
Failure Handling in BDI Plans
via Runtime Enforcement

Angelo Ferrandoa;* and Rafael C. Cardosob

aUniversity of Genova, Genova, Italy
bUniversity of Aberdeen, Aberdeen, United Kingdom

ORCiD ID: Angelo Ferrando https://orcid.org/0000-0002-8711-4670, Rafael
C. Cardoso https://orcid.org/0000-0001-6666-6954

Abstract. Engineering a software system can be a complex pro-
cess and prone to failure. This is exacerbated when the system under
consideration presents some degree of autonomy, such as in cogni-
tive agents. In this paper, we use runtime verification as a way to
enforce safety properties on Belief-Desire-Intention (BDI) agents by
enveloping certain plans in safety shields. These shields function as
a failure handling mechanism, they can detect and avoid violations in
shielded plans. The safety shields also provide automated failure re-
covery by attempting alternative execution paths to avoid violations.

1 Introduction
The Belief Desire Intention (BDI) model [26] is one of the most pop-
ular architectures for programming cognitive agents [11, 12]. This
model consists of defining beliefs, goals, and especially plans, which
are combined to form the agent’s reasoning process. Through such
plans, the developer has complete control over the agent. However,
the resulting programming process is not trivial. BDI languages,
such as AgentSpeak(L) [25], are notoriously different from tradi-
tional programming languages and usually come with a steep learn-
ing curve. The process of testing [32], debugging [33], and verify-
ing [14] such systems can be quite complex. Solutions which make
the BDI development more reliable are of uttermost importance.

BDI agents can execute in dynamic environments, where it may
be difficult to guarantee that their behaviour will always be consis-
tent with the developers’ expectations. There are various approaches
to verify agents’ behaviour, but the majority employs static verifica-
tion. In such scenarios, the agent needs to be abstracted, or some
formal representation of it has to be synthesised to be formally
verified [14, 23]. This approach is suitable for specific scenarios,
where the complexity of states is small and the resulting verifica-
tion problem is tractable. But, when the agents grow in complex-
ity, more lightweight approaches are required. Runtime Verification
(RV) [5, 21] can be a solution to this problem, since monitors can be
synthesised starting from formal properties and verified at runtime
while the BDI agents are running. No formal representation (nor
abstraction) of the system is necessary. RV is focused on detecting
unexpected behaviours, rather than enforcing the system to actually
behave in a correct way. Enforcing a behaviour leads to Runtime En-
forcement (RE) [18]. In this perspective, safety shields combine RV
and RE for safe plan execution in BDI agents.

∗ Corresponding Author. Email: angelo.ferrando@unige.it

We synthesise runtime monitors (called safety shields) to enforce
the correct behaviour of existing BDI plans. In this paper, we de-
scribe the main features of such safety shields, along with their gener-
ation and formal integration into the BDI architecture. We also show
how these safety shields can be used to detect wrong behaviour, and
how the resulting failure recovery plan can be automatically synthe-
sised in order to find a different plan execution satisfying the safety
shield formal property.

A safety shield works as a failure handling mechanism for the
plans of the agent. First, it monitors shielded plans by performing
failure detection, and then it attempts to perform an automated fail-
ure recovery procedure. Every command performed in the agent’s
shielded plans are checked by their respective safety shields before
being executed. In this way, in case the command would violate the
safety specification, the safety shield can intervene and stop such
command from being completed. Once such a violation is detected,
then after stopping the command the shield (if possible) backtracks
to a state before the execution of the plan and attempts an alternative
plan (if any) for achieving its goal.

A BDI plan is considered to be applicable if its conditions (con-
text) hold at the time that the plan is being considered for execution.
While the properties that can be specified using safety shields will of-
tentimes share similarities with the conditions of the plan, there are
two important distinctions. The first is that a shield keeps checking
the conditions specified in its formal property during the entirety of
the plan’s (and any sub-plans) execution; in contrast, the context of a
plan checks the condition only before the plan starts executing. The
second difference is that the shield specification is more expressive
than a context specification, it allows the use of temporal operators
from Linear Temporal Logic (LTL) [24] and external actions to for-
mulate a safety property; meanwhile context conditions are restricted
to the use of beliefs only.

2 Related Work

For the idea of safety shields, we take inspiration from [1, 17], where
safety shields are used to enforce safety properties in reinforcement
learning agents. In their work, the shields enforce the formal property
by penalising the reward function associated to commands violating
the property. No failure handling mechanism is defined whatsoever.
This is mainly due to the absence of a symbolic representation of
their agents, which is instead accessible for BDI agents in our work.

ECAI 2023
K. Gal et al. (Eds.)

© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230336

716

https://orcid.org/0000-0002-8711-4670
https://orcid.org/0000-0001-6666-6954

Our shields are based on the notion of runtime monitors. This is
not the first time RV is applied to MAS [2, 19, 28, 22, 30]. How-
ever, they usually target agent interaction protocols where the run-
time monitors are used to verify the message exchange amongst the
agents. This is different to our work, which is verifying internal infor-
mation of the agent at runtime and enforcing the behaviour to comply
with the specification of the shielded plan.

In the standard BDI literature, the most basic approach to auto-
mated failure recovery of actions is to repeatedly retry the failed ac-
tion until it succeeds [34]. A typical example of this is [20], where the
failed plan is re-checked to test whether the conditions responsible
for the failure no longer hold. Another example can be found in [35],
where the authors propose an alternative approach to recover from
failures which relies on exploiting interactions between an agent’s in-
tentions. Other approaches include basic support for failure handling
in Jason [10] that allows developers/users to add their own recovery
plans, and a theory for a built-in goal-failure handling mechanism in
CANPLAN [29] where an alternative applicable plan is tried when
a plan for achieving a goal fails. All of these approaches are simple
and effective, but often require additional expert knowledge from the
developer. Safety shields are automated, have more expressive con-
ditions, and deal with both failure detection and failure recovery.

Maintenance goals refer to maintaining a constant success state
of a goal, in contrast with achievement goals which only require
the goal state to be achieved once [15]. Proactive maintenance goal
mechanisms, such as in [16], predict that the maintenance condition
will be violated in the future and act accordingly in order to avoid the
violation. While proactive maintenance goal mechanisms are similar
to the functionality of safety shields in terms of handling plan fail-
ures, there are some distinct differences: (i) safety shields use formal
temporal properties for monitoring the failure condition of plans; and
(ii) safety shields do not add any new know-how on what to do in case
of failures, it simply excludes options that would violate the shield.

3 AgentSpeak(L)

In this section, we recall the theoretical background which serves as
a basis for our novel extensions. AgentSpeak(L) is a logic program-
ming language that provides an abstract framework for programming
BDI agents [25]. In this paper, we follow a presentation of AgentS-
peak(L) syntax and operational semantics similar to [31], and subse-
quently in [10] where the failure handling variant was integrated.

The beliefs of an agent determine what an agent currently knows
about itself, the other agents in the system, and the environment.
They are defined as atomic formulae, as follows:

b ::= P (t1, . . . , tn) (n ≥ 0)
where P denotes a predicate symbol, and t1, . . . , tn are standard
terms of first-order logic. A belief base is a sequence of beliefs:

beliefs ::= b1 . . . bn (n ≥ 0)
The beliefs defined by the programmer at design time make up for the
initial belief base. The rest of the beliefs are then added dynamically
during the agent’s lifetime.

An achievement goal in AgentSpeak(L) is specified as:
g ::= !at

where at is an atomic proposition.
Finally, an action in AgentSpeak(L) is defined as:

a ::= A(t1, . . . , tn) (n ≥ 0)
Action are written using the same notation as predicates, except that
an action symbol A is used instead of a predicate symbol.

Plans are used to define the course of action for the agent to ful-
fil its goals. A plan has three main components: a triggering event

te, denoting the event triggering the execution of the plan, a con-
text ctxt, denoting the conditions that must hold to consider the plan
applicable, and a body h consisting of a sequence of steps to be exe-
cuted. A plan in AgentSpeak(L) is defined as:

p ::= te : ctxt← h
The triggering event is defined as follows:

te ::= +b | − b | + g | − g
Specifically, it can be the addition (resp. deletion) of a belief b, and
the addition (resp. deletion) of a goal g. A plan is relevant for a trig-
gering event if the event can be unified with the plan’s head.

For a plan to be considered applicable a condition ctxt must hold
as a logical consequence of the agent’s belief.

The body of a plan is composed of actions (a), belief updates (+b,
−b), and achievement goals (g). We omit test goals for brevity, their
handling in our approach is the same as for achievement goals. The
sequence of formulae denoting the body of a plan is:

h ::= a | g | + b | − b | h;h′

An agent program contains a plain library with a set of plans:
plans ::= p1 . . . pn (n ≥ 1)

Finally, we define an agent through its beliefs and plans:
agent ::= beliefs plans

Definition 1 Given a set of plans of an agent and a triggering event
te, the set RelP lans(plans, te) of relevant plans is:

{pφ | p ∈ plans ∧ φ = mgu(te, TE(p))}
with φ = mgu the most general unifier and TE(p) the triggering
event of the plan p.

Definition 2 Given a set of relevant plans R, and the beliefs of an
agent, the set of applicable plans AppP lans(R, beliefs) is:

{pφ | p ∈ R ∧ ∃φ.beliefs |= ctxt(p)φ}
with ctxt(p) being the context of plan p.

Relevant plans are all plans that could be triggered by the trigger-
ing event te. Applicable plans are the subset of the relevant plans that
could be executed considering the agent’s current state of mind.

An AgentSpeak(L) configuration C is a tuple
〈I, E,A,R,Ap, ι, ρ, ε〉 where: I is the set of intentions {i, i′, . . .},
with i as an intention stack of partially instantiated plans
[p1|p2 . . . pn]. We use the | symbol to separate plans in an in-
tention stack. E is a set of events {〈te, i〉, 〈te′, i′〉, . . .}. Each event
is a pair 〈te, i〉, where te is a triggering event and i is an intention
stack containing plans associated with te. A is a set of actions
{〈a, i〉, 〈a′, i′〉, . . .}. Each action is a pair 〈a, i〉, where a is an action
and i is an intention stack containing plans associated with a. R
is a set of relevant plans. Ap is a set of applicable plans. ι, ε and
ρ keep the record of a particular intention, event and applicable
plan (respectively) being considered in the current agent’s reasoning
cycle. Note that to improve readability we have compressed the rep-
resentation of the inference rules used in the operational semantics
in [31, 10], moving some of the elements to C and omitting others
that were not used or changed in our extended rules.

To keep the notation compact, we adopt the following: (i) if C is
an AgentSpeak(L) configuration, we write CI to make reference to
the component I of C (same for the other components of C, such as
CE and so on); (ii) we write Cι = _ to indicate there is no intention
considered in the agent’s execution (same for Cρ and Cε); and (iii)
we write i[p] to denote the intention stack that has p on its top.

The reasoning cycle of the Jason variant of AgentSpeak(L) has 10
steps, as shown Figure 1. The names are used during the construc-
tion of the inference rules to identify at which step the rule can be
triggered, and which step it transitions to after applying the rule.

A. Ferrando and R.C. Cardoso / Failure Handling in BDI Plans via Runtime Enforcement 717

ProcMsg
process

messages

SelEv
event selection

RelPl
relevant plans

ApplPl
applicable plans

SelAppl
select applicable

AddIM
add intended

means

SelInt
select intention

ExecInt
execute intention

ProcAct
process action

ClrInt
clear intention

Figure 1. Standard reasoning cycle steps of Jason, introduced in [31] and
extended in [10] to include the new step (ProcAct). The double rounded rect-
angle represents the first step in the reasoning cycle.

4 Safety Shields
We extend the AgentSpeak(L) operational semantics to add support
for adding/removing safety shields to a plan, and to perform failure
detection/recovery with shields. Due to space constraints we only
show the rules that were extended, the others can be found in [31, 10].

A shield is a component which can be attached to an agent’s plan
to check whether such plan violates a formal specification during its
execution. In such case, the shield enforces the plan to conform. This
allows us to verify aspects concerning each plan’s execution, such as
the actions it performs, and how it updates the agent’s belief base.

Definition 3 A shield is specified as a tuple 〈σ, ϕ, i, ids〉, where σ is
a sequence of events (i.e., actions or addition/removal of beliefs) pre-
viously observed during the shielded plan’s execution, ϕ is the for-
mula to be verified (expressed in a formalism of choice), i is the asso-
ciated intention stack for the shielded plan, and ids is a sequence of
identifiers that are automatically generated based on plans that were
previously observed during the shielded plan’s execution. Given a
shield s = 〈σ, ϕ, i, ids〉, we refer to its elements directly as sσ , sϕ,
si, and sids, respectively.

We specify safety shields by annotating the plans that we want
to shield. Annotating plans is a common practice in existing BDI
languages [9, 13]. An annotation is a structured label attached to a
plan. More formally, a shield annotation can be specified as follows:

@shield[ϕ]
where shield is a unique label (e.g., shield1, shield2, etc.), and ϕ
is the formal property the shield will enforce. In our implementation
we use LTL to specify the properties, but our theory is independent
of the formalism used for the property. By design, annotations do not
have any specific semantics. The agent’s reasoning cycle does not
consider them, unless the developer explicitly modifies it to do so.

4.1 Adding and Removing Safety Shields

Shields are attached to the corresponding plan intention stack in CI .
The shield is used only to analyse events concerning corresponding
intentions. This can be done by extending the definition of CI , from
a set of intention stacks to a set of tuples 〈i, S〉, with i an intention
stack and S a set of attached shields.

The first set of inference rules of the AgentSpeak(L) semantics
that we need to consider concerns the addition of intended means to
the set of intentions to be executed, called ExtEv and IntEv. In the
standard AgentSpeak(L) semantics these rules are as follows:

(ExtEv)
C,AddIM → C′, SelInt

Cε=〈te,�〉, Cρ=〈p,φ〉

where C′
I = CI ∪ {[pφ]}

(IntEv)
C,AddIM → C′, SelInt

Cε=〈te,i〉, Cρ=〈p,φ〉

where C′
I = CI ∪ {i[pφ]}

In ExtEv, external perceptions are handled as events which trig-
ger a new plan p. Since the triggering event is external, no intention
(denoted with � in Cε) needs to be suspended and the plan is added
to CI . In IntEv, internal events (e.g., executions of other plans from
the same agent) are handled. In such case, the current intention i has
to be suspended by adding p to the top of the stack. Both rules orig-
inate in the reasoning cycle step AddIM , where an instance of a
selected plan becomes an “intended means” (i.e., it is added to the
set of intentions), and both rules transition to the SelInt step where
an intention will be selected for execution.

To keep track of the annotated plans (i.e., shielded plans), we need
to override the previous rules as follows (we use the prime symbol ′

to identify new or extended rules and updated sets):

(ExtEv′)
Annot(p) = @shield[ϕ]

C,AddIM → C′, SelInt
Cε=〈te,�〉, Cρ=〈p,φ〉

where C′
I = CI ∪ {〈[pφ], {〈[], ϕ,�, []〉}〉}

(IntEv′)
Annot(p) = @shield[ϕ]

C,AddIM → C′, SelInt
Cε=〈te,i〉, Cρ=〈p,φ〉, 〈i,S〉∈CI

where C′
I = CI ∪ {〈i[pφ], S ∪ {〈[], ϕ, i, []〉}〉}

Since now plans can have shields, the state of the agent is defined
by an extended version of C, where intentions keep track of which
shields are currently active. Note that, all other rules in AgentS-
peak(L)’s operational semantics are implicitly modified because now
CI consists in a set of tuples, not just intentions. Moreover, due to
space constraints we omit the cases when a plan is not annotated,
however, the behaviour would be the same as IntEv and ExtEv,
but with the condition that p is not annotated.

In the extended version ExtEv′, we add the shields associated
with p directly, since there is no suspended intention attached. In case
the plan p is not annotated with a shield, the attached set would be
empty, and the resulting tuple in CI would contain the empty set as
second argument in the newly added tuple. Instead, in the extended
version IntEv′, since an existing intention i is updated by adding
p on top of it, we also have to consider the shields that are already
present at the intention level. We call S the set denoting the shields
already attached to i. To update the set of shields now attached to
the updated intention i[pφ], we add the new shield derived by p to
the set of already active shields S. If the new selected plan p is not
annotated, then it works as in the previous extended rule ExtEv′.

Each shield is attached to an intention stack. An agent can have
multiple shields active at the same time. However, each shield is con-
cerned only with the commands executed in its own stack, without
being affected by intentions from other stacks and their shields.

The shield is added when the plan is selected to be executed, and
it is removed upon plan completion. We can remove the shield by
using the rules which are meant to clear completed intentions. When
a plan p is considered completed, denoted as an empty intention, the
attached shield is removed.

First, we consider the standard rules:

(ClearInt1)
C,ClrInt→ C′, P rocMsg

Cι=[hd←]

where C′
ι = _

C′
I = CI \ {Cι}

A. Ferrando and R.C. Cardoso / Failure Handling in BDI Plans via Runtime Enforcement718

(ClearInt2)
C,ClrInt→ C′, ClrInt

Cι=i′[hd′←!at;h′ | hd←]

where C′
ι = _

C′
I = (CI \ {Cι}) ∪ {i′[hd′ ← h′]}

ClearInt1 removes an intention from the set of intentions of an
agent when there is nothing left in that intention. ClearInt2 re-
moves from the intention what is left from the plan that had been
put on the top of the intention stack on behalf of the achievement
goal !at, which is also removed as it has been accomplished. hd rep-
resents the head of the plan, and h′ the remaining of the plan.

We can have one (or multiple) shields attached to an intention
stack. Since the set of shields is attached to an intention, we do not
need to extend ClearInt1, because it handles the case when the in-
tention is completed and completely removed from CI . Instead, we
have to extend ClearInt2, because that is when the intention is not
finished, but some of the shields added during the execution might
not be necessary anymore.

(ClearInt′2)
RmShields(i′[hd′ ←!at;h′], S) = S′′

C,ClrInt→ C′, ClrInt

where Cι = 〈i′[hd′ ←!at;h′ | hd←], S〉
C′

ι = _
C′

I = (CI \ {Cι}) ∪ {〈i′[hd′ ← h′], S′〉}
S′ = S \ S′′

To define the new version of the rule, we apply an auxiliary func-
tion called RmShields, which returns the set of removable shields.

Definition 4 Given an intention stack i of an agent, and a set of
shields S, the set of removable shields is given as follows:

RmShields(i, S) = {〈s | s ∈ S ∧ si = i}

When a shield is added to S, the corresponding suspended inten-
tion stack i for the plan is added along with the shield. A shield can
be removed when the current intention stack is the same as before
the shield was added. This means that the shielded plan concluded
its execution without violating the formal specification attached to
the shield, and can now be safely removed.

4.2 Catching Violations (Failure Detection)

The entire agent’s reasoning cycle depends on which plans are se-
lected as relevant and, then, applicable. We enforce the satisfaction
of a formal property by extending the RelP lans function (see Sec-
tion 3). The goal of such an extension is to take a property into con-
sideration while selecting the relevant plans for a triggering event.
The updated function is as follows:

RelP lans(plans, te, S) =
{pφ | p ∈ plans ∧ φ = mgu(te, TE(p)) ∧

∀s∈S .(sσ · te |= sϕ ∧ depth(si, d) ∧ idp
= sids(d))}
where S denotes the set of shields associated to the current selected
intention, and · denotes the concatenation amongst trace of events.
Using the updated function, we can check whether the triggering
event te violates at least one shield s in S. If that is the case, then
RelP lans returns the empty set. Otherwise, if te is conformant to
all active shields, then we still need to check whether the plan has
already been selected in the past. This is checked considering the po-
sition of the plan inside the intention stack, which we refer to as the
depth of the plan. A plan can be called more than once during the

agent’s execution, therefore we need the depth of the plan to recog-
nise if the current plan is a recursive call or a duplicate caused by the
plan’s failure. If that is the case, the plan is not added to the set of
relevant plans. This step is necessary to enforce the reasoning cycle
to retry the violating plan when a shield is violated. By checking if
we have already tried a plan at a specific depth of the intention stack,
we can avoid to endlessly loop over the same plan. To obtain this,
we need a way to identify the plans. The notation idp is an abbrevi-
ation that we use to uniquely determine a plan. This can be obtained
through a direct mapping, that assigns each plan in the plan’s library
to an identifier.

Note that, when the triggering event (te) violates at least one shield
in S, RelP lans returns the empty set. Thus, no relevant or applica-
ble plan is available (CR = ∅, CAp = ∅). Consequently, no plan
can be selected and the resulting plan failure handling is triggered.
As shown in Appl rule, this is achieved by adding the corresponding
plan deletion event (−%at).

(Appl)
AppP lans(CR, beliefs) = ∅
C,ApplP l→ C′, SelInt

Cε=〈te,i〉, CAp=∅, CR
=∅

where C′
E =

{
CE ∪ {〈−%at, i〉} if te = +%at with % ∈ {!}
CE ∪ {Cε} otherwise

By updating RelP lans to consider a formal specification in the
plan selection, we can enforce the reasoning cycle to only consider
events which do not violate a certain property.

In SelAppl, we find the standard rule to select a plan amongst the
applicable ones. The SAp selection function is used to pick one plan
amongst the set of applicable ones in CAp (usually the first).

(SelAppl)
SAP (CAP) = 〈p, φ〉

C, SelAppl→ C′, AddIM

where C′
ρ = 〈p, φ〉

We extend this rule in SelAppl′, which is necessary to keep track
of the events related to active shields. We use this extended rule to
update the set of shields. If the triggering event is not a violation
of any safety shield, the resulting applicable plan is selected and
stored in CAp, as in the standard semantics. The triggering event
is added to the sequence of observed events (used to check against
the shield’s safety property), and the identifier for the corresponding
selected plan is added to the list of the shield’s identifiers.

(SelAppl′)
SAP (CAP) = 〈p, φ〉

C, SelAppl→ C′, AddIM

where C′
ρ = 〈p, φ〉

C′
I = (CI \ {〈i, S〉}) ∪ {〈i, S′〉}

S′ = {〈σ′, ϕ, i′, ids′〉 | 〈σ, ϕ, i′, ids〉 ∈ S ∧
σ′ = σ · te ∧ ids′ = ids · idp}

RelP lans only considers triggering events originated from goals
and beliefs, therefore, the agent can still perform actions which may
violate the formal specification. To enforce actions we need to extend
the relevant rule in the operational semantics to handle action viola-
tions (i.e., when an action violates a formal property). The ExecAct
is the rule that deals with the execution of an action, it was originally
extended in [10] as follows:

(ExecAct)
〈a, i〉 ∈ CA execute(a) = e

C, ProcAct→ C′, P rocAct

A. Ferrando and R.C. Cardoso / Failure Handling in BDI Plans via Runtime Enforcement 719

where C′
A = CA \ {〈a, i〉}

C′
I = CI ∪ {i′[te : ct← h]}, if e

C′
E = CE ∪ {〈−%at, i〉}, if ¬e ∧ (te = +%at)

with i = i′[te : ct← a;h] and % ∈ {!}
This rule describes how the agent’s reasoning cycle proceeds when

an action is executed. It uses the auxiliary Boolean function execute
to refer to the actual execution of actions. If the action succeeded (e
is true), then the attached suspended intention is resumed (if e con-
dition). Otherwise (e is false), the deletion event for the plan calling
the action is added to set of the events (if ¬e condition). In the stan-
dard operational semantics we also have ExecDone, which handles
when the action is completed. We omit that rule here since it does
not need to be extended.

We update the existing rule to consider the case when the action
satisfies the property, and add an additional rule for when the ac-
tion violates it. In this way, we can enforce the agent to not perform
actions that would violate the expected behaviour specified in the
property. First, we modify ExecAct, and rename it ExecAct′1:

(ExecAct′1)
〈a, i〉 ∈ CA execute(a) = e

C, ProcAct→ C′, P rocAct
〈i,S〉∈CI , ∀s∈S .sσ·a|=sϕ

where C′
A = CA \ {〈a, i〉}

C′
I = CI ∪ {〈i′[te : ct← h], S′〉}, if e

C′
E = CE ∪ {〈−%at, i〉}, if ¬e ∧ te = +%at

S′ = {〈σ′, ϕ, i′, ids〉 | 〈σ, ϕ, i′, ids〉 ∈ S ∧ σ′ = σ · a}
with i = i′[te : ct← a;h] and % ∈ {!}
ExecAct′1 is used when action a does not violate the specification.

(ExecAct′2)
〈a, i〉 ∈ CA

C,ProcAct→ C′, P rocAct
〈i,S〉∈CI , ∃s∈S .sσ·a
|=sϕ

where C′
A = CA \ {〈a, i〉}

C′
E = CE ∪ {〈−%at, i〉}, if te = +%at

with i = i′[te : ct← a;h] and % ∈ {!}
In ExecAct2, the violation of the specification sϕ (for some s ∈

S) is used to trigger the deletion event of the plan calling the violating
action. This aspect is relevant from an engineering perspective, since
we can reuse the failure handling mechanism from [10].

4.3 Handling Violations (Failure Recovery)

Recovery plans that are triggered in the plan failure mechanism are
domain dependent. It is up to the developer to define such behaviour
and how the agent should proceed in its plan selection. Usually, this
consists in executing some cleaning actions/plans (to clear off the
intermediate modifications made by the plan before failing), and then
trying to achieve the failed plan’s goal through a different plan.

To perform automated failure recovery we need to identify what
are the requirements to automate such synthesis. To try to automate
the generation of recovery plans for general use we split it into two
parts: restore and retry. Before we discuss both parts in more detail,
we add an additional inference rule to the operational semantics:

(IntEvFail′)
Cε = 〈−!at, i〉

C,AddIM → C′, SelInt
〈i,S〉∈CI , ∃s∈S .sσ
|=sϕ

where C′
I = CI ∪ {i[!at][cmds] | restore(sσ) = cmds}

In this rule, we automatically handle the case of failure caused
by shield violation. It is applied when the triggering event is a plan

deletion, and at least one shield attached to the intention has been
violated. If that is the case, then we need to restore the agent’s mind,
and retry to achieve the goal by attempting to follow a different exe-
cution path (recalling !at in this case). cmds contains the commands
to restore.

Restore. When an agent executes a shielded plan, some commands
from the plan’s body may change the agent’s state of mind or the en-
vironment. Thus, when a shielded plan is about to violate the shield’s
formal property (ϕ), the restoring process consists in reverting the
beliefs and actions which have been done since the shielded plan
started.1 Note that, we restore only what was done inside the shielded
plan; beliefs or actions could have been changed due to other concur-
rent plans not related to the shield or other agents in the system which
are outside the scope of this mechanism. More complex situations
may require domain specific restore mechanisms.

Even though the act of restoring an action might be very intuitive
in some scenarios, it might not be as much in others (e.g., where an
action can be restored only by a combination of different actions or
cannot be restored at all). The act of restoring an action is domain
specific, and it needs to be customised by the developer. We use a
semi-automatic approach by using a list of opposite actions provided
by the developer. We also assume that we can extract the effects of
an action either through the action’s specification (uncommon in BDI
languages) or through the environment. In plans without actions our
process remains completely automated.

The restore function can be defined as follows:
restore(σ) = [opposite(σ(|σ|)), . . . , opposite(σ(1))]

where, given a list of events, it returns a list of opposite commands
(in backward order). This list is used in the (IntEvFail′) rule to
restore the agent’s mind.

Retry. Once the plan has been restored, the agent can retry to
achieve the same goal. In rule (IntEvFail′), after restoring the
agent’s mind we call the same plan again. In the standard operational
semantics this could result in an endless loop. However, as previ-
ously anticipated, we modified RelP lans to keep track of which
plans have already been tried. If no more plans are available, or all
available ones have already been tried, then the plan would simply
fail and fall outside the scope of the shield. In such cases, the de-
fault behaviour takes over and a domain-specific failure plan will be
selected if available.

5 Implementation
We implemented a prototype in the JaCaMo multi-agent develop-
ment framework [8, 7].2 From an implementation perspective, ex-
tending the reasoning cycle of Jason is an invasive task, which re-
quires altering its source code. Instead, we focus on a less invasive
and more portable implementation based on instrumentation. Jason
supports annotations and governs the agent programming dimension
as part of JaCaMo. The environment in JaCaMo is defined through
CArtAgO [27], which uses artefacts to describe observable proper-
ties (i.e., perceptions) about particular elements of the environment
as well as to provide operations (i.e., actions) that the agent can ex-
ecute. In this work we do not make use of the third dimension in Ja-
1 Some actions may not be reverted. The only side effect in such cases is that

it may lead to less (or zero) possible execution paths, therefore reducing the
probability of success of the automated retry mechanism.

2 Source code available at https://github.com/AngeloFerrando/
SafetyShieldsBDI (Accessed 21-July-2023)

A. Ferrando and R.C. Cardoso / Failure Handling in BDI Plans via Runtime Enforcement720

https://github.com/AngeloFerrando/SafetyShieldsBDI
https://github.com/AngeloFerrando/SafetyShieldsBDI

CaMo, which is related to organisations. There are other approaches
in the literature that can deal with robustness at the organisation level
in multi-agent systems [4] and more specifically in JaCaMo [3].

We use JaCaMo instead of Jason because the former supports arte-
facts which are well-suited for implementing the shields and inter-
facing with the monitors. We create one CArtAgO artefact per agent
which is exclusively responsible for maintaining all of the informa-
tion about the shields, and any shield-related operation such as when
a shield needs to be added, removed, or updated. The monitors are
implemented in LamaConv3, a Java library for LTL monitors.

5.1 Adding and Removing Safety Shields through
Instrumentation

This can be obtained by instrumenting the plan by adding an oper-
ation to add a shield as the first command in the plan’s body, and
by adding another operation to remove the same shield as the last
command in the plan. Thus, if we have a generic plan as follows:

@shield1[ϕ]
+!plan : ctxt <- cmd1;. . .;cmdm.

after the instrumentation process, we obtain:

+!plan : ctxt <-
add_shield(ϕ); cmd1;. . .;cmdm; remove_shield(ϕ).

where we call specific operations to add/remove the shield. The
add_shield artefact operation is placed at the beginning of the
plan’s body. This operation adds a shield to a map data structure kept
in the agent’s artefact. As soon as the plan is selected to be executed,
the corresponding shield is added into the agent’s artefact. When the
plan is considered completed, the previously added shield can be re-
moved with the remove_shield operation.

Note that, remove_shield is also called when the plan fails. This
happens when the retry phase does not successfully recovers the plan.
This is necessary to ensure that the shield is always removed, both
when the plan succeeds, as well as when it fails.

5.2 Catching Violations through Instrumentation

This can be obtained by explicitly checking, for each command in
the shielded plan’s body, whether the command would violate any
safety property in S. The instrumentation process adds the artefact
operation update_shields before each command. Considering the
previous plan, the final result after instrumentation is as follows:

+!plan : ctxt <-
add_shield(ϕ);
update_shields(cmd1); cmd1;
. . .;
update_shields(cmdm); cmdm;
remove_shield(ϕ).

If the command is consistent with all shields associated to the
plan, then the operation succeeds. Otherwise, the operation fails and
causes the plan to fail as well.

5.3 Restore and Retry through Instrumentation

By using the Jason’s internal action (.intention), it is possible to
store and retrieve information about a specific plan execution. For
each plan’s execution, a unique ID is stored, along with the depth
in which such plan has been called w.r.t. the intention’s stack. With

3 https://www.isp.uni-luebeck.de/lamaconv (Accessed: 21-July-2023)

these, a plan can be instrumented to remember whether previous exe-
cutions of a plan have already been called because of a shield failure,
which is used to avoid executing it again.

Considering the same plan as before, we would obtain:

+!plan : ctxt &
.intention(I) & id(I, PlanID) &
depth(I, Depth) & already_tried(I, Plans) &
not(member((PlanID, Depth), Plans))

<-
-already_tried(I, Plans);
+already_tried(I, [(PlanID, Depth)|Plans]);
. . .

-!plan : .intention(I) & violated(I, Cmds) <-
!restore(Cmds); !plan.

The first part deals with how the instrumentation process adds addi-
tional requirements in the plan’s context. Other than the original one
(ctxt), the plan’s intention is retrieved (I), as well as the correspond-
ing plan’s id (PlanID) and depth (Depth). These are used to check
whether the plan has already been called. The second part consists
in restoring and retrying in case of failure (i.e., when a violation is
detected). In such recovery plan (-!plan), the effects are reverted
(Cmds contains the list of commands to be executed to restore the
agent’s mind) and the plan is retried (!plan).

Without the instrumentation, every time a plan is retried it would
go through the same execution path. We can avoid this by storing
information about previous executions of a shielded plan, ignoring
plans already attempted and trying different executions paths (if any).

6 Experiments

We report two categories of experiments: (i) safety, where we apply
our implementation to a case study; and (ii) performance, where we
focus on calculating the overhead of using shields.

6.1 Safety Experiments

With a single shield An agent controlling a rover has been de-
ployed in a nuclear facility to perform remote inspection. The rover’s
mission is to inspect barrels containing nuclear waste, and to report
in case of leakage or other structural issues. The agent has full con-
trol over the rover’s sensors/actuators and its movement. The BDI
agent program used in this demonstrative example is as follows:

// initial beliefs
fast.
position(wp1).
//plans
@shield1("G(+rad(low))")
+!inspect_nuclear_plant : fast <-

!inspect(wp1);
move_to(wp2, R2); -rad(R2); +rad(R2);
move_to(wp3, R3); -rad(R3); +rad(R3);
!inspect(wp3).

+!inspect_nuclear_plant : true <-
!inspect(wp1);
move_to(wp4, R4); -rad(R4); +rad(R4);
move_to(wp3, R3); -rad(R3); +rad(R3);
!inspect(wp3).

+!inspect(WP) : true <-
inspect_barrel(WP, Result).

The initial beliefs correspond to what the agent knows to be true;
the agent knows the rover is at wp1 (position(wp1)) and that a
fast inspection is desired (the shortest path between wp1 and wp3

, is through wp2). The main plan !inspect_nuclear_plant of-
fers two choices. The first one, when the inspection is expected to be

A. Ferrando and R.C. Cardoso / Failure Handling in BDI Plans via Runtime Enforcement 721

https://www.isp.uni-luebeck.de/lamaconv

Figure 2. Instrumentation. Figure 3. One single plan. Figure 4. Parallel plans. Figure 5. Nested plans.

quick; and the second one, when there is no time constraint. Then, de-
pending on which plan is selected, sub-plans and actions are called.

The sub-plan !inspect(WP) makes the rover inspect a certain
waypoint WP. First, the rover has to move to the waypoint WP

(move_to), then inspect the barrel (inspect_barrel). The rover
is equipped with a radiation sensor, and when it moves to a way-
point, it detects the level of radiation in that area (move_to second
parameter). Note that, !inspect_nuclear_plant has been anno-
tated with a formal property (LTL), where G stands for globally (�
operator). Such formal property is a safety property stating that: “It
is always true that the perceived radiation level is low”. This formal
property practically says that the rover should not keep moving to the
next waypoint if it perceives a high level of radiation, in which case
the shield detects a failure. If, during the execution of the first plan,
the safety shield perceives high radiation while the agent is attempt-
ing to reach a waypoint, it reports a violation of the safety property.
This will trigger the restore and retry behaviour. If the high level of
radiation was perceived in wp2, then the only command to restore
is move_to; which is done by moving back to wp1. After restoring,
the retry attempts the second case of !inspect_nuclear_plant
to achieve the goal of inspecting both waypoints. In this case, by

moving through a different path.
The remote inspection example can be achieved without the need

of shields. However, the resulting plans would be much more ver-
bose and complex. For instance, if we wanted to obtain the same
result without using safety shields, we would have to add an addi-
tional check before each single action or addition/removal of a be-
lief. Moreover, this should be done manually for each plan. Instead,
with safety shields the additional checks are automatically synthe-
sised, and everything is parametric w.r.t. a formal specification of in-
terest. Thus, if we want to check different requirements for a plan, it
is enough to change the formula in the shield; while, without shields,
the developer would have to re-write everything from scratch.

With two nested shields Considering the same example as be-
fore. We annotate the !inspect plan as follows (remember that !
inspect is a sub-plan of !inspect_nuclear_plant):

@shield2["(+rad(low) U inspect_barrel(_,ok)) or
(+rad(high) U inspect_barrel(_,leakage))"]

+!inspect(WP) : true <- ...

The property states that: “If the sensor perceives high radiation,
then the inspection of the barrel in the current waypoint has to re-
port leakage (and viceversa)”. We use this property to ensure that
the radiation and visual sensors are consistent. Note that, this LTL
formula is more complex, since safety shields support LTL specifi-
cations, the properties that can be specified are as expressive as LTL.
The presence of a shield in the nested plan is handled by adding an
additional shield upon calling !inspect. Consequently, when inside
the !inspect sub-plan, both shield1 and shield2 are enforced.

6.2 Performance Experiments

Our experiments focus on the overhead that could be introduced by
the failure detection mechanism. We use stub actions and sub-plans
to simulate a more realistic behaviour. The properties analysed on
such plans follow the structure used in Section 6.1.

Figure 2 reports the execution time for instrumenting plans. As
expected, the time is linear w.r.t. the number of plans to instrument.
Moreover, even with a large number of plans to instrument (∼1000),
the required time to complete the process is less than 0.5 seconds,
making the instrumentation step usable in realistic scenarios.

In Figure 3, we report the experiments with a single plan. The aim
is to show the overhead of adding a shield to a plan with varying
size of the plan’s body. Each command in the plan’s body needs to
be reported to the shield. We have the case without a shield, with a
subset of shielded commands (half of them), and with all commands
shielded. In the last two, we observe the overhead, which depends
on the number of commands reported to the shield. Note that, even
though the overhead is not negligible, the time complexity remains
linear w.r.t. the number of commands. This is derived by the fact that
a monitor takes constant time to analyse a single command [6].

The experiments with parallel plans are shown in Figure 4. The
number of commands to be executed per plan is fixed (50 com-
mands), varying the number of plans. Similarly to the previous exper-
iment, the overhead is not negligible, but preserves the time complex-
ity. Note that, all plans are shielded (worst case); in a more realistic
scenario, only a subset of the plans would be shielded.

In Figure 5, we report the experiments with nested plans, where
each plan calls a single sub-plan, that in turn calls another sub-plan,
and so on. This scenario is, as expected, the one with the worst per-
formance for shields, since each nested shield increases the number
of shields to update by one. This is a very stressed and unlikely sce-
nario, where each nested plan is shielded.

7 Conclusions and Future Work

In this paper, we presented the design and implementation of safety
shields for BDI plans. We formally specify how to enhance the
agent’s reasoning cycle to enforce the satisfaction of safety proper-
ties through shields. A prototype of our approach is proposed using
the JaCaMo platform. We report experiments using an example of a
rover deployed in a safety-critical scenario to show how the safety
behaviour is enforced. Moreover, we also reported empirical experi-
ments to show the performance of the resulting prototype.

For future work, we are interested in improving our prototype. The
current implementation is based on instrumentation. However, instru-
mentation has implications at the engineering level, and it is less ideal
in the long run w.r.t. the actual agent’s reasoning cycle modification.
We are also interested in extending the work from using one single
artefact per agent, to one artefact per shield. This extension could
improve performance, especially with nested shields.

A. Ferrando and R.C. Cardoso / Failure Handling in BDI Plans via Runtime Enforcement722

Acknowledgements

This project CONVINCE has received funding from the Euro-
pean Union’s Horizon research and innovation programme G.A.
n. 101070227. This publication is funded by the European Union.
Views and opinions expressed are however those of the authors only
and do not necessarily reflect those of the European Union or Eu-
ropean Commission (the granting authority). Neither the European
Union nor the granting authority can be held responsible for them.

References
[1] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina

Könighofer, Scott Niekum, and Ufuk Topcu, ‘Safe reinforcement learn-
ing via shielding’, in Proceedings of the Thirty-Second AAAI Confer-
ence on Artificial Intelligence, pp. 2669–2678, United States, (2018).
AAAI Press.

[2] Davide Ancona, Angelo Ferrando, and Viviana Mascardi, ‘Paramet-
ric runtime verification of multiagent systems’, in Proceedings of the
16th Conference on Autonomous Agents and MultiAgent Systems, AA-
MAS 2017, São Paulo, Brazil, May 8-12, 2017, pp. 1457–1459. ACM,
(2017).

[3] Matteo Baldoni, Cristina Baroglio, Olivier Boissier, Roberto Micalizio,
and Stefano Tedeschi, ‘Distributing responsibilities for exception han-
dling in JaCaMo’, in 20th International Conference on Autonomous
Agents and Multiagent Systems, pp. 1752–1754. ACM, (2021).

[4] Matteo Baldoni, Cristina Baroglio, Roberto Micalizio, and Stefano
Tedeschi, ‘Accountability in multi-agent organizations: from concep-
tual design to agent programming’, Auton. Agents Multi Agent Syst.,
37(1), 7, (2023).

[5] Ezio Bartocci, Yliès Falcone, Adrian Francalanza, and Giles Reger, ‘In-
troduction to runtime verification’, in Lectures on Runtime Verification
- Introductory and Advanced Topics, volume 10457 of Lecture Notes in
Computer Science, 1–33, Springer, Cham, (2018).

[6] Andreas Bauer, Martin Leucker, and Christian Schallhart, ‘Runtime
verification for LTL and TLTL’, ACM Trans. Softw. Eng. Methodol.,
20(4), 14:1–14:64, (2011).

[7] O. Boissier, R.H. Bordini, J. Hubner, and A. Ricci, Multi-Agent Ori-
ented Programming: Programming Multi-Agent Systems Using Ja-
CaMo, Intelligent Robotics and Autonomous Agents series, MIT Press,
United States, 2020.

[8] Olivier Boissier, Rafael H. Bordini, Jomi F. Hübner, Alessandro Ricci,
and Andrea Santi, ‘Multi-agent oriented programming with JaCaMo’,
Science of Computer Programming, 78(6), 747–761, (Jun 2013).

[9] Rafael Bordini, Jomi Hübner, and Michael Wooldridge, Programming
Multi-Agent Systems in AgentSpeak Using Jason, volume 8, John Wiley
& Sons, Ltd, United Kingdom, 10 2007.

[10] Rafael H. Bordini and Jomi Fred Hübner, ‘Semantics for the Jason vari-
ant of AgentSpeak (plan failure and some internal actions)’, in 19th
European Conference on Artificial Intelligence, volume 215 of Fron-
tiers in Artificial Intelligence and Applications, pp. 635–640. IOS Press,
(2010).

[11] Rafael H. Bordini, Amal El Fallah Seghrouchni, Koen V. Hindriks,
Brian Logan, and Alessandro Ricci, ‘Agent programming in the cog-
nitive era’, Auton. Agents Multi Agent Syst., 34(2), 37, (2020).

[12] Rafael C. Cardoso and Angelo Ferrando, ‘A review of agent-based pro-
gramming for multi-agent systems’, Computers, 10(2), 16, (Jan 2021).

[13] Stephen Cranefield, Michael Winikoff, Virginia Dignum, and Frank
Dignum, ‘No pizza for you: Value-based plan selection in BDI agents’,
in Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, pp. 178–184. IJCAI, (2017).

[14] Louise A. Dennis, Michael Fisher, Matthew P. Webster, and Rafael H.
Bordini, ‘Model checking agent programming languages’, Autom.
Softw. Eng., 19(1), 5–63, (2012).

[15] Simon Duff, James Harland, and John Thangarajah, ‘On proactiv-
ity and maintenance goals’, in 5th International Joint Conference on
Autonomous Agents and Multiagent Systems, pp. 1033–1040. ACM,
(2006).

[16] Simon Duff, John Thangarajah, and James Harland, ‘Maintenance
goals in intelligent agents’, Comput. Intell., 30(1), 71–114, (2014).

[17] Ingy Elsayed-Aly, Suda Bharadwaj, Christopher Amato, Rüdiger
Ehlers, Ufuk Topcu, and Lu Feng, ‘Safe multi-agent reinforcement

learning via shielding’, in 20th International Conference on Au-
tonomous Agents and Multiagent Systems, pp. 483–491. ACM, (2021).

[18] Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, and Jean-Luc
Richier, ‘Runtime enforcement monitors: composition, synthesis, and
enforcement abilities’, Formal Methods Syst. Des., 38(3), 223–262,
(2011).

[19] Angelo Ferrando, Davide Ancona, and Viviana Mascardi, ‘Decentraliz-
ing MAS monitoring with DecAMon’, in Proceedings of the 16th Con-
ference on Autonomous Agents and MultiAgent Systems, AAMAS 2017,
São Paulo, Brazil, May 8-12, 2017, pp. 239–248. ACM, (2017).

[20] Malik Ghallab, Dana S. Nau, and Paolo Traverso, Automated Planning
and Acting, Cambridge University Press, Cambridge, UK, 2016.

[21] Martin Leucker and Christian Schallhart, ‘A brief account of runtime
verification’, J. Log. Algebraic Methods Program., 78(5), 293–303,
(2009).

[22] Yoo Jin Lim, Gwangui Hong, Donghwan Shin, Eunkyoung Jee, and
Doo-Hwan Bae, ‘A runtime verification framework for dynamically
adaptive multi-agent systems’, in 2016 International Conference on Big
Data and Smart Computing, BigComp 2016, Hong Kong, China, Jan-
uary 18-20, 2016, pp. 509–512. IEEE Computer Society, (2016).

[23] Alessio Lomuscio, Hongyang Qu, and Franco Raimondi, ‘MCMAS: an
open-source model checker for the verification of multi-agent systems’,
Int. J. Softw. Tools Technol. Transf., 19(1), 9–30, (2017).

[24] Amir Pnueli, ‘The temporal logic of programs’, in Proc. 18th Annual
Symposium on Foundations of Computer Science (FOCS), pp. 46–57.
IEEE Computer Society, (1977).

[25] Anand S. Rao, ‘AgentSpeak(L): BDI agents speak out in a logical
computable language’, in 7th European Workshop on Modelling Au-
tonomous Agents in a Multi-Agent World, Eindhoven, The Netherlands,
January 22-25, 1996, volume 1038 of Lecture Notes in Computer Sci-
ence, pp. 42–55. Springer, (1996).

[26] Anand S. Rao and Michael P. Georgeff, ‘BDI agents: From theory to
practice’, in Proceedings of the First International Conference on Mul-
tiagent Systems, June 12-14, 1995, San Francisco, California, USA, pp.
312–319. The MIT Press, (1995).

[27] Alessandro Ricci, Michele Piunti, Mirko Viroli, and Andrea Omicini,
‘Environment programming in CArtAgO’, in Multi-Agent Program-
ming: Languages, Tools and Applications, Multiagent Systems, Ar-
tificial Societies, and Simulated Organizations, chapter 8, 259–288,
Springer, Boston, MA, (2009).

[28] Chittra Roungroongsom and Denduang Pradubsuwun, ‘Formal veri-
fication of multi-agent system based on JADE: A semi-runtime ap-
proach’, in Recent Advances in Information and Communication Tech-
nology 2015, 297–306, Springer, (2015).

[29] Sebastian Sardiña and Lin Padgham, ‘A BDI agent programming lan-
guage with failure handling, declarative goals, and planning’, Auton.
Agents Multi Agent Syst., 23(1), 18–70, (2011).

[30] Paolo Torroni, Pinar Yolum, Munindar P. Singh, Marco Alberti, Fed-
erico Chesani, Marco Gavanelli, Evelina Lamma, and Paola Mello,
‘Modelling interactions via commitments and expectations’, in Hand-
book of Research on Multi-Agent Systems - Semantics and Dynamics of
Organizational Models, 263–284, IGI Global, (2009).

[31] Renata Vieira, Álvaro F. Moreira, Michael J. Wooldridge, and Rafael H.
Bordini, ‘On the formal semantics of speech-act based communication
in an agent-oriented programming language’, J. Artif. Intell. Res., 29,
221–267, (2007).

[32] Michael Winikoff, ‘BDI agent testability revisited’, Auton. Agents Multi
Agent Syst., 31(5), 1094–1132, (2017).

[33] Michael Winikoff, ‘Debugging agent programs with why?: Questions’,
in Proceedings of the 16th Conference on Autonomous Agents and Mul-
tiAgent Systems, AAMAS 2017, São Paulo, Brazil, May 8-12, 2017, pp.
251–259. ACM, (2017).

[34] Wayne Wobcke, ‘An operational semantics for a PRS-like agent archi-
tecture’, in 14th Australian Joint Conference on Artificial Intelligence,
Adelaide, Australia, December 10-14, 2001, volume 2256 of Lecture
Notes in Computer Science, pp. 569–580. Springer, (2001).

[35] Yuan Yao, Brian Logan, and John Thangarajah, ‘Robust execution of
BDI agent programs by exploiting synergies between intentions’, in
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
February 12-17, 2016, Phoenix, Arizona, USA, pp. 2558–2565. AAAI
Press, (2016).

A. Ferrando and R.C. Cardoso / Failure Handling in BDI Plans via Runtime Enforcement 723

	Introduction
	Related Work
	AgentSpeak(L)
	Safety Shields
	Adding and Removing Safety Shields
	Catching Violations (Failure Detection)
	Handling Violations (Failure Recovery)

	Implementation
	Adding and Removing Safety Shields through Instrumentation
	Catching Violations through Instrumentation
	Restore and Retry through Instrumentation

	Experiments
	Safety Experiments
	Performance Experiments

	Conclusions and Future Work

