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Abstract: Musculoskeletal involvement is one of the most common manifestations of systemic lupus
erythematosus (SLE), with a negative impact on both quality of life and overall prognosis. SLE
arthritis can be classified into three different subtypes, with different prevalence and characteristic
biomarkers and MRI findings. Identifying the pathogenetic mechanisms underlying musculoskele-
tal manifestations’ development is crucial to develop therapeutic strategies to suppress synovial
inflammation, prevent erosions and deformities, and improve SLE patients’ quality of life. Hence,
here we discuss the main pathogenetic mechanisms and therapeutic approaches of musculoskeletal
manifestations of SLE from the 2022 International GISEA/OEG Symposium.
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1. Introduction

The “Gruppo Italiano di Studio sulla Early Arthritis” (Italian Group for the Study of
Early Arthritis; GISEA) involves 21 hospital and community-based rheumatology units
throughout Italy. It has developed and maintained a nationwide registry to promote the
study of patients with inflammatory arthritis according to standard-of-care criteria [1].

The International GISEA Meeting aims to explore the state of art in many fields of
rheumatology, in particular, rheumatoid arthritis, psoriatic arthritis, and axial spondy-
loarthritis and joint involvement in connective tissue diseases. The present review derives
from the 2022 meeting session titled “Joining joints with SLE” and aims to summarize
the clinical manifestations, pathogenesis, and treatment of joint involvement in patients
affected by systemic lupus erythematosus (SLE).
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Musculoskeletal involvement is one of the most common manifestations of SLE,
affecting up to 90% of patients [2]. It represents the onset symptom in 60–80% of cases
and is reported in up to 60% of disease flares [3,4]. Joint complaints, such as arthralgia
or arthritis, are usually transient, but they can mimic rheumatoid arthritis (RA), with
persistent pain, swelling, stiffness, and disability. The most frequently affected joints are the
metacarpophalangeal and interphalangeal, wrist, and knee, but tenosynovitis or tendonitis
could also be present [5].

Lupus arthritis can develop both at onset and during the course of the disease, and it
is included in every classification criterion proposed in the last 40 years [6,7]. In the most
recent EULAR/ACR classification criteria [8], arthritis is defined as a synovitis affecting
two or more joints, characterized by swelling or effusion, or by pain in two or more joints,
associated with morning stiffness of at least 30 min.

Musculoskeletal manifestations are a determinant item of SLE disease activity in-
dices. The Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2K) is a
disease activity score used to stratify the severity of SLE. The presence of arthritis in at
least two joints is equal to four points in SLEDAI-2K. However, this evaluation system
does not allow for differentiating between an inflammatory articular involvement of only
two joints from a more severe one. Further, more than half of patients who have a score
= 0 (<2 involved joints) show moderate/high disease activity when evaluated with the
Disease Activity Score-28 (DAS28). Of note, DAS28 in SLE patients shares a good cor-
relation with ultrasonographic detection of inflammatory joint involvement as assessed
by musculoskeletal ultrasound [9,10].

Joint involvement in SLE could show several clinical phenotypes [11]: (a) joint pain
(arthralgia); (b) nondeforming nonerosive (NDNE) or only mildly deforming polyarthri-
tis; more rarely, (c) radiologically nonerosive but deforming arthropathy, namely, Jac-
coud’s arthropathy (JA) in 3–13% of patients; and (d) rheumatoid-like erosive arthritis
(rhupus: 3–5%) (Figure 1).
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Lupus arthritis is usually (80–90%) nondeforming and nonerosive on X-ray, but hands
and feet deformities mimicking RA may arise in 5–15% of cases as hallmarks of JA, albeit
in the absence of RA-like X-ray bone erosions [12]. Radiographic erosions may be detected
in less than 5% of patients showing persistent arthritis, sometimes deformities, high preva-
lence of rheumatoid factor (RF), and anticyclic citrullinated peptide antibodies (ACPA),
thus referred to as rhupus syndrome to indicate an overlap between RA and SLE [13–15].

This classification has been recently questioned by ultrasonographic studies that
showed an unexpected burden of erosive damage and a surprisingly high prevalence of
synovitis (25–90%) and tenosynovitis (25–65%) (see Table 1) [15–18]. Nowadays, physicians
can take advantage of imaging tools that are more sensitive than conventional radiology,
such as ultrasound (US) and magnetic resonance (MR). As a result, the boundaries between
nonerosive and erosive arthritis in SLE have become decidedly more blurred. In fact, up to
25% and up to 90% of patients (investigated with US and MR, respectively) show erosions
of the metacarpophalangeal and proximal interphalangeal joints of the hands and wrists.
In recent years, the positivity of ACPA has been observed in a proportion of patients to be
between 4% and 27%, and anticarbamylated proteins (anti-CarP) have been documented
in 25.6% of patients, while the association with the presence of RF has appeared less
evident [19]. MR studies have identified different patterns of lesions in the lupus arthritis
subtypes, with NDNE and JA showing prevalent capsular and tendon inflammation,
whereas rhupus is characterized by synovial hyperplasia and bone erosions [18,20,21].
Finally, computed tomography (CT) studies of the hands have demonstrated that patients
with NDNE and JA have fewer and smaller erosions than that observed in rhupus [22].

Table 1. Lupus-related arthritis.

Phenotypes Prevalence According
to Traditional X-ray

Prevalence According
to Ultrasound Biomarkers Available Treatment

Nondeforming
nonerosive arthritis 80–85% 40–60% Type I interferon

signature

First-line treatment:
GCs, HCQ, MTX

Second-line treatment:
belimumab

Deforming arthritis
(Jaccoud’s arthropathy) 3–13% 2–47% MMP3, MMP12

First-line treatment:
GCs, HCQ, MTX

Second-line treatment:
belimumab

Rheumatoid-like
erosive arthritis

(rhupus)
3–5% about 5% RF, ACPA

Anti-CarP

First-line treatment:
GCs, HCQ, MTX

Second-line treatment:
belimumab

Third-line treatment:
rituximab

RCT: randomized controlled trial; MTX: methotrexate; HCQ: hydroxychloroquine; ACPA: anticyclic citrullinated
peptide antibodies. aCarP: anticarbamylated proteins.

The different subtypes of lupus arthritis are also associated with poor health-related
quality of life (HR-QoL). For example, patients with active NDNE arthritis show worse
HR-QoL impairment measured by the SF-36 questionnaire than those with inactive NDNE
arthritis and healthy controls [22]. However, patients with JA and rhupus have the worst
scoring compared with those affected by NDNE arthritis in all the HR-QoL domains of
the SF-36 questionnaire, including pain and physical function, disability measured by
the Health Assessment Questionnaire (HAQ), and fatigue measured by the Functional
Assessment of Chronic Illness Therapy (FACIT) score [23].

2. Pathogenesis of SLE: Focus on the Musculoskeletal Manifestations

Despite the high frequency of lupus arthritis, an understanding of the underlying
pathogenic mechanisms remains incomplete. To identify the pathogenetic mechanisms
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underlying musculoskeletal manifestations’ development is crucial to develop therapeu-
tic strategies to suppress synovial inflammation, prevent erosions and deformities, and
improve SLE patients’ quality of life.

2.1. NDNE and JA

Classic synovial histopathology studies from the autopsy of patients with NDNE
and JA have revealed scarce inflammatory infiltrate with no or slight synoviocyte hy-
perplasia, intimal fibrous hyperplasia of blood vessels, and the presence of fibrin and
fibrinlike deposits on the synovial layer. Damage was represented by fibrous thickening of
the joint capsule and tendon sheaths and loss of cartilage with minimal bone loss (hook
erosion) [24,25]. Compared with osteoarthritis and RA, the most recent gene expression
analysis from synovial biopsies in SLE patients suggested myeloid cell-driven pathogenesis
of lupus arthritis [26]. Evidence of a more robust immune infiltrate than initially reported
was found by identifying M1 and M2 macrophages, neutrophils, granulocytes, activated
T-cells, and dendritic cell (DC) transcriptomes [26]. Moreover, a significant upregulation of
proinflammatory interferon-inducible (IFI) genes and a significant downregulation of genes
involved in extracellular matrix (ECM) homeostasis with low tissue repair/destruction
activity were displayed [11,26,27]. The type I IFN signature is considered pivotal in main-
taining inflammation in established disease, but a clear relationship between IFN activation
and disease activity of lupus arthritis has not been established [28]. Type I IFN is a major
driver for the B-cell-activating factor (BAFF) production. The BAFF induces B cell activation
and differentiation into autoantibody-producing plasma cells with a further generation
of the immune complexes able to induce IFN-alpha secretion by plasmacytoid DCs [28].
Moreover, IFN-alpha and BAFF-activated antigen-presenting cells, such as B cells, mono-
cytes, or myeloid DCs, may induce a costimulation to the Th17 subset enhanced in SLE
patients, inducing the release of IL-17 [29]. Interestingly, IL-17 and IL-6 are thought to
play a pivotal proinflammatory role in lupus arthritis [30,31]. In SLE synovial fluid, the
levels of IL-6 correlated with those of IL-17A (r = 0·39, p = 0·03, CI = 0·02–0·66) in [31].
IL-6 serum levels also correlated with C-reactive protein serum levels, disease activity, and
deformities in patients with SLE in [30]. Cytokines are strongly related to tissue repair
and destruction mechanisms, modulating the extracellular matrix (ECM) homeostasis by
promoting the production of metalloproteinases (MMPs) and other enzymes. Recently, the
serum levels of higher MMP-3 and lower MMP-12 were associated with JA deformities,
and most importantly, their levels were associated with capsular swelling and oedematous
tenosynovitis, the most prevalent hand MR changes in patients with JA [32]. This evidence
suggests that both inflammation and impaired mechanisms of tissue remodeling might be
involved in the development of JA.

2.2. Erosive Arthritis in SLE

The identification of different phenotypes in SLE-related joint involvement also un-
derlines the need for specific biomarkers able to find patients at risk of developing more
aggressive features, including erosive arthritis. Moving from the evidence deriving from
RA, in which erosive damage is the hallmark, several studies have evaluated the possible
role of RF and ACPA in SLE patients with joint involvement. ACPA are a collection of
autoantibodies able to recognize the nonessential amino acid citrulline, resulting from
the post-translational modification of arginine residues, catalyzed by peptidylarginine
deiminases (PADs) (Figure 2).
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directed against citrullinated and carbamylated proteins.

The generation of new epitopes, deriving from this process, leads to self-tolerance
rupture and to the induction of autoimmune response, with autoantibody production [33].
Data from the literature demonstrated a prevalence for ACPA ranging from 4.4% to 27.3%
and for RF from 17.0% to 45.4% [15]. However, only ACPA resulted in being significantly
associated with erosive damage, prevalently assessed by conventional X-ray. Furthermore,
SLE patients with bone erosions showed significantly higher ACPA titers and polyarthritis
compared with patients without bone erosions [34]. Taken together, these data could sug-
gest the possible role of ACPA as a biomarker of SLE-related erosive arthritis. However, the
systematic review and meta-analysis performed by Budhram and colleagues demonstrated,
despite a high specificity (91.8%), a low sensitivity (47.8%) for ACPA as a biomarker of
SLE-related erosive damage [35]. This suggests that a large proportion of SLE patients with
erosive damage could be ACPA negative, underlining the need to identify new biomarkers.

In addition to citrullination, the contribution of carbamylation in RA pathogenesis
has been suggested. This is a nonenzymatic post-translational modification, consisting in
the addition of a cyanate group on self-proteins. This process leads to the generation of a
noncanonical amino acid, the so called homocitrulline (Figure 2). Similar to citrullination,
the change in native protein structure leads to tolerance break, resulting in anti-CarP
generation [33]. Anti-CarP has been identified in 16% of the so-called seronegative RA, and
its presence correlates with more severe erosive damage and with the risk of developing
RA in patients with inflammatory arthralgia [36–38]. In a study published by Pecani
and colleagues, anti-CarP were found in up to 16.8% of SLE patients, irrespective of joint
involvement [39]. This prevalence reached more than 40% when enrolling SLE patients
with joint involvement; this prevalence was similar to that identified in an RA control
cohort [40]. At the same time, Ziegelasch and colleagues assessed two European cohorts
from Linköping (Sweden) and Leiden (Netherlands); aCarP were identified in 9.1% of SLE
patients, independent from the presence of arthritis. The X-ray assessment, available in 43%
of Swedish patients, demonstrated erosive damage in 4.2% of the cohort, but significantly
associated with anti-CarP [41].



J. Clin. Med. 2022, 11, 6016 6 of 10

The assessment of 152 SLE patients referring joint involvement, in which erosive
damage was investigated by US, confirmed the association between anti-CarP and erosive
arthritis. Indeed, a significantly higher prevalence of aCarP was observed in patients with
erosions compared with those without. Furthermore, anti-CarP titers positively correlated
with US erosive score and with US inflammatory score, suggesting for anti-CarP a possible
role as a biomarker of bone damage severity, but also of joint inflammatory status [42]. The
contribution of anti-CarP in erosive damage development was confirmed by the application
of machine learning models. In this field, anti-CarP antibodies were the most relevant
factor determining erosive damage development, followed by ACPA. In detail, anti-CarP
contribute 40% to the development of the erosive damage on SLE [42].

Next to antibodies, conventionally investigated as biomarkers, other molecules have
been evaluated. Among these, the possible role of MMP-3 and MMP-12 serum levels
has been investigated, with regard to their ability to discriminate different phenotypes
of SLE-related joint involvement. In particular, MMP-3 serum levels were significantly
higher in JA patients compared with rhupus syndrome and NDNE arthritis [32]. Finally,
the possibility to search biomarkers in other anatomical sites involved in erosive arthritis
development from a pathogenic point of view is very attractive. In this context, Sippl and
colleagues performed a cytokine analysis of synovial fluid collected from 17 SLE patients.
The authors found significantly higher levels of Il-17 and Il-6 in the synovial fluid compared
with serum, suggesting a local production for these molecules and, thus, a role exerted in
the joint site [31].

3. The Modern Treatment of SLE: What about the Musculoskeletal Manifestations

Although arthritis represents one of the most frequent clinical manifestations of SLE,
evidence-based treatment options are limited [43,44]. In the therapeutic algorithm proposed
by the EULAR recommendations, among conventional disease-modifying antirheumatic
drugs (cDMARDs), methotrexate is considered a preferential choice in patients with inad-
equate control of symptoms after the use of glucocorticoids (GC) and antimalarials at a
low/medium dose or in patients in whom hydroxychloroquine alone is not sufficient to
control disease activity [43]. In patients with inadequate response to GC and antimalarials,
with or without cDMARDs, persistent disease activity prevents a reduction of GC dosage,
or in patients with frequent relapses, it is now possible to move towards a second line of
treatment with the addition of belimumab [45]. Belimumab is a fully human monoclonal
antibody against BAFF. To date, it is the only biotechnological drug (bDMARD) approved
for the treatment of SLE. In a phase III placebo-controlled trial, belimumab showed efficacy
in controlling joint disease compared with placebo [46]. The efficacy of belimumab was also
confirmed in a large multicenter observational study conducted in Italy with 188 patients,
among whom joint disease was present in over 45% of the patients. At 12 and 24 months,
the presence of arthritis and a high disease activity at baseline (SLEDAI-2K = 10) were
independent predictors of response (OR and 32.3 and 12.6, respectively) [47].

Based on the pathogenetic mechanisms involved in the synovial environment in
patients with lupus arthritis, other therapeutic options are emerging. Among these, the
inhibition of IL-17 and IFN-I seems to be the most promising.

Tumor necrosis factors’ inhibitors are not currently recommended for the treatment of
SLE [43]. On the other hand, data from small case series or case reports have shown a good
efficacy of abatacept, tocilizumab, and rituximab on RA-like arthritis (rhupus) [48–53].

Unfortunately, other therapeutic options, such as the inhibition of IL-23 and the use of
baricitinib, have not provided sufficiently convincing data, despite the promising results
obtained in phase II (ustekinumab) and phase III studies (baricitinib: BRAVE I) [54,55].
Hence, further studies and development programs of these drugs in SLE have been stopped.

Other Janus kinase inhibitors have been tested for the treatment of SLE [56]. Phase I
and phase II studies on tofacitinib have focused on cardiometabolic parameters and skin
involvement [57], while a phase II RCT is currently ongoing with the aim of evaluating the
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efficacy and safety of upadacitinib and elsubrutinib in patients with nonrenal lupus, but
results are not yet available (NCT03978520).

Recently, the European Medicines Agency (EMA) and the United States of America
Food and Drug Administration (FDA) approved a second bDMARD, anifrolumab, for the
treatment of moderate/severe SLE [58–60]. Anifrolumab is an anti-interferon-α receptor
human monoclonal antibody against the IFNARI IFN-I receptor. Two phase III studies
(TULIP-1 and TULIP-2) and a phase IIb study (MUSE) provide substantial evidence for
the efficacy and safety of anifrolumab for moderately to severely active SLE [61,62]. A
recent analysis of pooled data from Tulip studies 1 and 2, focused on the efficacy of the
drug on the skin and joint component, showed that anifrolumab obtained a significant 50%
improvement in tender joint and swollen joint counts at week 52 in patients with at least
six affected joints at baseline [58]. It also showed a good safety profile, without showing an
increase in HZV infections in patients on active treatment compared with placebo.

In conclusion, the modern treatment of musculoskeletal manifestations of SLE cannot
ignore a careful assessment of the subtype of joint involvement, also using new imaging
methods such as US and MR and a more precise patient’s serological profiling. The
available international recommendations provide a reasonable road map for the treatment
of lupus arthritis in clinical practice. Quickly, the availability of two biological drugs will
represent a further step forward to ensure a treat-to-target strategy for the treatment of
lupus arthritis [63]. Finally, the recent available data on the pathogenic pathways involved
in the development of lupus arthritis will offer further perspectives and new therapeutic
scenarios in the near future [64,65].
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