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Abstract Advances in sensor technology enable environmental monitoring pro-
grammes to record and store measurements at a high temporal resolution, enhancing
the capacity to detect and understand short duration changes that would not have been
apparent in the past with monthly, fortnightly or even daily sampling. However, there
are various challenges in terms of the processing and analysis of these environmental
high-frequency data due to their complex behavior over the different timescales and the
strong correlation structure that persists over a large number of lags. Here, we explore
the complexities of modeling high-frequency data which arise from environmental
applications. With increasing understanding of the importance of surface waters as a
source of atmospheric CO2 we consider a high-resolution sensor-generated time series
of the over-saturation of CO2, EpCO2, in a small order river system. We will present
advanced statistical approaches to analyze and model the data, which include visual-
ization tools for exploratory analysis, wavelets and additive models. These methods
reveal the complex dynamics of EpCO2 over different timescales, and the multivari-
ate relationships of EpCO2 with hydrology and temporal autocorrelation structures,
which are time and scale dependent.
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1 Introduction

Understanding the drivers of crucial environmental challenges, such as climate change,
water and air pollution, changes in water quantity, and loss of soil carbon is of great
importance to society (Intergovernmental Panel on Climate Change IPCC 2013).
Therefore, environmental monitoring technologies are continually being developed
to enhance the ability to understand environmental systems and detect changes occur-
ringwithin these systems. In the past, environmentalmonitoring programmes typically
involved monthly, fortnightly, weekly, and occasionally daily sampling campaigns but
rarely shorter time intervals (Kirchner et al. 2004;Neal et al. 2012).However, in reality,
most environmental processes are continuous in time with changes potentially occur-
ring at sub-daily scales; and hencemonitoring programmes of high temporal resolution
are needed to observe and understand the significance of these rapid changes. Sensor
technology is continuously developing and as a result, the ability to record and store
measurements is ever-improving (Yick et al. 2008). Accordingly, environmental mon-
itoring programmes make use of these sensors to record hourly or sub-hourly (e.g.,
everyminute) measurements (Moraetis et al. 2010). Sensor hydrological data recorded
at short time frames over a long time period are referred to as “Hydrological High-
Frequency Data (HHFD)” (Kirchner et al. 2004). Such HHFD allow us to address new
research questions which were previously inaccessible, although they pose statistical
modeling and analysis challenges. Many of the currently available standard statistical
methods and software tools are not designed to properly manipulate the complexity
of such volumes of data (Kirchner et al. 2004) and hence advanced statistical methods
are needed to analyze and model these large complex datasets.

Here, we investigate the complexities in the modeling and analysis of hydrological
high-frequency data, such as persistent correlation between observations, complex
dynamics and interactions over the different timescales. High-resolution sensor-
generated time series of partial pressure of carbon dioxide in a small catchment is
used as an illustrative dataset. The aqueous partial pressure of carbon dioxide is a
measure of the capacity for CO2 exchange between the water and the atmosphere (Li
et al. 2012). The excess partial pressure of carbon dioxide (EpCO2) in surface fresh-
water is a dynamic representation of the interacting biogeochemical and hydrological
processes that produce, consume, and transport carbon dioxide (Waldron et al. 2007).
If the river is over-saturated (an excess partial pressure, >1), CO2 can be effluxed,
representing direct linkage of terrestrial and atmospheric carbon cycles (Butman and
Raymond 2011). As surface waters are capable of degassing large amounts of CO2 to
the atmosphere (Raymond et al. 1997; Cole et al. 1994; Richey et al. 2002; Li et al.
2013; Yao et al. 2007), they have been included recently in the assessment of the
global carbon budget (Butman and Raymond 2011). Therefore, understanding of the
temporal variability in the capacity for degassing and the drivers of such variability is
of value in refining uncertainity over such estimates.
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Many studies have examined the temporal and spatial variations of EpCO2 and the
mechanisms controlling these variations in some high and low order rivers and large
lotic systems (Butman and Raymond 2011; Cole et al. 1994; Dawson et al. 2009;
Raymond et al. 1997; Richey et al. 2002; Li et al. 2012, 2013; Yao et al. 2007).
All these studies show that high-order rivers are important sources of atmospheric
CO2 and low-order rivers also contain high concentrations of dissolved CO2 (Butman
and Raymond 2011). High-order rivers are over-saturated. For example, the Hudson
River, which flows from north to south through eastern NewYork in the United States,
is over-saturated with CO2 and EpCO2 exhibits a diel cycle reaching its maximum
in summer (Raymond et al. 1997). The evasion of CO2 from rivers of the central
Amazon basin constitutes an important carbon loss process and there is a pronounced
seasonality in evasion linked to wet and dry seasons (Richey et al. 2002). However,
the estimates of the effluxed CO2 are uncertain because of the large temporal and
spatial variability. EpCO2 dynamics at six sites in the lower reaches of Xijiang River,
southern China, were difficult to interpret due to sampling frequency—monthly—
being insufficient (Yao et al. 2007). Daily measurements have proved more useful in
understanding the spatio-temporal dynamics e.g., in the upper Yangtze River basin
in China (Li et al. 2012). Therefore, high-frequency sampling in space and time is
required due to the spatio-temporal heterogeneity in the catchment characteristics and
anthropogenic activities.

Sub-daily measurements across different seasonal periods should provide sufficient
detail to understand fluctuations of free CO2 concentrations at smaller timescales
(Dawson et al. 2009). Here, 3years of 15min frequency sensor-generated data are
used to investigate and reveal the temporal variations of EpCO2 and explain the mech-
anisms controlling these variations in a small-order river. This long-term hydrological
high-frequency dataset encompasses seasonality and varying time periods between
hydrological events, but also allows many new features, including pulses and short
duration events to be identified, which would not have been apparent with monthly or
daily sampling.

To date, the temporal variations of EpCO2 and the mechanisms controlling these
variations have been considered using simple graphs, descriptive statistics, linear
regression and multivariate statistics such as correlation analysis and analysis of vari-
ance (Raymond et al. 1997; Li et al. 2013, 2012; Yao et al. 2007; Dawson et al. 2009).
But, the dynamic responses of hydrological high-frequency data are complex and cap-
turing them by conventional visualization and analysis techniques is difficult (Neal
et al. 2013). Nowadays, more advanced statistical tools are available and there exist
various techniques to study the temporal variations of EpCO2 and its relationship with
the hydrodynamics.

To quantify the temporal variations of EpCO2, one can employ frequency analysis,
time series decomposition and statistical analysis of the daily, seasonal and annual
patterns. However, wavelet analysis provides an alternativemethod, in which temporal
variations are analyzed over a wide range of time frames which are not pre-assigned.
Another key advantage of wavelets is that they are useful in analyzing non-stationary
time series by capturing the local variations in both time and frequency domains.
Examples of usingwavelets in analyzinghydrologic time series canbe found inFranco-
Villoria et al. (2012), Labat (2005), Sen (2009) and White et al. (2005). In view of
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that, wavelets present a convenient exploratory tool to study the different temporal
variations of the non-stationary time series of EpCO2. Another objective for the paper
is tomodel the temporal variations inEpCO2 and its relationshipswith hydrodynamics.
Additive models offer a very useful framework which allows complex and non-linear
relationships, which are not known a priori, to be modeled in a flexible regression
structure using non-parametric smooth functions (Hastie and Tibshirani 1990). Hence,
additive models can provide a powerful tool to investigate the temporal trends of the
EpCO2 alongwith its cyclical and seasonal variations and its relationshipwith the river
hydrology over the study period. Examples of additive models applied to hydrologic
time series can be found in Ferguson et al. (2008) and Miller et al. (2014).

To our knowledge, no research has yet employed wavelets or additive models to
analyze the EpCO2 temporal dynamics and its complex relationship with the river
hydrodynamics using the high temporal resolution data evaluated here. In this paper,
wavelet analysis is first employed to study and determine the temporal variations of
EpCO2 over the different timescales to identify the timescales responsible for the
major variability. Next, the temporal variations of EpCO2 and its relationship with
water hydrology are analyzed and modeled. This latter objective is achieved by fitting
a set of hierarchical additive models to describe the variations in EpCO2 over a day,
then over a month, and finally over a full hydrological year. Using this temporal
hierarchy, models which better explain the processes determining EpCO2 are fitted,
incorporating complex multivariate interactions and lagged variables to account for
the persisting temporal correlations at the different timescales.

2 Materials and methods

2.1 Study site

The study site is in the Glen Dye catchment close to the terrestrial–aquatic interface
of the River Dee in Aberdeenshire. Glen Dye is located in North-East Scotland at
56◦56′27N and 2◦36′00W. It is a headwater sub-catchment of the River Dee, a high-
order river draining into the North Sea. The sensors were deployed at the Scottish
Environment Protection Agency (SEPA) Charr gauging flume on the Water of Dye,
a 41.7km2 catchment. Glen Dye is mainly upland in character, with altitude rang-
ing between 100 and 776m. The climate is cold, with mean annual precipitation of
1130mm, of which <10% is snow. There is inter-annual variation in temperature
with the winter months being December–February and the summer months being
June–August. The underlying geology of the catchment is granite, with a small schist
outcrop. The interfluves above 450m are covered by extensive peats (<5m deep) and
peaty podzols (<1m). In some places peat is eroded to the mineral interface. Incised
catchment slopes have the most freely-draining humus iron podzols (<1m deep);
the main river valley bottoms generally have freely draining alluvial deposits. For a
detailed description of the study site and its geology and climate characteristics, see
Waldron et al. (2007).
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2.2 Sampling strategy and calculation of EpCO2

Samples for measurement of Dissolved Inorganic Carbon (DIC) concentration were
collected approximately every 5h over a 24-h period and 12 times during June 2003–
August 2004. The sampling spanned a wide range of flow conditions. DIC (mmol L−1

C) is quantified by direct measurement using a headspace analysis approach (Waldron
et al. 2014), to internal precision better than ±0.03mmolL−1. This was regressed
onto discharge, which is measured semi-continuously, to generate a relationship from
which DIC is predicted, thus creating a continuous DIC profile (Waldron et al. 2007).
The generated relationship between discharge and DIC was indistinguishable from
the same relationship constructed 10years earlier, allowing confidence that this rela-
tionship is temporally stable over the constructed 3 years profile. Troll 9000EXP data
loggers (In-Situ, Inc.) were used to generate 15min frequency time series of temper-
ature, pH and atmospheric pressure from October 2003 to September 2006. These
parameters allowed the excess partial pressure of carbon dioxide (EpCO2) to be indi-
rectly calculated from the continuous DIC profile (Waldron et al. 2014). Estimates of
the capacity for CO2 efflux, are described as the “Excess partial pressure of CO2”,
EpCO2, a ratio of over-saturation [for more details, see Neal (1998) and Dawson et al.
(2009)]. The river system is over-saturated with CO2 with respect to the atmosphere
when EpCO2 exceeds 1. The Troll loggers also generated 15min frequency time
series of specific conductivity (SC). SC in streams and rivers is influenced by the
river geology, in addition to the water flow and temperature (United States Environ-
mental Protection Agency EPA 2012). It is usually higher in low flow periods when
the groundwater contribution is proportionally highest (United States Environmental
Protection Agency EPA 2012).

2.3 Statistical analysis and methodology

The methodology applied here (1) visualizes and explores the EpCO2 variations in the
Glen Dye small-order river before, (2) modeling and analyzing the temporal variations
and the mechanisms controlling these variations. Approach (1) mainly uses graphical
visualization methods and wavelet analysis to identify the temporal fluctuations of
EpCO2 and produce primary insights about its relationship with the water hydrology.
Approach (2) analyzes and explains the temporal variations of EpCO2 and its relation-
ship to catchment flow (as understood from SC) using additive models. Describing
and modeling the various patterns, fluctuations and interactions of EpCO2 are the first
step in identifying controls on the concentration.

2.3.1 Wavelets

Wavelet analysis is a useful tool for analyzing non-stationary and/or high-frequency
time series. Wavelets have the advantage of analyzing a time series by combining
both, time and frequency domains. The time series is decomposed into a set of signals
which relate to variations or changes at different timescales. The result is a time-scale
decomposition of the original signal, which helps identify the cyclical components
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over different frequencies, as well as the long-term trend (Nason 2008; Percival and
Walden 2006).

The Discrete Wavelet Transform (DWT) decomposes a time series into discrete
scales. The DWT is an orthogonal transform of the equally spaced time series {Xt :
t = 1, . . . , N }. The vector W of the DWT coefficients {Wn : n = 1, . . . , N } is given
by:

W = RX (1)

where X is the time series vector of length N and R is an N × N real valued matrix
defining the DWT constructed using the chosen filter such that RTR = I (Percival
and Walden 2006). Hence, the original signal X can be reconstructed as follows:

X = RTW =
J∑

j=1

D j + SJ (2)

where J is the level of decomposition, D j is known as the wavelet detail and is
associated with changes in the time series at scale τ j = 2 j−1 and SJ is called the
wavelet smooth and is related to variations over scales τJ+1 = 2J and higher. The
wavelet smooth SJ represents a smooth version ofX. This decomposition is known as
Multi-Resolution Analysis (MRA). The MRA takes the original signal and distributes
it into different signals over the different dyadic scales τ j = 2 j−1, j = 1, . . . , J
without losing the original available information, then analyzes each component with
a resolution matched to its scale (Percival and Walden 2006).

The Maximum Overlap Discrete Wavelet Transform (MODWT) is a modified ver-
sion of the DWT which similarly decomposes the time series into a set of wavelet
details plus a smooth component. The MODWT has some advantages over the DWT:
first, it does not have any restrictions on the series length (i.e., N is not necessarily a
power of two); second, theMODWT coefficients and associatedMRA are not affected
by the choice of the starting point of the time series. The trade-off of these advantages
is loss of orthogonality and higher computational cost (Percival and Walden 2006).
The MRA is useful in identifying the major timescale contributor to the variability in
the time series. The estimated wavelet variance at a particular scale τ j , v̂X (τ j ), which
determines the contribution of that timescale to the variability in the original signal is
given by:

v̂X (τ j ) = 1

Mj

N−1∑

t=L j−1

W 2
j,t (3)

where L j = (2 j − 1)(L − 1) − 1 such that L is the filter width, Mj = N − L j + 1 is
the number of coefficients not affected by the boundary conditions which guarantees
the unbiasedness of the estimator and Wj,t are the wavelet coefficients at scale j and
time t (Percival and Walden 2006).

Here, the MODWT based on least asymmetric filter of width equal to 8, LA(8), is
applied to the EpCO2 and the associated hydrological variables series. Least asym-
metric (LA) filters are a special class of the Daubechies filters. The phase function of
LA filters is very close to that of a linear phase filter, thus making it easy to line up
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features in the filtered series with the original series (Percival and Walden 2006). The
LA filter is then appropriate since it is of interest to align events in time. A filter width
equal to 8 provides a good smooth representation of the corresponding time series
and is chosen after comparing a series of wavelet transforms obtained for a range of
filter width values. The wavelet transform corresponding to smaller filter width values
resulted in sharp peaks in the individual elements of the time series decomposition, and
greater width values did not make any difference. The wmtsa R package developed
for wavelet analysis by Constantine and Percival in 2013 is used to obtain the MRA
of the studied time series via the MODWT of the corresponding series. The wavelet
transform cannot be applied to time series with missing data. Hence, the missing val-
ues are first imputed using linear interpolation. The interpolation is done separately
for each month and for each time within the month to better reproduce the variability
of the series.

2.3.2 Additive modeling

Additive models are flexible tools for describing and visualizing non-linear and non-
parametric effects of explanatory variables Xk on a response variable of interest Y ,
without specifying a particular form for the regression function [see, for example,
Hastie and Tibshirani (1990), Bowman and Azzalini (1997)]. An additive model has
the following structure:

Yt = βo + f1(X1t ) + f2(X2t ) + f3(X3t , X4t ) + · · · + εt (4)

where the observations Yt , t = 1, . . . , n are assumed to be independent with means
E(Yt ) = μt , f j are smooth functions of covariates Xk whose shapes are unrestricted
and need to be estimated and the error term εt denotes an independent normally
distributed random variable with mean 0 and variance σ 2. Hence, the distribution of
Yt is also assumed Gaussian. Here, the univariate smooth functions are approximated
by cubic regression splines, except for the periodic effects which are estimated using
cyclic cubic regression splines, and the bivariate smooth functions are represented
by tensor product splines. Tensor product splines are invariant to linear scaling of
covariates and are good to smooth interactions of quantities measured in different
units (Wood 2006). The smoothness of each curve f j is controlled by a smoothing
parameter. The basis dimension of each smooth function is set based on the Akaike
Information Criteria (AIC) to identify a smooth interpretable relationship. Then, the
appropriate smoothing parameter of each smooth curve is selected automatically using
the restrictedmaximum likelihood criteria. Likelihoodmethods tend to bemore robust
for smoothingparameter selection (Wood2011).Model variable selection is performed
using AIC and approximate F-tests. The mgcv package (Wood 2006) supplied with R
for fitting Generalized Additive Models (GAMs) is used. A GAM is a generalization
of the additive model for non-Gaussian error distributions. Additive models are fitted
using the fitting routine bam, assuming a Gaussian distribution for the errors, which is
a computationally efficient alternative for the main routine gam for very large data sets
(Wood et al. 2015). For detailed discussion on splines and GAMs, see Wood (2006).
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The errors εt in Eq. 4 are assumedmutually independent, whereas autocorrelation is
oneof the characteristics of hydrological time series. The additivemodels only describe
how the response variable is statistically related to the explanatory variables without
accounting for the dependence of the response on its past values. Failure to account for
autocorrelation appropriately may result in an underestimate of the standard errors for
the estimated smooth curves, which makes the estimates inefficient and the inference
about the estimates unreliable. One solution is a two-stage fitting procedure (TSP).
The first stage involves fitting aGAMassuming independent distributed errors, and the
second entails fitting an appropriate correlation structure to the residuals of the fitted
GAM. An estimate for the correlation matrix of the residuals εt , V̂, can be obtained
from the data based on a specified correlation structure. Each smooth function of the
additive model has an estimate of the form f̂ j = S jy, where S j is the smoothing
matrix of component j and the standard errors are readily available as the square
root of the diagonal entries S j V̂STj σ

2. The error variance σ 2 can be estimated from

the RSS = yT (I − S)T (I − S)y and the approximate degrees of freedom associated
with error is given by tr{(I − S)T (I − S)V}. Then, the variability bands (±2 S.E.)
of the estimated smooth curves can be adjusted based on the new standard errors
(Bowman et al. 2009). An alternative to this two-stage procedure will be presented in
the discussion.

3 Results

In this section, we first present the initial exploratory data analysis (EDA) andwavelets
analysis results. Then, we show the results of the additive models used to analyze the
variations in EpCO2 at the daily, monthly and yearly timescales.

3.1 Exploratory data analysis (EDA) and wavelets

Figure 1 displays the calculated EpCO2 series and the recorded measurements of
discharge, temperature, pH and SC from 1st October 2003 to 30th September 2006,
spanning 3 full hydrological years. Each hydrological year runs from October to
September andhereafter is abbreviated asHY.TheEpCO2 exhibits temporal variability
and varies between 0.26 and 10. The average EpCO2 over the whole study period is
2.57 ± 1.01. Thus, our sample point on the Water of Charr is, on average, over-
saturated with CO2. Similarly, water discharge is variable, with an average of 1.1 ±
4.5m3/s through the whole study period. Comparison of discharge between HYs
shows that HY2003/2004 had the wettest summer, HY2004/2005 had the driest winter
and HY2005/2006 was the wettest overall (Table 1). The coldest months in the 3
hydrological years are December–February (Fig. 1) with an average water temperature
of 2.9± 1.7 ◦C; the warmest months are June–August with an average temperature of
14 ± 2.8 ◦C.

Figure 2 illustrates the seasonal and diurnal responses in EpCO2 in each of the
HYs. The median EpCO2 (represented by the black bar in the middle of each box) is
generally higher in summer (June–August) thanwinter (December–February). EpCO2
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Fig. 1 Time plots of the 15min frequency series of the EpCO2, flow, temperature, pH and SC series from
October 2003 to September 2006

Table 1 Total water discharge
at the water of Charr sampling
point across the winter
(December–February) and
summer (June–August) of each
HY and the whole HY

HY Discharge (m3/s)

Winter Summer Overall

HY2003/2004 10,083 8882 37,063

HY2004/2005 6496 3880 35,958

HY2005/2006 12,385 3726 40,044

is alsomore variable during summer. The hourly boxplots show that themedianEpCO2
is smallest close to midday and largest just after midnight and that EpCO2 exhibits
more variability during darkness.

The EDA shows inter-annual and intra-annual variations in the EpCO2 and the
other hydrological variables, showing the time series to be non-stationary. Animated
3-D plots, available in the supplementary material, provide a better representation of
the interactions between the EpCO2 and the variables describing the water hydrology.
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Fig. 2 EpCO2 in eachMonth (top) andHour (bottom) in the hydrological years 2003/2004 (left), 2004/2005
(middle) and 2005/2006 (right)

The EpCO2 is highly dynamic and the hydrodynamics might also contribute to the
EpCO2 variability, e.g., discharge events are sometimes associated with a particular
feature in the EpCO2 series. However, the response of EpCO2 to flow events may
differ depending on preceding events and differences in summer and winter biological
productivity. In conclusion, it is not easy to draw interpretable conclusions for such
complex hydrological high-frequency data using simple exploratory methods. One
way to better visualize and analyze the temporal variations of these HHFD in the
time-frequency domain is to use wavelet analysis.

There are some periods of missing data (Fig. 1). The EpCO2 series in 2003/2004
has 1544 missing values in total, one in February 2004 and the rest in July 2004 (see
the top panel of Fig. 1), which represent 4.4% of the total record. Each of the pH,
temperature, and SC series of 2003/2004 and 2004/2005 has less than 5% missing
values of the total record. All the missing values are imputed as mentioned earlier
before starting the wavelet analysis. These imputed values are shown in grey in Fig. 3.

TheMODWTwith LA(8) filter decomposes the EpCO2 series for each of the hydro-
logical years into 12wavelet details and one smooth component (X = ∑12

j=1D j+S12),
where 12 is the maximum number of scales. The wavelet details (D j , j = 1, . . . , 12)
reflect changes in the original series over scales of 15(2 j−1) minutes and the smooth
component (S12) relates to variations over about 44days and higher representing the
overall trend. The MRA of the EpCO2 series (Fig. 3 for D1, D6 and D12), represents
changes in the original series on a scale of 15min, 8h and ∼22days, respectively. The
MRA indicated that the detail components D j , j = 1, . . . , 4 (only D1 is shown here
due to space limitations) are the least variable reflecting the small scales variability
and can be related to weather or hydrological events. Therefore, these high-frequency
scales capture the uncommon EpCO2 levels which might be influenced by short-lived
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Fig. 3 Multi-resolution analysis of EpCO2 series for the hydrological years 2003/2004 (left), 2004/2005
(middle) and 2005/2006 (right). The wavelet details D1 (15min), D6 (8h) and D12 (∼22days) are on the
same scale, different from the original series (top). The dashed vertical lines indicate the areas that might
be affected by boundary coefficients

Fig. 4 Wavelet variance of the EpCO2 series of the hydrological years 2003/2004 (left), 2004/2005 (middle)
and 2005/2006 (right) for the scales 15(2 j−1), j = 1, . . . , 12

changes in the water hydrology such as intense periods of rainfall. D6 is the main
contributor to the sample variance of the EpCO2 (see Fig. 4) and the associated tem-
perature series reflecting the presence of an intra-daily cycle. This seems reasonable
since changes over a scale of 8h correspond to the daylight cycle. However, this diel
cycle is not constant throughout each hydrological year but larger fluctuations are
rather observed during summer. This MRA also shows that the EpCO2 of the dry
summer of HY2005/2006 exhibits this diel pattern clearly for a longer time period
compared to the wetter summers of HY2003/2004 and HY2004/2005. The wavelet
detail D12 can be seen as an approximation for the monthly variations since it reflects
changes over nearly 22days.
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Fig. 5 6th wavelet detail (8h scale) of MRA of EpCO2 (top), flow, temperature, SC and pH (bottom) for
the hydrological years 2003/2004 (left) and 2005/2006 (right). The dashed vertical lines indicate the areas
that might be affected by boundary coefficients

Figure 5 compares the 6th wavelet detail series, representing the changes over a
scale of 8h, for the different hydrological variables with the EpCO2 series. The timing,
extent and number of occurrences of hydrological events differ from one hydrological
year to another. The highest EpCO2 variability is usually associated with little changes
in discharge, consistent with internal fluvial carbon cycling, while hydrological events
are associated with compressed EpCO2 variability. The periods when pH and SC show
most change occur with flow events. The variability in EpCO2 evolves coherently with
the variability in temperature, in itself a proxy for seasonality: EpCO2 appears to be
more variable during summer when there are larger fluctuations between day and
night temperatures. The changes in temperature and discharge influence the SC and
pH, which in turn influence the EpCO2 across the different years.

The EDA and wavelet analysis highlighted the seasonal and diurnal fluctuations
of EpCO2 and the differences in these variations between the individual hydrological
years. They also revealed that the hydrodynamics contribute to part of the EpCO2
variability although the nature of these relationships is very complex and difficult to
explore and visualize through exploratory tools. It is not clear from the exploratory
analysis whether or not the temporal patterns in EpCO2 can be described entirely
by hydrology. In addition, the EDA cannot highlight the persistent temporal correla-

123



Environ Ecol Stat (2016) 23:65–87 77

tion between the 15min frequency measurements after we account for the temporal
dynamics. Therefore, a set of hierarchical additive models are fitted at different tem-
poral scales to better describe and analyze the variations in EpCO2 at these timescales.

3.2 Additive models

Initially, additive models are developed for individual days followed by individual
months and finally for each hydrological year separately. These additive models are
useful in explaining the variations in EpCO2 and studying the relationship between
EpCO2 and the available physiochemical catchment variables, which are not used
in deriving the EpCO2 (i.e., SC), within a day, a month and a hydrological year.
They also describe the differences in variations between the different days, months
and hydrological years. This temporal hierarchy better shows the changes and the
increased complexity of (1) the processes driving EpCO2, (2) the multivariate inter-
actions between EpCO2, water hydrology and time components, and (3) the temporal
correlation structures from the daily to the yearly timescales.

3.2.1 Daily additive models

It is evident from the previous EDA and MRA that the EpCO2 exhibits a diel cycle
with altering magnitude and pattern from one day to another. These alterations could
be attributed to seasonal changes or other hydrological conditions. Let Yt denote the
EpCO2 at time point t , and Xt = (XTime within day

t , XHour of day
t , XSC

t ) be the vector

of explanatory variables at time t , where XTime within day
t is a continuous variable

representing the time within day at which the measurement is recorded, XHour of day
t

is an index of the hour within day and XSC
t is the measured SC at time t . Then, the

daily variations of EpCO2 are described through the following additive model:

Yt = f1
(
XTime within day
t

)
+ f2

(
XSC
t

)
+ f3

(
XHour of day
t , XSC

t

)
+ εt (5)

where the smooth functions f j , j = 1, 2, 3, capture the daily cycle, the main effect
of SC and the bivariate effect of hour within day and SC on EpCO2, respectively; and
εt accounts for the random effects not explained by the additive model. The functions
f1 and f2 are represented using cubic regression splines and f3 using a tensor product
of two cubic regression splines, as described in Sect. 2.3.2. The model is fitted to the
data of some selected days. The model assumptions, including independence of the
errors, are shown to be all valid. The estimated additive model explains about 99%
deviance of the data of each selected day.

Figure 6 shows only the results of 14/10/2005, 14/1/2006, 14/4/2006 and 14/7/2006.
As can be seen, the fitted splines capture the response of EpCO2 to time within day
reflecting changes in the biological activity according to the daylight cycle. This intra-
daily cycle of EpCO2 changes from one day to another, according to the seasonal and
hydrological conditions and is significantly stronger in the summer days. It is also
clear that the relationship between EpCO2 and SC is significantly changing with hour
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Fig. 6 The fitted smooth functions of Time (left) and the interaction between SC and Hour of day (right) of
the daily GAM for the days 14/10/2005 (top), 14/1/2006, 14/4/2006 and 14/7/2006 (bottom). The dashed
lines in the left panels are the ±2 S.E. bands
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and day, justifying the multivariate interactions between EpCO2, hydrodynamics and
time.

3.2.2 Monthly additive models

TheEDAhas identified seasonal differences in the behavior andfluctuations ofEpCO2.
These monthly/seasonal variations are explained via fitting the following additive
model for each month of the hydrological year separately:

Yt = f1
(
XTime within month
t

)
+ f2

(
XHour of day
t , XSC

t

)

+ f3
(
XHour of day
t , XDay of month

t

)
+ f4

(
XDay of month
t , XSC

t

)
+ εt (6)

where XTime within month
t is a continuous variable denoting the time within each month;

f1 determines the main behavior of EpCO2 within each studied month; and f2
describes the bivariate effect of hour within day and SC. Based on the results of
the daily additive models, the smooth functions f3 and f4 are added to the model to
capture the changing effects of hour within day and SC from day to day, respectively.
f1 is approximated using cubic regression splines; and f j , j = 2, 3, 4, are represented
by tensor product splines.

Only the model results of January and June 2005 are presented due to space lim-
itations. The estimated additive models explain 72 and 91% deviance of the data in
January and June, respectively. However, the ACF of the model residuals shows a
slowly decaying correlation structure in January, and not only significant correlations
at high lags, but a remaining periodic pattern every 24h that is not captured by the
model in June. These dependence structures affect the efficiency of the estimates and
make the inference procedure unreliable. In January, the estimated additive model
residuals are modeled via an autoregressive process of order 1 (AR(1)), which has
accounted for the remaining dependence. In June, a greater degree of structure was
displayed in the residuals after fitting the additive model.

AIC indicates that an AR of order 32 (8h), on average, is sufficient to account for
this periodic dependence structure left in the residuals of the summer months. The AR
order selected by the AIC coincides with the length of the dominant intra-daily cycle
identified by the wavelet analysis. Nevertheless, EpCO2 seems to heavily depend, in
particular, on its preceding 2-h measurements. Therefore, cubic regression splines of
the 2- and 8-h lagged dependent variables are added to the model. The 2-h lag denotes
the average extent of short-term dependence, while the 8-h lag represents the extent
of long-term dependence. The 2- and 8-h lagged EpCO2 account for the long range
dependence and the periodic dependence structure and any remaining autocorrelation
is accounted for via an AR(1) process fitted to the residuals of the adjusted model.

The monthly additive models indicate that the EpCO2 dynamics vary across the
different months of the hydrological year. Figure 7 illustrates the clear dissimilarities
in the trend, variability of EpCO2 and interactions with time and water hydrology
between January and June. It is evident that the EpCO2 is more variable in June.
Figure 7 shows evidence of the intra-daily cycle in June and its absence in January.
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Fig. 7 The fitted smooth functions of Time (top) and the interactions: Hour of Day and Day of month;
Hour of Day and SC; and Day of month and SC (bottom) of the monthly GAM for January (left) and June
(right) 2005. The dashed lines in the top panels are the adjusted ±2 S.E. intervals after accounting for the
autocorrelation present in the residuals εt
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The EpCO2 and the magnitude of its diel cycle changes significantly from one day
to another within June. The figure also indicates that the daylight cycle in June has
a greater significant influence on the fluctuations of EpCO2 than water hydrology
during the absence of hydrological events (at high SC). Conversely, water hydrology
dampens the diel cycle and dominates these fluctuations at periods of hydrological
events. In January, EpCO2 does not seem to exhibit an intra-daily cycle and variations
are mostly attributed to hydrodynamics.

Generally, both time and hydrology contribute to the variations in EpCO2.However,
the contribution of the temporal patterns and hydrology is time-dependent and changes
from one season to another. Also, the temporal correlation remaining between the
residuals after accounting for these variations changes seasonally and shows more
complex structures in summer. It is evident that this temporal autocorrelation is more
persistent when the model is extended to cover a longer time period.

3.2.3 Yearly additive models

The monthly additive models illustrated intra-annual variations in EpCO2. However,
the EDA indicated the non-stationarity of the full time series and the presence of inter-
annual variations, as a result of the different climatological conditions characterizing
each HY. Therefore, the model is extended to describe the variations in EpCO2 within
each HY separately and highlight the differences between the 3 hydrological years.
As the model covers a longer time period, the autocorrelation structure becomes more
difficult to model. Hence, the yearly variations of EpCO2 are described through the
following TSP:

Yt = f1
(
XTime within year
t

)
+ f2

(
XHour of day
t , XDay of year

t

)

+ f3
(
XHour of day
t , XSC

t

)

+ f4
(
XDay of year
t , XSC

t

)
+ f5 (Yt−8) + f6 (Yt−32) + εt (7)

εt = φεt−1 + ξt (8)

where XTime within year
t denotes a continuous variable representing the time within the

year used to reflect the yearly trend; and Yt−8 and Yt−32 denote the 2- and 8-h lagged
EpCO2, respectively, which were successful in accounting for the persistent periodic
dependence structure in the monthly models. The smooth function f1 captures the
global trend of EpCO2 along each hydrological year; f2 describes the changing effect
of the daily cycle from day to day; f3 and f4 explain the bivariate effect of SC with
hour and day of year, respectively; and f5 and f6 capture the effect of the 2- and 8-h
lagged EpCO2 on the current EpCO2, respectively. As previous, f j , j = 1, 5, 6 is
represented by cubic regression splines and f j , j = 2, 3, 4 by tensor product splines.
The residuals εt in Eq. 7 follow an AR(1) (see Eq. 8), where φ is known as the
autoregressive parameter and ξt is a white noise process with mean 0 and variance σ 2

ξ .
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The fitted additive models explain about 95% of the variability in EpCO2 in each
hydrological year. It is evident that the diel cycle is dominating the changes in EpCO2
at high SC levels (Fig. 8) i.e., at low flowwhen in-stream biological processes are most
dominant. By incorporating lagged dependent variables in the model, EpCO2 for the
3 years exhibits the same patterns but with different magnitude. The autocorrelation
in the residuals has been substantially reduced after adding the lagged EpCO2 to the
additivemodel andmodeling the residuals via anARprocess.However, a little periodic
structure is still evident.

In brief, it is evident that the processes controlling the EpCO2 are time and scale
dependent. The multivariate relationships between the EpCO2, water hydrology and
time components change from one scale to another and become more complex when
the model is extended to describe a longer time period within the hydrological year. In
addition, the autocorrelation structure between the residuals remaining after account-
ing for the temporal and water hydrological changes with time and becomes more
persistent and composite at the yearly scale. Therefore, lagged variables and more
multivariate interactions are added to explain the increased variability and account for
the persistence of temporal correlations at the larger timescales.

4 Discussion and conclusion

It is evident that although hydrological high-frequency data involve previously inac-
cessible information, they pose various challenges to statistical modeling and analysis.
We evidence this here using an illustrative dataset of high-resolution time series of
EpCO2. Exploring and modeling these high-resolution sensor data was very complex
and challenging because of the differences in the behavior of the variable of inter-
est over the different timescales, the complex multivariate relationships which are
time and scale dependent and the persistent temporal correlation characterizing such
hydrological high-frequency data.

The primary EDA showed that EpCO2 is non-stationary and exhibits variations
over a wide range of timescales. EpCO2 is generally higher in summer than winter
andmore variable during summer due to the greater catchment productivity in summer
when more CO2, or sources of, are available, and greater in-stream processing of C
results in CO2 consumption (during day-time) and production (during night-time).
This processing can be seen in the intra-daily cycle of EpCO2, which is lowest close
to midday (maximum solar radiation to support photosynthesis) and highest just after
midnight, when respiration has occurred for longest and hence CO2 concentration is
highest.

Wavelet analysis helped identify temporal variability, including intra-daily, sea-
sonal and inter-annual variations. These variations arise due to changes in the relative
strength of external (e.g., climatological) and internal (biological processing) drivers of
resultant EpCO2. TheMRA indicated that the intra-daily cycle is themajor contributor
to the variability of the EpCO2 series. This intra-daily cycle reflects the dark-light-dark
cycle within the day. The amplitude of this diel cycle is not constant throughout the
year but larger variability occurs during summer when a pronounced diurnal cycle is
present. It is also evident that the variability resulting from the daylight cycle changes
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Fig. 8 The fitted smooth
surfaces of the interaction
between SC and Hour of day of
the yearly GAM for
HY2003/2004 (top),
HY2004/2005 and
HY2005/2006 (bottom)
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from one year to another, again reflecting different balances of external and internal
drivers of EpCO2.

The hierarchical additive models fitted over a day, a month and a year showed that
the variability of EpCO2 and its relationship with water hydrology are time and scale
dependent. The additive models allow the temporal variations and the mechanisms
controlling EpCO2 across the different timescales to be accommodated. These tem-
poral variations and multivariate relationships change across the different timescales
and become more complex as the model is extended to cover a longer time period
within the hydrological year. These additive models showed that the EpCO2 exhibits a
24-h dark-light-dark cycle reaching theminimum value at noon. Themagnitude of this
day/night cycle changes along the year and is more apparent during summer where
the EpCO2 reaches its maximum levels. It was also obvious that the hydrology has an
influence on the level of EpCO2. At low flow, DIC concentration is highest (Waldron
et al. 2007) and biological activity is greatest (as temperature tends to be higher);
event flow, whilst flushing out soil CO2 so increasing the pool size, ultimately dilutes
the DIC pool and so lowers saturation of dissolved carbon dioxide. Turbulent waters
and colder temperatures reduce biological activity. As such CO2 over-saturation is
reduced and EpCO2 decreases. The diel cycle can still exist, but variability is reduced
in winter. Seasonality in flow thus has a significant effect on the EpCO2. The diel
cycle appears to dominate the EpCO2 variations in summer during the absence of
hydrological events and during low flows (evidenced by higher SC), while high flow
events dampen the diel cycle in winter. Hence, the contribution of the temporal and
hydrological variations changes with season and timescale. Consequently, the fitted
additive models encountered some problems in uniquely identifying the sources of
variability and the contribution of each variable to the variability in EpCO2.

Serial autocorrelation is one of the characteristics of high-resolution time series. The
residuals of the fitted additive models displayed a periodic autocorrelation structure
that persists over a large number of lags. The complexity of the dependence structure
increases from daily to yearly timescales. Therefore, modeling these HHFD by assum-
ing independence is no longer valid. A two-stage fitting procedure has been used here,
where some lagged dependent variables are added to the model; then an AR process is
fitted to the adjusted model residuals. An alternative method would be to incorporate
the correlation structure through fitting a generalized additive mixed model (GAMM)
using the gamm function in the mgcv library in R (Wood 2006). The GAMM simulta-
neously fits a GAM—or an additive model as a special case if the errors are assumed
to be normally distributed—and a mixed effect model that accounts for the autocor-
relation between the model residuals. Incorporating autocorrelation through GAMM
results in higher smoothing parameters being selected and hence the remaining struc-
ture to be accounted for in the residuals increases. This increases the complexity of
modeling required for the residuals. Whereas in the TSP, the first stage results in
optimally selecting lower smoothing parameters assuming independent errors, which
reduces the complexity ofmodeling required for the residuals in the second stage.After
incorporating lagged terms and a simple correlation structure, only a small amount of
structure is still remaining between the residuals of the yearly models. Future work
could include investigating models such as ARCH/GARCH models to account for
the remaining structure in the residuals. Such models are able to capture the varying
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variation in the residual process. Although care has to be taken since autocorrelation
can influence smoothing parameter selection from automatic approaches, GAMMs are
computationally inefficient with large time series and numerically unstable because of
the confounding between correlation and non-linearity. Therefore, alternativemethods
to fit GAMs with correlated data are required.

In conclusion, these HHFD have illustrated the complex long-term and short-term
dynamics of EpCO2 which were previously inaccessible with lower frequency data.
However, these HHFD encounter various challenges in terms of statistical modeling
and analysis. The challenges facing the description and analysis of such a complex
high-resolution datasets must be overcome to avoid limiting insight into, e.g., catch-
ment processes. Among these challenges are (1) the great volumes of data, (2) the
complex multivariate interactions between the covariates and the response variable,
(3) the complex correlation structures persisting over a large number of lags between
observations due to the high-frequency nature of the data, and (4) the identifiability
problems in allocating the existing large variability to the signal or noise as a result of
the confounding between correlation and non-linearity. Therefore, advanced statistical
tools and models are needed to analyze such complex HHFD.
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