
Pi, i = 1, . . . , Ngest are given as output, each representing the
likelihood for that sequence to contain one of the considered
gestures. For each threshold σj , gesture i is, then, detected if
maxPi > σj , with j = 1, 2, 3. In a similar manner, for SVM, a
one-versus-one approach for multiclass classification is selected
and five thresholds are considered, denoted as θk, k = 1, . . . , 5.
A score for each sample in relation to each gesture is provided
and the threshold θk is set with respect to such score. The results
achieved for RF and SVM with the different thresholds σj and
θk (j = 1, 2, 3 and k = 1, . . . , 5) are reported in Section VI.3 A
threshold is considered also in the case of KNN: it was set to
τ = 1 for any value considered forK, and, hence, is not reported
in Section VI. Alternatively, when dealing with a specific case
study, the optimal threshold can be set with a cross-validation
step.

Finally, as introduced in Section III-B, a gesture was detected
only if the same outcome was predicted by a classifier throughout
several consecutive sliding windows. Given the average duration
of the considered gestures (reported in Table II) and the approx-
imate sampling frequency of the smartwatch of about 25 Hz, we
set such number of consecutive sliding windows to 25.

D. Performance Metrics

A set of established metrics has been computed to compare
the performance of the considered algorithms [40], [41]. The
selection of these metrics was guided by the need to guaran-
tee high recognition performance in general, while taking into
account specific HRI constraints as well. We name Recall the
percentage of gestures in the test set that have been correctly
detected by the classifier, whereas Precision is the percentage
of predicted gestures that are correct.4 These two measures
account for different kinds of error: namely, Recall considers
false negatives since it takes into account those gestures that are
not recognized by the system, whereas Precision considers false

3We set σ1 = 0.55, σ2 = 0.60, and σ3 = 0.65, and θk = 4.240 + k ·
0.005, with k = 1, . . . , 5.

4In general, in multiclass problems, Precision and Recall are more frequently
computed on a per-class basis, whereas in our application scenario, we prefer to
report classifier-level metrics in order to focus on the global performance of the
system.

VILLANI et al.: GENERAL PIPELINE FOR ONLINE GESTURE RECOGNITION IN HUMAN–ROBOT INTERACTION 321

positives, which are gestures that the system wrongly recognizes.
The latter are much more dangerous in HRI, where a gesture
starts a command to the robot, as highlighted by constraint
C5 in Section III-A. Hence, in the need for a compromise
between performance on Precision and Recall, it is important
that Precision is as high as possible. Low Precision means that
the risk of providing unintended commands to the robot is high,
which is clearly unacceptable. Conversely, a false negative in
HRI means that the user has performed a gesture to command the
robot, but this command was not received by the robot. Although
annoying for the user, this circumstance is less dangerous than
the previous one, since it does not have direct consequences in
terms of unintended behaviour of the robot.

Precision and Recall are usually combined in the Fβscore,
defined as

Fβscore = (1 + β2)
Recall · Precision

Recall + β2Precision
. (2)

The parameter β quantifies the importance of Recall over Pre-
cision and is typically set to 1. Since, in our context, it is
more important that Precision, rather than Recall, is large, we
set β = 0.5, to attribute more importance to Precision over
Recall [40], [41]. Thus, in our analysis, we consider F0 .5 score,
following constraint C5.

In order to better highlight the difference between the two
main error categories (i.e., missed or misclassified gestures) and
comply with constraint C5, we introduce two additional metrics.
The misclassification gesture rate (MGR) is the percentage of
real gestures that are assigned to the wrong category, whereas the
undetected gesture rate (UGR) is the percentage of real gestures
that are not detected. We hereby remark that Recall + MGR +
UGR = 1. Following the line of abovementioned reasoning, it is
more important to minimize MGR than UGR, since the former
accounts for unintended swaps among commands to the robot,
whereas the latter refers to the need, for the user, to repeat a
gesture.

Finally, to guarantee real-time gesture recognition (see con-
straint C2 in Section III-A), algorithms have been compared also
in terms of computational burden. To this end, the classification
time has been considered. With respect to Fig. 1, this amounts
to considering the time required from the selection of a sliding
window (dashed rectangles on the left-hand side) to the output
of classification algorithms for that window (boxes “Gesture
recognized?” in the figure).

VI. ANALYSIS OF THE EXPERIMENTAL DATA

In this section, we analyze and discuss the experimental data
collected implementing the proposed pipeline in the use case
introduced in Section V-A. In particular, besides comparing the
performance of the considered four classical machine learning
approaches with different feature sets, we will focus on the gen-
eralization capabilities of the classifiers across different subjects,
with varying levels of familiarity with the selected gestures
and inclusion in training set. The idea behind this analysis is
to assess the amount of user’s contribution, meant in terms of
participation in the training set or gained acquaintance with the
gestures, that is needed to achieve satisfactory performance for

gesture recognition. To this end, we consider the three different
conditions:

a) subjects with different familiarity with the considered
gestures, whose data were not included in the training set;

b) a subject with previous experience on the use of the
selected gestures, but whose data were not included in
the training set;

c) the same subject as in the previous condition, whose data
contributed, in small part, to the training set.

a) Multiple subjects, expert, and novel, not included in the
training set: Table IV reports the performance of the classifica-
tion stage, for the different algorithms considered, in the case of
subjects with and without prior familiarity with the considered
set of gestures. With reference to Table II, numbers in Table IV
refer to 200 gestures performed by all the subjects in the test
set (from S1 to S12). We remark that these subjects were not
represented in the training set and had received different amount
of instructions on how to execute the gestures. Specifically,
subject S1 had previous experience with the considered set
of gestures, whereas all the others had not, and received little
training soon before recording the test set. The table shows that
satisfactory results can be achieved with RF (with features F3)
for Precision and MGR, which are the most relevant metrics for
HRI applications, as discussed in Section V-D. Nevertheless,
performance achieved for the other metrics is extremely low.
The performance achieved with the other algorithms is quite
poor, too.

b) Expert subject, not included in the training set: To improve
the performance of gesture recognition, we limited the test set to
gestures performed by an expert subject, who had prior experi-
ence in using them, namely S1. Indeed, although the considered
gestures consist in simple and natural movements, they are meant
as sharp movements, as described in Section V-A, and require
some experience to get familiar with movement speed and initial
and final positions. Table V reports the results achieved in this
condition. As for the previous analysis, the subject contributing
to the training set was not included in the test set. The table shows
that a notable increase in performance is achieved. However,
classification performance is still quite low for all the considered
algorithms. In particular, while very good performance can be
achieved in terms of Precision and MGR, Recall is still quite low.
Satisfactory Recall is achieved with NNs (Model 1 and features
F1), at the expenses of low Precision and F0 .5 score. There is
no algorithm, among those considered, that returns satisfactory
results for both Recall and Precision.

c) Expert subject, included in the training set: As a further
attempt to improve the performance of gesture recognition, we
increased the training set adding some gestures by the same
subject in the test set. In particular, with reference to Table II,
the training set was augmented adding 100 new gestures (20
per type) by subject S1. Regarding the test set, we considered
90 gestures performed by S1 [i.e., the same as condition b)].
Table VI reports the performance achieved in this condition.
The best classification performance is achieved with SVM with
features F1, which proves successful for all the considered
metrics. All the thresholds θk, with k = 1, . . . , 4, return similar
results, whereas θ5 is less performing. Considering F0 .5 score,
which is the weighted combination of Recall and Precision, the

322 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 53, NO. 2, APRIL 2023

TABLE IV
CLASSIFICATION PERFORMANCE FOR GESTURES PERFORMED BY MULTIPLE SUBJECTS, EXPERT, AND NOVEL, NOT INCLUDED IN THE TRAINING SET

TABLE V
CLASSIFICATION PERFORMANCE FOR GESTURES PERFORMED BY AN EXPERT SUBJECT, NOT INCLUDED IN THE TRAINING SET

threshold θ1 returns the highest value. RF provides slightly better
performance for Precision and MGR than SVM, but F0 .5 score
for RF is quite low. Good performance, in terms of Recall, UGR,
and MGR, is also achieved with NNs with features F1, although
Precision and F0 .5 score are quite low. In summary, it is possible
to argue that better performance can be achieved when using
SVM with threshold θ1 and features F1.

Building upon this result, we tested this classifier considering
gestures performed during intense motion conditions or moder-
ate physical activity. To this end, subjectS1 was asked to perform
N IM

test = 20 gestures during running and leg-skipping sessions
and arm circumductions. These movements were intended as
spurious noise for the classification algorithms. Nevertheless,
SVM, with threshold θ1 and featuresF1, has returned quite good
performance also in this extreme motion condition: R = 100%,
P = 57.1%, UGR = 0.0%, MGR = 0.0%, and F0.5 score =
87.0%. While Recall is very high, the effect of intense motion

can be seen in lower Precision, due to an increased number of
false positive gestures.

A. Discussion

Tables IV–VI report the classification performance achieved
considering a possible implementation of the proposed pipeline.
To this end, we considered four standard classification algo-
rithms and implemented them with different parameters. The
achieved results show that, to achieve satisfactory classification
performance, it is needed that the user receives some sort of train-
ing on how to execute the selected gestures. In particular, even
if natural and easy movements are considered, the user should
practice them, in order to get familiar with range and speed of
motion and other specific features. To this end, including, in the
classification algorithm, some amount of user specific training
is beneficial. It is noteworthy that this is not in contrast with con-
straint C4 of Table I. Indeed, in Table VI, we considered the case

VILLANI et al.: GENERAL PIPELINE FOR ONLINE GESTURE RECOGNITION IN HUMAN–ROBOT INTERACTION 323

TABLE VI
CLASSIFICATION PERFORMANCE FOR GESTURES PERFORMED BY AN EXPERT SUBJECT, INCLUDED IN THE TRAINING SET

TABLE VII
AVERAGE COMPUTATIONAL TIME FOR GESTURE CLASSIFICATION ON A SINGLE

TIME WINDOW

that the algorithms were trained with data from a subject not in
the test set in large part and, in small part, with data from the same
subject in the test set. This is customary in devices running, for
example, algorithms for voice or handwritten text recognition,
which usually require some fine training by the user in charge.

As Table VI shows, if the user is familiar with the selected set
of gestures and algorithms are trained also with her/his data, clas-
sification performances become highly satisfactory and allow an
efficient use of gestures in HRI. This is confirmed also by the
classification performance achieved in the case of intense motion
condition: although this represents a quite unusual condition
in HRI, these results show that gestures can be used without
restrictions to any other tasks the user might be carrying out
while interacting with a robot.

B. Analysis of Computational Burden

The computational burden of the proposed pipeline was as-
sessed to verify its applicability to real-time gesture recognition
(constraint C2 in Table I). To this end, we computed the average
classification time required by each of the considered algorithms.
The measured times, averaged over 5000 sliding windows, are
reported in Table VII.

We hereby make two observations. First, according to the
decision rule presented in Sections III-B and V-C, a gesture
is detected only if it is recognized in 25 consecutive sliding
windows. In other words, the recognition of a gesture requires
that 25 windows elapsed. Hence, since times in Table VII refer
to classification for a single time window, the recognition of
a gesture implies a delay that is 25 times the one reported in
the table, from the beginning of its execution. Second, for ease
of computation, we implemented the classification stage on an

external computer5 running Python. Computation times reported
in Table VII refer to this setting. In a real-world operational
setting, an hardware-driven software implementation should be
considered, possibly relying on the computational capacity of
the robot.

Table VII shows that all the algorithms are quite fast, with
SVM being the fastest among those considered. Even consid-
ered the need to process 25 consecutive windows, the delay
introduced by the classification operation does not affect the
fluency of gesture-based interaction. As a result, the selection of
the most suited algorithm for the proposed classification can be
guided by classification performances only.

VII. CONCLUSION

In this article, we considered the problem of forearm gesture
recognition for HRI. The ultimate goal is that of providing
commands to robots by means of intuitive gestures. To this
end, we proposed a pipeline for gesture recognition specifically
designed for HRI applications. As input data, we consider wrist
inertial movements, which can be recorded with any commercial
device mounting an IMU. Gesture detection and classification
is performed by a classification stage that relies on machine
learning algorithms. To this end, we compared the performance
of several machine learning algorithms used in classification
problems: RF, KNN, SVM, and NN. An extensive evaluation
was performed, including also an analysis of computational
burden for real-time gesture recognition. Different performance
metrics were introduced to provide a thorough assessment of
algorithms and to highlight the specific needs of gesture recog-
nition in HRI context. In particular, we highlighted that the cost
of false positives and misclassifications (wrongly recognized
gestures) is much higher than that of false negatives (gestures
not detected at all), thus motivating the need for models with a
high precision, even though at the cost of a lower recall.

An evaluation use case was selected to show an implemen-
tation of the proposed pipeline. It consisted of five gestures,

5The computer used for this analysis embeds an Intel i5 3.2 GHz CPU and
8 GB RAM, and it runs Ubuntu 16.04.7.

324 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 53, NO. 2, APRIL 2023

recorded with a smartwatch. In total, 12 subjects were in-
cluded in the validation, considering different confidence with
the selected gestures. First, we analyzed whether a general,
meant as opposite to user tailored, training of classification
algorithms could be sufficient to achieve satisfactory recognition
performance. Then, to improve recognition performance, we
considered the need of training algorithms also with a small
amount of data from the subject in charge.

As concluding remarks, it is noteworthy that the proposed
pipeline is general. Indeed, it can be used implementing other
classification algorithms, or with other parameters. In addition,
it can be used to interact with any kind of robots and with other
sets of gestures.

ACKNOWLEDGMENT

The authors would like to thank Anna Bellodi and Ilias Maite
for their contribution to the preliminary analysis of the proposed
approach.

REFERENCES

[1] A. Chaudhary, J. L. Raheja, K. Das, and S. Raheja, “Intelligent approaches
to interact with machines using hand gesture recognition in natural way: A
survey,” Int. J. Comput. Sci. Eng. Surv., vol. 1, no. 2, pp. 122–133, 2013.

[2] V. Villani, L. Sabattini, G. Riggio, C. Secchi, M. Minelli, and C. Fantuzzi,
“A natural infrastructure-less human-robot interaction system,” IEEE
Robot. Automat. Lett., vol. 2, no. 3, pp. 1640–1647, Jul. 2017.

[3] V. Villani, L. Sabattini, N. Battilani, and C. Fantuzzi, “Smartwatch-
enhanced interaction with an advanced troubleshooting system for indus-
trial machines,” IFAC-PapersOnLine, vol. 49, no. 19, pp. 277–282, 2016.

[4] P. Neto, M. Simão, N. Mendes, and M. Safeea, “Gesture-based human-
robot interaction for human assistance in manufacturing,” Int. J. Adv.
Manuf. Technol., vol. 101, no. 1-4, pp. 119–135, 2019.

[5] H.-D. Yang, A.-Y. Park, and S.-W. Lee, “Gesture spotting and recogni-
tion for human–robot interaction,” IEEE Trans. Robot., vol. 23, no. 2,
pp. 256–270, Apr. 2007.

[6] M. Burke and J. Lasenby, “Pantomimic gestures for human–robot inter-
action,” IEEE Trans. Robot., vol. 31, no. 5, pp. 1225–1237, Oct. 2015.

[7] D. Kim, J. Lee, H.-S. Yoon, J. Kim, and J. Sohn, “Vision-based arm gesture
recognition for a long-range human–robot interaction,” J. Supercomputing,
vol. 65, no. 1, pp. 336–352, 2013.

[8] D. Xu, X. Wu, Y.-L. Chen, and Y. Xu, “Online dynamic gesture recognition
for human robot interaction,” J. Intell. Robotic Syst., vol. 77, no. 3-4,
pp. 583–596, 2015.

[9] M. Sigalas, H. Baltzakis, and P. Trahanias, “Gesture recognition based on
arm tracking for human-robot interaction,” in Proc. IEEE/RSJ Int. Conf.
Intelli. Robots Syst., 2010, pp. 5424–5429.

[10] G. Cicirelli, C. Attolico, C. Guaragnella, and T. D’Orazio, “A kinect-based
gesture recognition approach for a natural human robot interface,” Int. J.
Adv. Robotic Syst., vol. 12, no. 22, 2015.

[11] S. Mitra and T. Acharya, “Gesture recognition: A survey,” IEEE Trans.
Syst., Man, Cybern., Part C (Appl. Rev.), vol. 37, no. 3, pp. 311–324,
May 2007.

[12] V. Villani, L. Sabattini, G. Riggio, A. Levratti, C. Secchi, and C. Fantuzzi,
“Interacting with a mobile robot with a natural infrastructure-less inter-
face,” in Proc. IFAC 20th World Congress Int. Federation Autom. Control
IFAC, 2017, vol. 50, no. 1, pp. 12753–12758.

[13] V. Villani, B. Capelli, C. Secchi, C. Fantuzzi, and L. Sabattini, “Humans
interacting with multi-robot systems: A natural affect-based approach,”
Auton. Robots, vol. 44, no. 3, pp. 601–616, 2020.

[14] S. S. Rautaray and A. Agrawal, “Vision based hand gesture recognition for
human computer interaction: A survey,” Artif. Intell. Rev., vol. 43, no. 1,
pp. 1–54, 2015.

[15] J. Suarez and R. R. Murphy, “Hand gesture recognition with depth images:
A review,” in Proc. IEEE 21st Int. Symp. Robot Hum. Interactive Commun.,
2012, pp. 411–417.

[16] M. Chandarana, A. Trujillo, K. Shimada, and B. D. Allen, “A natural
interaction interface for uavs using intuitive gesture recognition,” in Proc.
Adv. Hum. Factors Robots Unmanned Syst., 2017, pp. 387–398.

[17] D. Roggen et al., “Collecting complex activity datasets in highly rich
networked sensor environments,” in Proc. IEEE 7th Int. Conf. Netw. Sens.
Syst., 2010, pp. 233–240.

[18] H. Junker, O. Amft, P. Lukowicz, and G. Tröstera, “Gesture spotting with
body-worn inertial sensors to detect user activities,” Pattern Recognit.,
vol. 41, pp. 2010–2024, 2008.

[19] N. C. Krishnan and D. J. Cook, “Activity recognition on streaming sensor
data,” Pervasive Mobile Comput., vol. 10, pp. 138–154, 2014.

[20] H. Han and S. W. Yoon, “Gyroscope-based continuous human hand gesture
recognition for multi-modal wearable input device for human machine
interaction,” Sensors, vol. 19, no. 11, 2019, Art. no. 2562.

[21] M. Kim, J. Cho, S. Lee, and Y. Jung, “IMU sensor-based hand gesture
recognition for human-machine interfaces,” Sensors, vol. 19, no. 18, 2019,
Art. no. 3827.

[22] A. Carfi, C. Motolese, B. Bruno, and F. Mastrogiovanni, “Online human
gesture recognition using recurrent neural networks and wearable sensors,”
in Proc. IEEE 27th Int. Symp. Robot Hum. Interactive Commun., 2018,
pp. 188–195.

[23] M. E. Benalcázar et al., “Hand gesture recognition using machine learning
and the MYO armband,” in Proc. IEEE 25th Eur. Signal Process. Conf.,
2017, pp. 1040–1044.

[24] M. F. Wahid, R. Tafreshi, M. Al-Sowaidi, and R. Langari, “Subject-
independent hand gesture recognition using normalization and machine
learning algorithms,” J. Comput. Sci., vol. 27, pp. 69–76, 2018.

[25] Z. Zhang, K. Yang, J. Qian, and L. Zhang, “Real-time surface emg pattern
recognition for hand gestures based on an artificial neural network,”
Sensors, vol. 19, no. 14, 2019, Art. no. 3170.

[26] S. Jiang et al., “Feasibility of wrist-worn, real-time hand, and surface ges-
ture recognition via sEMG and IMU sensing,” IEEE Trans. Ind. Informat.,
vol. 14, no. 8, pp. 3376–3385, Aug. 2018.

[27] M. Georgi, C. Amma, and T. Schultz, “Recognizing hand and finger
gestures with IMU based motion and EMG based muscle activity sensing,”
in Proc. Int. Joint Conf. Biomed. Eng. Syst. Technol., 2015, pp. 99–108.

[28] P. Trigueiros, F. Ribeiro, and L. P. Reis, “A comparison of machine learning
algorithms applied to hand gesture recognition,” in Proc. IEEE 7th Iberian
Conf. Inf. Syst. Technol., 2012, pp. 1–6.

[29] H. Sagha et al., “Benchmarking classification techniques using the Op-
portunity human activity dataset,” in Proc. IEEE Int. Conf. Syst., Man,
Cybern., 2011, pp. 36–40.

[30] J. P. Wachs, M. Kölsch, H. Stern, and Y. Edan, “Vision-based hand-gesture
applications,” Commun. ACM, vol. 54, no. 2, pp. 60–71, 2011.

[31] M. Hearst, S. Dumais, E. Osuna, J. Platt, and B. Scholkopf, “Support
vector machines,” IEEE Intell. Syst. Appl., vol. 13, no. 4, pp. 18–28,
Jul./Aug. 1998.

[32] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
Oct. 2001.

[33] J. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1,
pp. 81–106, 1986.

[34] C. M. Bishop, Pattern Recognition and Machine Learning. New York, NY,
USA: Springer, 2006.

[35] F. Pedregosa et al., “Scikit-learn: Machine learning in python,” J. Mach.
Learn. Res., vol. 12, no. Oct, pp. 2825–2830, 2011.

[36] M. Abadi et al., “TensorFlow: Large-scale machine learning on heteroge-
neous systems,” 2015, software available from tensorflow.org. Accessed:
Dec. 13, 2022. [Online]. Available: https://www.tensorflow.org/

[37] M. Quigley et al., “ROS: An open-source robot operating system,” in Proc.
ICRA Workshop Open Source Softw., 2009.

[38] J. Kim, S. Mastnik, and E. André, “EMG-based hand gesture recognition
for realtime biosignal interfacing,” in Proc. 13th Int. Conf. Intell. User
Interfaces, 2008, pp. 30–39.

[39] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[40] D. M. Powers, “Evaluation: From precision, recall and F-measure to ROC,
informedness, markedness and correlation,” J. Mach. Learn. Technol.,
vol. 2, no. 11, pp. 37–63, 2011.

[41] A. Tharwat, “Classification assessment methods,” Appl. Comput. Infor-
mat., vol. 17, no. 1, pp. 168–192, 2021.

Open Access provided by ‘Politecnico di Bari’ within the CRUI CARE Agreement.

https://www.tensorflow.org/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

