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Abstract—In this paper, we provide a structured summary of
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I. INTRODUCTION

Within the principal requirements of the Fourth Industrial
Revolution or Industry 4.0 lies the interconnectivity and the
integration of the virtual and physical environments. This
capability is provided by the Digital Twin technology. The
concept of Digital Twin was first introduced by Michael
Grieves in 2002 at the University of Michigan [1] and has
been evolving since then with the emergence of Internet
of Things (IoT), bringing new evolutionary advancements,
capacities and horizons to a wide spectrum of industries
such as , manufacturing, construction, healthcare, agriculture,
architecture, defence, oil and gas, etc. In this paper, we provide
a summary of initiative information on the integration of DT in
SM and related domains, Human-robot Collaboration (HRC),
assembly and Quality Control (QC), and then a survey on
some practical work done within the context.

II. AN INTRODUCTION TO DIGITAL TWIN

A. Digital twin definition

As the name implies, a Digital Twin is the dynamically
evolving virtual instance of a physical object, therefore there
can exist Digital Twins of a product, factory, process or a
business service. Considering the plethora of literature on the
topic, a more appropriate definition of a Digital Twin has
developed to outline the ‘Different virtual representations at
different stages of a products life-cycle’ [2].

III. INFLUENTIAL ASPECTS OF DT IN MANUFACTURING

Digital Twin can influence the future vision of Smart
Manufacturing shown in Fig. 1, in the following aspects [7].

A. Digital Twin for Manufacturing Assets

A manufacturing asset can be connected and abstracted to
the cyberspace via its Digital Twin. Manufacturers can gain a
clearer picture of real-world performance and operating condi-
tions of a manufacturing asset via near real-time data captured

Fig. 1: Smart manufacturing vision [7]

from the asset and make proactive optimal operation decisions.
With truthful information flowing from a manufacturing asset,
manufacturers can improve their situational awareness and
enhance operation resilience and flexibility, especially in the
context of mass personalization [7].

B. Digital Twin for People

Digital Twins can also connect workers at the shop floor.
The representation of a person, including personal data like
weight, health data, activity data, and emotional status can
help to establish models to understand personal well-being
and working conditions of humans in a factory. The under-
standing of human state at workforce can help design human-
centered human-machine collaboration strategies to increase
the physical and psychological health of workers, as well
as achieving best production performance. Workers can also
upskill themselves via ultra-realistic training programs which
blend physical factory setups with virtual what-if scenarios.
The ability to set up personalized virtual training programs
based on Digital Twins of workers and factories can lead
to tremendous resource optimization and operational effi-
ciency [7].



C. Digital Twin for Factories

Digital Twins can also work for factories, making a replica
of a live factory environment. Digital Twin and data-driven
production operations can allow the establishment of a self-
organizing factory environment with complete operational visi-
bility and flexibility. Connectivity and data tracking throughout
the complete manufacturing process enable factory operations
to be transformed into data-driven evidence-based practices,
offering the capabilities of tracing product fault sources, an-
alyzing production efficient bottlenecks and predicting future
resource requirements [7].

D. Digital Twin for Production Networks

By connecting manufacturing assets, people and service
via Digital Twin, every aspect of business can be virtually
represented. Connecting distributed Digital Twins between
companies will allow companies to build virtually connected
production networks. Leveraging Big Data capabilities, this
strategy provides unprecedented visibility into operation per-
formance and creates the possibility of predicting future needs
in a network of Digital Twins [7].

IV. PRINCIPLES OF THE INTEGRATION OF DT IN SMART
MANUFACTURING

In this section we review the principal aspects and architec-
ture of the integration of DT in smart manufacturing and the
related sub-domains of Human-Robot Collaboration systems,
assembly and quality control.

A. DT in Smart Manufacturing

With the development and evolution of digital technology,
the use of digital technology to describe the essential factors
in product manufacturing began with the use of simple coding
and identification technology, and has developed to the digital
twin technology of virtual reality interaction [8]–[10]. In the
smart manufacturing system with industrial internet as the
framework and platform, digital twin plays a key role through-
out the whole process [8], [9]. Fig. ?? shows the architecture
of typical digital twin-based industrial information integration
system in smart manufacturing supported by industry IoT. As
shown in Fig. 2, digital virtual body mainly exists in cloud
platform layer, and its control-oriented dimension model is
arranged in edge layer to participate in real-time control.
Industrial internet is composed of field layer, edge layer,
platform layer and application layer. The application of digital
twin is analyzed from these layers and the time dimension of
design, production and operation and maintenance phases [11].

In the design phase, the product design work is performed
and the digital twin model of product design is created
through collaborative design. After a series of simulation
and optimization of kinematics, dynamics and other physical
aspects, or technical services provided by a third party, the
preliminary design and processing scheme are determined.
Then, the virtual factory of manufacturing factory in cloud
platform layer is used for virtual manufacturing to attain
the simulation of the manufacturability. Now, the production

Fig. 2: The architecture of typical digital twin-based industrial information
integration system in smart manufacturing supported by industry IoT [11]

phase can be triggered. At this point, the digital twin contains
the physical characteristics of the product entity and all the
information needed for manufacturing. The status quo key
technologies supporting this phase are Model Based Design
(MBD), multi-physical property and multi-scale simulation,
high fidelity modeling and model lightweight technology [11].

In the production phase, the production tasks are managed
by the production management platform in the cloud platform,
and the scheduling and control tasks with real-time require-
ments are handed over to the edge layer for management and
control. Product manufacturing is an integration process of
virtual and real. The digital twin of physical factory runs in
the virtual space of cloud platform. The devices in the physical
factory and IoT composed of sensors are located in the field
layer, which exchange data with the edge layer through low
delay networks such as time-sensitive network (TSN), 5G, etc.
These multi-source data need different processing. On the one
hand, some data directly interact with the model of the control
dimension of digital twin, and get the predicted data. The
optimal control of the manufacturing process is completed in
the control cycle to realize the controlling of the real entity
by the virtual model; On the other hand, the edge layer filters
these data, transmits them to the platform layer, drives the
virtual factory in the cloud platform to run synchronously (i.e.
the interaction of virtual and real), and stores it in the big
database, which provides data source for knowledge mining



and carries out non real-time prediction and optimization of
the manufacturing process. The key technologies in this phase
are the real-time virtual and real fusion of multi-source sensor
data, model-based control, etc [11].

In the operation and maintenance phase, the digital twin of
the product is also provided when the product is provided by
the manufacturer. The user can create and activate the virtual
body of the product according to the digital twin template
provided by the manufacturer in the virtual space of the
industry internet. If it is a component, the simulation and op-
timization research of assembly process and assembly process
can be started in virtual space; if it is a complete product,
the simulation and optimization of the use environment and
working process can be carried out, and the interaction of
virtual and real can be achieved in the use process. Suppliers,
technical service providers and users can obtain the status
information of products on this cloud platform, so as to provide
targeted technical services. In the operation and maintenance
phases of the product, it is necessary to monitor the spatial
position, external environment, use status and health status
in real time, and establish a resume information database,
which users can access and use through the application layer.
The health status, function and performance of the product
are analyzed and predicted by virtual body on the cloud
platform, the problems are warned in advance, and the vivid
visual means are provided to assist the rapid fault location and
troubleshooting. In addition, in terms of operation training and
guidance, digital twin can also provide more realistic effects
with the help of the fusion technology of virtual and real. The
key technologies in this phase are: the interaction and fusion
of virtual and real, simulation, prediction, etc [11].

B. DT in Human-Robot Collaboration (HRC) systems

In an industrial production environment a notable proportion
of work is attributed towards assembly operations [12]. Since
the assembly tasks are often credited with handling difficult
product geometries and require higher production flexibility
they have traditionally been hard to automate [13]. With Lean
automation, the concept of hybrid automation has emerged
with balanced introduction of human flexibility and machine
efficiency. However, the desired flexibility and human co-
existence lead to higher total complexity of the production
system. The design, development, as well as operation - due
to the frequent changes make it necessary to quickly validate
the behavior of the system before it is put in the real world. DT
is an emerging modelling and simulation technology that has
been widely used in Human-Robot Collaboration (HRC), and
aims to provide support for HRC in design, construction, and
control. The operational hierarchy of a digital twin framework
of an HRC system is shown in Fig. 3. All the objects of
the physical system are synced with their digital shadows
in virtual environment or, in other words, each element in
virtual simulation is displaying the operating conditions of a
connected physical object in the production system [14].

Fig. 3: Digital twin framework of a human-robot work-cell [14]

C. DT in Assembly and Quality Control

Typical complex product such as missiles, satellites and
others, have characteristics of small batch production, long as-
sembly cycle, complicated assembly data and interdisciplinary
application [15], [16].

A digital twin approach for assembly process optimization
is a useful mechanism to improve the quality of complex
product assembly, because of its ability to provide a precise
simulation result and avoid a lot of trial and error [17]. The
deployment and implementation procedures for a data-driven
and hardware-in-loop digital twin system can be divided into
following steps [17]:

1) Build the Digital Entity of the Assembly Line: The digital
entity of the assembly line is the one to one corresponding
virtual mapping in the digital world of the assembly line
from the physical world. Building the digital entity of the
assembly line is usually based on the history data and process
knowledge provided by the knowledge base. It is worth noting
that for an equipment or a product, its digital entity is a digital
representation considering over its entire life cycle.

2) Real-time Online Sensing in Multi-Source Heteroge-
neous Environment: To guarantee the real-time consistency
between the physical assembly line and its digital entity, the
multi-source heterogeneous environment data sensing tech-
nology is very important by transferring the real-time data
from the physical world to the digital word. Typically, the
data sensing technology in the multi-source heterogeneous
environment should solve the problems of hardware equipment
deployment and management, data collection and multi-source
heterogeneous data processing.

3) Real-time Simulation of Equipment and Assembly Pro-
cess: With the help of the multi-source heterogeneous en-
vironment data sensing technology, the real-time data from
the physical world can be analyzed and utilized to realize the
real-time simulation of equipment and the assembly process.
It should be noted that, the history data and process knowl-
edge stored at the knowledge base should be accessible to



train a more precise simulation mode and provide reference
benchmarks to the real-time simulation process.

4) Realizing the Intelligent Production Scheduling under
Uncertainty Conditions: Based on the analysis from the
realtime simulation of equipment and assembly process in
the digital world, the intelligent production scheduling under
uncertainty conditions can be realized. The intelligent produc-
tion scheduling technology should include functions such as
the generation and simulation of the work plan, predictions
and analysis based on data and models, decision-making and
optimization of assembly process.

5) Dynamically Adjusting the Assembly Process: The ulti-
mate aim of the digital twin system is to dynamically adjust
the assembly process, although the analyses on the real-
time simulations have provided many insights to the factory
workers. In reality, this step is usually added manual actions
considering the production safety.

V. LITERATURE REVIEW

Hung et. al in [18] propose a novel implementation frame-
work of digital twins for intelligent manufacturing (IF-DTiM),
whose information and communication platform (ICP) is built
on a cloud platform, an edge platform, and many IoT devices.
They illustrate and construct an example of a DTiM system
for CNC machining based on IF-DTiM.

Zheng and Tian in [19] analyzed the characteristics of
mechanical product digital twin, and proposed a knowledge-
based digital twin model evolution and version management
method, which takes the advantage of mechanical hierarchy
and continuously optimizes the model structure while meeting
the traceability requirements. They verified the feasibility and
effectiveness of the proposed method by taking the digital twin
model of a helicopter and its transmission system main reducer
clutch as an example.

Chen et. al in [20] propose a bionic digital brain (BDB) as
the intelligent core of a digital twin-cutting process (DTCP)
framework. Their BDB was built with digital neurons (DN) as
the basic functional unit, and the reaction mechanism between
the DN stimulated the BDB to compute intelligently in real
time (RT). The left brain obtains the prophetic theoretical
processing information through the DN.

Zhang et. al in [21] propose a visual-tactile fusion method
to predict the results of grasping cluttered objects, which is
the most common scenario for grasping applications.Their
multimodal fusion network (MMFN) uses the local point cloud
within the gripper as the visual signal input, while the tactile
signal input is the images provided by two high-resolution
tactile sensors. They propose a digital twin-enabled robotic
grasping system to collect large-scale multi-modal data-sets
and investigates how to apply domain randomization and
domain adaptation to bridge the sim-to-real transfer gap.

Yao et. al in [22] propose a DT-based framework of task
rescheduling for robotic assembly line (RAL) and its key
methodologies, having used PLC and RFID sensing technol-
ogy to realize the perception and access of multi-source data, a
virtual-reality interaction mechanism promoting the evolution

of the DT, and a mathematical model established by taking the
total working time and the load balancing as the objectives,
which all leads to analysis of the adaptive target thresholds
from the perspectives of event trigger and user demand trigger,
that yields a DT-driven multi-level rescheduling strategy.

Wei et. al in [23] studied the digital twin (DT)-driven
manufacturing equipment (ME) development method, based
on axiomatic design (AD). Their DT model is constructed
of two core components which are the DT model of the
manufacturing equipment (ME), and the DT model of the
smart manufacturing system (SMS) associated with the ME.

Xiao et. al in [24] have conducted the geometric modeling
of the digital twin shop floor (DTS) based on their model
reuse-based geometric modelling method DTS, performed
the behavior modeling of equipment production in DTS and
DTS production process, and derived the DTS service of the
abnormality handling is derived. They verified their proposed
procedures and methods on an aerospace product assembly
shop floor.

Perno et. al in [25] present a framework for developing
ML-based DTs to predict critical process parameters in real
time. Their choice of focusing merely on machine-learning
and not extending the scope of the study to other potentially
relevant methods such as first-principle or hybrid approaches,
is claimed to be due to machine learning being a more
advanced and powerful technology expected to yield accurate
results using the data available from the process plant. Their
proposed framework is tested through a case study at an
international process manufacturing company in which it was
used to collect and process plant data . They extracted initial
data collection from company’s enterprise resource planning
(ERP) system and used them as a dataset to train and test
the models for the ML-based DT, built accurate predictive
models for two critical process parameters, and developed a
DT application to visualize the models’ predictions.

Lugaresi et. al in [26] define the problem of checking the
validity of digital twins for production planning and control
while the physical system is operating. They proposed A
methodology describing the data and the types of validation
including a set of techniques to be used at different levels
of detail. They measured congruence between the physical
system and the corresponding digital model by treating data as
sequences and measuring their similarity level with digitally-
produced data by exploiting a proper comparison technique.
They show the potential of the proposed approach and its ap-
plicability in realistic settings through numerical experiments
dealing with input validation and logic validation, by carrying
out performance-level validation with two different reference
KPIs which are system time and inter-departure time. Their
system and the digital model used to conduct the experiments
are discrete-event simulation (DES) models realized on Rock-
well Arena Simulation Software, and their online validation
methodology has been implemented in python.

Also Lugaresi and Matta in [27] describe the problem
of discovering manufacturing systems with complex material
flows, such as assembly lines. They proposed an algorithm for



the proper digital model generation, aided by the new concept
of object-centric process mining. This algorithm identifies sta-
tions in which components are assembled into final or work-in-
progress products, and the corresponding material flows. With
the addition of their Grapg Completion Problem (GCP) and
the corresponding solution procedure, the blocking condition
related to the availability of component parts can be added to
a simulation model, allowing for the proper estimation of the
system performance. They successfully applied their proposed
approach to two test cases and a real manufacturing system
and attained results that show the applicability of the proposed
technique to realistic settings.

Rachmawati et. al in [28] present a novel approach to sensor
data-driven fault diagnosis, utilizing Artificial Intelligence (AI)
technology to investigate the temperature imbalance in the
extruder and printing surface. They proposed a Lightweight
Convolutional Neural Network (LCNN) to detect faults from
sensory data, and using the Unity Engine created a DT
environment that mimics the conditions of a physical FDM 3D
printer for fault detection. Their simulation results show that
the proposed LCNN with a DT environment can effectively
monitor, detect, and control the physical workplace.

Ashok et. al in [29] propose a digital twin virtual reality
concept of robotics-based intelligent production systems with
a novel model, having used augmented reality & VR technolo-
gies by the operators.

Wang et. al in [30] introduced the generalized sparse
identification of nonlinear dynamics (GSINDy) algorithm to
enlarge the SINDy’s applicable range. SINDy algorithm, as
an automatic system identification technique which is robust
to measurement noise is critical for the development of high-
fidelity digital twins and their applications, automatically
determines the parsimonious governing equations for physical
systems. They proposed the modified GSINDy (MGSINDy)
algorithm, in which an objective function is constructed to
simultaneously identify the digital twin input time-series dy-
namics model and output model while separating noise from
the noisy input.

Abdoune et. al in [31] propose a data-driven methodology
for integrating the energy consumption (EC) model for the
production of industrial sector into Digital Twins, towards
sustainable and energy-efficient manufacturing. They ran an
investigation on an industrial robots Kuka KR6 and KR10 as
a case study, paying attention to the variability of different
operation parameters (such as velocity, payload) and dynamic
behavior of the robot and their impact on the EC behavior of
the robot by relying on a data-driven approach.

Yi et. al in [32] propose a novel approach to developing
a human-robot collaborative assembly system and apply it
to the field of digital twins. They explore a deep learning-
based model is to develop a depth camera-based human
recognition system for accurate prediction of key points for
human skeletons model and high-precision human localisation
in a human-robot collaborative setting. After the functional
mapping of robot calibration, a collision warning module
leverages coordinates of key human-robot points to facilitate

efficient and safe human-robot collaborative assembly.
Liu et. al in [33] present the enablement the prototype of

an MTConnect-based Cyber-Physical Machine tool (CPMT)
with DT. Their prototype was developed based on a Sherline
3-axis milling machine. Various real-time machining data were
collected from the CNC controller and different sensors such
as radio frequency identification (RFID) tags, dynamometer,
accelerometer and RPM sensor.

Zhu and Ji in [34] proposed a digital twin–driven (DTD)
method for real-time monitoring, evaluation, and optimization
of process parameters that are strongly related to product
quality. Based on a process simulation model, production
status information and quality related data, combined with an
improved genetic algorithm (GA), they built a time sequential
prediction model of bidirectional gated recurrent unit (bi-
GRU) with attention mechanism (AM), to flexibly allocate
parameter weights, accurately predict product quality, timely
evaluate technical process, and rapidly generate optimized
control plans.

Hashash et. al in propose a novel edge continual learning
framework proposed to accurately model the evolving affinity
between a physical twin (PT), an autonomous deriving vehicle
and its corresponding cyber twin (CT) while maintaining their
utmost synchronization.

VI. CONCLUSION

Towards optimization of DT in SM, considering the
industry-based digital thread, we suggest that the inclusive-
ness and coherency of the DT framework may improve its
efficiency. This coherency can be realized through physical
proximity of the supply chain sites that share a common
general DT framework which is comprised of hierarchically
distributed DTs. The proximity also provides the possibility
of more locally-efficient type of connectivity, which are low-
range but fast within the DT LAN.

Another positive impact can be derived from the inclusion
of the logistics systems in the DT ensemble, resulting in even
further reduction of product life-cycle. We believe that the
governance of Model-Based Systems Engineering (MBSE)
over the complete industrial process and as a result its DT
platform will optimize the complete product and DT life-cycle.
In our perspective, the forthcoming extended inclusion of DT
as an integral component of smart manufacturing, will expose
the capabilities of DT even further, that will revolutionize the
atmosphere of not only manufacturing but also other domains
including healthcare, agriculture, etc. and also fields such as
city planning and municipal operations, military operations,
commerce and governance. We believe that DT’s benefits will
overcome the challenges of a short temporary period such
as the lack of awareness and reluctance to admit cost of
implementation. We expect and envision a Digital Twin boom
comparable to the dot com boom.
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