
Computers & Operations Research 163 (2024) 106514

A
0

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

Parallel drone scheduling vehicle routing problems with collective drones
Roberto Montemanni ∗, Mauro Dell’Amico, Andrea Corsini
Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy

A R T I C L E I N F O

Keywords:
Parallel Drone Scheduling Vehicle Routing
Problems with cooperative drones
Constraint Programming
Mixed Integer Linear Programming
Parallel Drone Scheduling Traveling Salesman
Problems with cooperative drones

A B S T R A C T

We study last-mile delivery problems where trucks and drones collaborate to deliver goods to final customers.
In particular, we focus on problem settings where either a single truck or a fleet with several homogeneous
trucks work in parallel to drones, and drones have the capability of collaborating for delivering missions.
This cooperative behavior of the drones, which are able to connect to each other and work together for some
delivery tasks, enhance their potential, since connected drone has increased lifting capabilities and can fly at
higher speed, overcoming the main limitations of the setting where the drones can only work independently.

In this work, we contribute a Constraint Programming model and a valid inequality for the version of
the problem with one truck, namely the Parallel Drone Scheduling Traveling Salesman Problem with Collective
Drones and we introduce for the first time the variant with multiple trucks, called the Parallel Drone Scheduling
Vehicle Routing Problem with Collective Drones. For the latter version of the problem, we propose two Constraint
Programming models and a Mixed Integer Linear Programming model.

An extensive experimental campaign leads to state-of-the-art results for the problem with one truck and
some understanding of the presented models’ behavior on the version with multiple trucks. Some insights
about future research are finally discussed.
1. Introduction

The employment of drones in last-mile delivery is considered ex-
tremely strategic for the near future by leading distribution opera-
tors. They face a continuously increasing volume of parcels to handle,
mainly generated by e-commerce (Statista, 2022). Considering that
drones are light-weighted and use low-emission electric motors, that
they do not have to move along the road network but can fly approx-
imately in straight lines, and that they are not affected by road traffic
congestions, their adoption for deliveries could lead to advantages
for the companies (operational costs reduction), for the customers
(faster deliveries) and for the whole society (sustainability). Forbes
(2022) refers to the heavy interest in drone technology as the ‘‘Drone
Explosion’’. The authors of Wolleswinkel et al. (2018) forecast that
autonomous vehicles will deliver about 80% of all parcels in the
upcoming decade. In this work, we analyze a transition scenario where
drones are used in conjunction with trucks for last-mile delivery.

Murray and Chu (2015) introduced the idea of a new routing
problem in which a truck and a drone collaborate to make deliveries.
The authors present two new prototypical models expanding from
the traditional Traveling Salesman Problem (TSP) called the Flying
Sidekick TSP (FSTSP) and the Parallel Drone Scheduling TSP (PDSTSP).
In both cases, a truck and some drones collaborate to deliver parcels.
In the former model, drones can be launched from the truck during
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its tour, while in the latter one, drones are only operated from the
central depot, and the truck executes a traditional delivery tour. In the
remainder of the paper, we will focus on the latter problem, addressing
the interested reader, e.g., to Dell’Amico et al. (2021) and Dell’Amico
et al. (2022) for details and solution strategies for the FSTSP.

More formally, in the PDSTSP there is a truck that can leave the
depot, serve a set of customers, and go back to the depot. In parallel,
there is also a set of drones, and each one of them can leave the
depot, serve a customer, and return to the depot before serving other
customers. Some of the customers cannot be served by the drones,
either due to their location or the characteristic of their parcel. The
objective of the optimization is to minimize the completion time of the
last vehicle returning to the depot (or a cost function related to this)
while serving all the customers.

A first Mixed Integer Linear Programming (MILP) model for the
PDSTSP was proposed in Murray and Chu (2015) together with some
simple heuristic methods. Another MILP model and the first meta-
heuristic method, based on a two steps strategy embedding a dy-
namic programming component, were discussed in Mbiadou Saleu
et al. (2018). Another two-steps approach was presented in Dell’Amico
et al. (2020) while a hybrid ant colony optimization metaheuristic
was discussed in Dinh et al. (2021) and a variable neighbor search
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one in Lei and Chen (2022). In Montemanni and Dell’Amico (2023b),
an effective constraint programming approach was proposed, which
optimally solved all the benchmark instances previously adopted in the
literature for both exact and heuristic methods. Recently, in Nguyen
et al. (2023) another exact approach based on branch-and-cut was
proposed, together with new benchmark instances.

Several PDSTSP variants were also introduced and studied in the
literature, see e.g., Otto et al. (2018) and Pasha et al. (2022) for ex-
tensive surveys. We review herein only those extensions of the original
problem that we find more relevant to the present study.

The recent work (Mbiadou Saleu et al., 2022) discussed the Par-
llel Drone Scheduling Multiple Traveling Salesman Problem, which is a
traightforward extension of the PDSTSP where multiple trucks are
mployed and the target is to minimize the time required to complete
ll the customer delivery. The authors proposed a hybrid metaheuristic
lgorithm, a mixed integer linear model, and a branch-and-cut ap-
roach. The same problem was independently introduced also in Raj
t al. (2021), where the authors proposed three mixed integer linear
rogramming models, together with a branch-and-price approach. A
euristic version of the branch-and-cut method was also introduced,
iming at solving the larger instances. A more realistic variation of the
DSTSP was introduced in Nguyen et al. (2022). In this version of the
roblem concepts such as capacity, load balancing, and decoupling of
osts and times are taken into account. The authors proposed a mixed
nteger linear programming model and a Ruin&Recreate metaheuristic
or the problem. Constraint Programming methods for these variants of
he PDSTSP employing several trucks, were discussed in Montemanni
nd Dell’Amico (2023a), with convincing experimental results also
resented.

One common assumption in the literature on combined truck-drone
elivery models has been a linear battery consumption for drones,
eading to fixed operation ranges and carrying capacities. Recently,
ower consumption models with more realistic settings have been
resented, e.g., in Raj et al. (2021), Raj and Murray (2020), and Liu
t al. (2017), where the impact of a drone’s power consumption is
nalyzed as a function of both speed and payload. A review of drone
nergy consumption models is also available in Zhang et al. (2021).
n the patent (Paczan et al., 2022) filed by Amazon Technologies
nc., a novel method using a so-called ‘‘Collective Drone’’ (c-drone) is
ntroduced. Under the new settings, multiple drones can be coupled
ogether to aerially transport items of large size and weight. By sharing
esources, such as power and operating instructions, a collective drone
ight outperform a single drone to operate more efficiently. In the
atent, not many details are provided about the process of coupling
nd decoupling of drones, that can be either realized by a human
perator, or autonomously in a more advanced scenario. The emphasis
s on the equipment of the drones, that are characterized by a physical
oupling components and a purposed control software. The authors
f Nguyen and Hà (2023) joined the new concept of c-drone with
dvanced power consumption models to create an innovative problem,
alled the PDSTSP-c, where c stands for collective. In this problem,
realistic model is used to calculate the endurance and capacity of

roups of drones working together to carry out tasks. The authors were
ble to pre-compute the optimal speed to carry out a certain delivery
ith different (smaller or larger) formations of drones. Based on these

alculations, they proposed a mixed integer programming model and
Ruin&Recreate metaheuristic for the newly introduced problem. An

xample of a PDSTSP-c instance is provided in Fig. 1.
The contributions of the present paper are as follows:

• A new Constraint Programming model for the PDSTSP-c is in-
troduced, together with a valid inequality. Experimental results
show the great potential of the new model;

• The PDSVRP-c problem is firstly introduced, where the settings of
the PDSTSP-c are kept, but a fleet of vehicles is available instead
of a single truck;
2

G

Fig. 1. Example of a PDSTSP-c instance. Node 0 is the depot, the other nodes are
customers. Travel times are omitted for the sake of simplicity. The black continuous
arcs represent the tour of the truck (0, 2, 3, 0). The dashed arcs depict the missions of
the drones, each color representing a different one. Notice that some of the missions
are carried out by multiple drones.

• Two new Constraint Programming models and a Mixed Inte-
ger Programming model for the PDSVRP-c are introduced and
validated through some experimental tests.

The remainder of the paper is organized as follows. In Section 2,
the PDSTSP-c is formally described and a new Constraint Programming
model is introduced, together with a new valid inequality. Section 3
firstly introduces the PDSVRP-c as an extension of the former problem.
Two Constraint Programming models and a Mixed Integer Linear Pro-
gramming model are presented. Section 4 presents experimental results
for the two problems, while conclusions are drawn in Section 5.

2. The parallel drone scheduling traveling salesman problem with
collective drones

In this section, we formally describe the PDSTSP-c, as originally
introduced in Nguyen and Hà (2023), and we present a new Constraint
Programming model. We start from the single-vehicle problem because
its description helps in introducing the multiple-vehicle version.

2.1. Problem description

Given a complete graph 𝐺(𝑉 ,𝐸) with the set of vertices 𝑉 =
0, 1,… , 𝑛}, with vertex 0 representing the depot, and the remaining
ertices being associated with the customers (set 𝐶 = 𝑉 ⧵ {0}). Each
ustomer 𝑖 requests delivery of a parcel of weight 𝑤𝑖 from the depot.
he fleet of vehicles available for deliveries is composed of a driver-
perated delivery truck, with unlimited range and capacity, and a
et 𝐷 of 𝑚 homogeneous drones that are based at the depot and
quipped with batteries of given capacity (a fresh battery is installed
efore each mission). The truck performs its task within a single tour,
eginning from the depot, traversing through all assigned customers,
nd returning to the depot. The truck travel times between pairs of
ertices 𝑖, 𝑗 ∈ 𝑉 is given as 𝑡𝑖𝑗 . Matrix [𝑡𝑖𝑗 ] satisfies the triangular
nequality 𝑡𝑖𝑘 ≤ 𝑡𝑖𝑗+𝑡𝑗𝑘, 𝑖, 𝑗, 𝑘 ∈ 𝑉 . The drones have to perform back-and-
orth trips between the depot and the customers’ locations to deliver the
arcels. Travel times and ranges of drone missions depend on factors
uch as the number of drones cooperating and the traveling speed.

iven a customer 𝑖 and a number 𝑘 of drones executing the mission,
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it is possible to pre-calculate the optimal speed and consequently the
total travel time 𝜏𝑘𝑖 for the back-and-forth trip. When it is not possible
to service a customer 𝑖 for some values of 𝑘, then 𝜏𝑘𝑖 is set to +∞.
We group the customers that can be serviced by truck only in the set
 ⊊ . Instead, let  =  ⧵  denote the (sub)set of customers that
may be served with some drones’ configuration, and let 𝑞𝑗 and 𝑝𝑗 be the
minimum and maximum number of drones to serve a customer 𝑗 ∈ 
(observe that in the cited model the number of drones that can serve
a customer always define an interval). We adopted the realistic model
described in Nguyen and Hà (2023) for the calculation of their travel
times, and we refer the interested reader to this paper for full details.

Notice that a main difficulty of the problem is that once 𝑘 drones
collaborate for a delivery mission, strict synchronization constraints
must be fulfilled. The objective of the PDSTSP-c is to find a truck tour,
drone-customer assignments, and drones scheduling that minimize the
makespan (i.e., the maximum completion time at which all vehicles are
back at the depot after completing their services) while fulfilling all the
constraints and conditions listed above.

2.2. A constraint programming model

The Constraint Programming model we present is based on the
Google OR-Tools CP-SAT solver (Perron and Furnon, 2023) and follows
the ideas behind the Mixed Integer Linear Program described in Nguyen
and Hà (2023). In particular, drone missions are modeled through a
flow. Changes have however been introduced to take full advantage of
the characteristic of the solver used.

The CP-SAT solver is designed to work in a multi-thread envi-
ronment (compatible with all new processors) and can be seen as a
portfolio-strategy with some limited data exchange among the different
threads. The main process runs a Constraint Programming Solver based
on a Lazy Clause Generation (LCG) (Stuckey, 2010), but other unrelated
methods work in parallel to support it and exchange information such
as new bounds and solutions. The concept behind LCG involves the
(incremental) transformation of the problem into a SAT-formula, sub-
sequently employing a SAT-solver to seek a solution (or prove bounds
by infeasibility). The model also gets linearized to some degree, and
the corresponding linear program gets (partially) solved with the (dual)
simplex algorithm and other classic MILP techniques are run to enhance
bounds and retrieve new solutions, aiming at supporting the satisfiabil-
ity model. Finally, different instances of a Large Neighborhood Search
(LNS) metaheuristic, seeking for high-quality feasible solutions, are
executed.

While the idea above may initially appear as an inefficient approach
due to potential redundancy, it proves highly effective in practice.
The rationale behind this lies in the inherent challenge of predicting
which algorithm is best suited to solve a given problem (No Free Lunch
Theorem, Wolpert and Macready, 1997). Thus, the pragmatic strategy
involves running various approaches in parallel, with the hope that one
will effectively address the problem at hand. In contrast, Branch and
Cut-based Mixed Integer Programming solvers like Gurobi Optimiza-
tion (2023) implement a more efficient partitioning of the search space
to reduce redundancy. However, they specialize in a particular strategy,
which may not always be the optimal choice.

The variables used in the CP model we present for the PDSTSP-c as
follows:

• 𝑥𝑖𝑗 : binary variables equal to 1 (true) if edge (𝑖, 𝑗), with 𝑖, 𝑗 ∈ 𝑉 , is
traveled by the truck, 0 (false) otherwise. Whereas a loop 𝑥𝑗𝑗 = 1
means that customer 𝑗 is served by drones, while 𝑥𝑗𝑗 = 0 if it is
served by the truck.

• 𝑧𝑘𝑗 : binary variables equal to 1 if customer 𝑗 ∈  is served by 𝑘
drones, 0 otherwise.

• 𝑦𝑖𝑗 : binary variables equal to 1 if vertex 𝑖 is served right before
vertex 𝑗 within the schedule of any drone, 0 otherwise.

• 𝑓𝑖𝑗 ∈ 𝑍+: continuous flow variables indicating number of drones
serving vertex 𝑖 right before vertex 𝑗 in their schedule.
3

• 𝑇𝑗 ∈ 𝑅+: continuous variables representing the time at which the
mission to customer 𝑗 ∈  is completed by the drones. 𝑇0 is the
start time of the operations (typically 0), with all the vehicles at
the depot.

• 𝛼 ∈ 𝑅+: continuous variable denoting the completion time, by
which all the carriers are back to the depot.

(𝐶𝑃1) ∶ min 𝛼 (1)

𝑠.𝑡. 𝛼 ≥
∑

𝑖∈𝑉

∑

𝑗∈𝑉 ,𝑖≠𝑗
𝑡𝑖𝑗𝑥𝑖𝑗 (2)

𝛼 ≥ 𝑇𝑗 𝑗 ∈  (3)

𝑥𝑗𝑗 =
∑

𝑞𝑗≤𝑘≤𝑝𝑗

𝑧𝑘𝑗 𝑗 ∈  (4)

Circuit(𝑥𝑖𝑗 , with 𝑖, 𝑗 ∈ 𝑉 , 𝑗 ≠ 𝑖 if 𝑗 ∈  ) (5)
∑

𝑗∈

𝑓0𝑗 ≤ 𝑚 (6)

∑

𝑖∈∪{0},𝑖≠𝑗
𝑓𝑖𝑗 =

∑

𝑞𝑗≤𝑘≤𝑝𝑗

𝑘𝑧𝑘𝑗 𝑗 ∈  (7)

∑

𝑖∈∪{0},𝑖≠𝑗
𝑓𝑖𝑗 =

∑

𝑙∈∪{0},𝑙≠𝑗
𝑓𝑗𝑙 𝑗 ∈  ∪ {0} (8)

𝑓𝑖𝑗 ≤ 𝑚𝑦𝑖𝑗 𝑖, 𝑗 ∈  ∪ {0}, 𝑖 ≠ 𝑗 (9)

𝑦𝑖𝑗 ⟹ 𝑇𝑗 ≥ 𝑇𝑖 +
∑

𝑞𝑗≤𝑘≤𝑝𝑗

𝜏𝑘𝑗 𝑧
𝑘
𝑗 𝑖 ∈  ∪ {0}, 𝑗 ∈  , 𝑖 ≠ 𝑗 (10)

0 ≤ 𝑓𝑖𝑗 ≤ 𝑚 𝑖, 𝑗 ∈  ∪ {0}, 𝑖 ≠ 𝑗 (11)

𝑥𝑖𝑗 ∈ {0; 1} 𝑖, 𝑗 ∈ 𝑉 (12)

𝑧𝑘𝑗 ∈ {0; 1} 𝑗 ∈  , 𝑞𝑗 ≤ 𝑘 ≤ 𝑝𝑗 (13)

𝑦𝑖𝑗 ∈ {0; 1} 𝑖, 𝑗 ∈  ∪ {0}, 𝑖 ≠ 𝑗 (14)

𝑇𝑗 ≥ 0 𝑗 ∈  ∪ {0} (15)

Following the trivial objective function (1), the constraints have the
following meaning. Constraint (2) says that the total time 𝛼 has to be
reater than or equal to the time required by the truck tour. Analo-
ously, constraints (3) impose that 𝛼 has to be greater than or equal to
he completion time of the eventual drone mission to serve customer 𝑗.
iven the logic of the variables, constraints (4) state that each drone-
ligible customer has to be visited either by the truck or by a group
f drones; Constraint (5) uses the CP-SAT method Circuit (Perron and
urnon, 2023) to have a feasible truck tour that skips each customer 𝑗
or which 𝑥𝑗𝑗 = 1 (these customers will be visited by drones). Notice
hat the input parameter for the Circuit command is a set of arcs that
he tour can visit, including self-loops. In our case we exclude only
hose 𝑥𝑗𝑗 for which 𝑗 ∈  (corresponding to customers that are not
rone-eligible). The Constraints (6)–(8) model the operations and syn-
hronization of the drones as a flow problem (see Nguyen and Hà, 2023
or more detailed explanations): Constraint (6) states the flow going out
rom node 0 has to be less than or equal to 𝑚 (remind that each drone is
epresented as a unit of flow); Constraints (7) impose that if a customer
is serviced by 𝑘 drones, than the flow entering node 𝑗 has to equal

; Constraints (8) are classic conservation equalities, imposing that
he flows entering and exiting a node must be equal. Constraints (9)
ctivate the variables 𝑦 corresponding to arcs used by flows (variables
) which are necessary to calculate the completion time of drones.
onstraints (10) are active only if the variable 𝑦𝑖𝑗 = 1 and state that
he synchronization constraint on arc (i, j) must be respected. This
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is achieved through the CP-SAT command OnlyEnforceIf (Perron and
Furnon, 2023), which is indicated with ⟹ in the model. The
remaining constraints (11)–(15) define the domain of the variables.

2.3. Valid inequality

The following valid inequality can be introduced to improve the
linear relaxation of model CP1.

heorem 1. The following inequality is valid for the model CP1:

𝛼 ≥
∑

𝑗∈

∑

𝑞𝑗≤𝑘≤𝑝𝑗

𝑘𝜏𝑘𝑗 𝑧
𝑘
𝑗 (16)

roof. The value of 𝛼 has to be greater than the maximum comple-
ion time of drone missions among all drone-eligible customers (from
onstraints (3)), which in turn is (by definition) greater than or equal
o the average time spent into missions by the drones. This last value is
btained by dividing by the number of drones (𝑚) the cumulative time
pent into drone-missions, expressed for each accomplished mission as
he time of the mission itself (𝜏𝑘𝑗 ) multiplied by the number of drones
nvolved (𝑘). Formally:

≥ max
𝑗∈

𝑇𝑗 ≥

∑

𝑗∈

∑

𝑞𝑗≤𝑘≤𝑝𝑗

𝑘𝜏𝑘𝑗 𝑧
𝑘
𝑗

𝑚
⇒ (16) □

The valid inequality (16) will intuitively be tight when the following
wo conditions hold: (i) the time waited by the drones to synchronize
rior to multi-drone missions is small, since this time is not captured
y the inequality; (ii) the vehicles (and the drones in particular) have
imilar total mission times, therefore making the maximum completion
ime comparable to the average mission time. Notice that both these
onditions tend to be fulfilled by optimized solutions.

Finally, we anticipate that the inequality (16) will be valid also for
ll the models discussed in Section 3 for the PDSVRP-c.

. The parallel drone vehicle routing problem with collective
rones

In this section, we build upon Section 2 and introduce the PDSVRP-
, a natural extension of the PDSTSP-c where multiple vehicles operate
n parallel to the drones. The problem is introduced in Section 3.1
hile two models based on Constraint Programming are discussed in
ections 3.2 and 3.3. The first one is a 2-indices formulation based on
he 𝐶𝑃 1 model of the previous section while the second one is a 3-
ndices formulation. Section 3.4 outlines a MILP model to serve as a
aseline.

.1. Problem description

A formal definition of the PDSVRP-c can be proposed as a straight-
orward extension of the PDSTSP-c provided in Section 2.1. The dif-
erence is that now we have a fleet 𝑆 of 𝑠 trucks, with the same
haracteristics of the single truck employed for the PDSTSP-c: unlimited
apacity, unlimited range, and same traveling speed. No concept of
ollaboration exists for the trucks and each customer has to be served
ither by one of the trucks or by drones.

Having a fleet of trucks does not change substantially the problem,
ut has an impact on the optimization since we now have to plan
ultiple tours and account for the mission time of each truck while

alculating the completion time 𝛼. We will see in the next sections two
lternative Constraint Programming models and a Mixed Integer Linear
4

rogramming formulation.
.2. A 2-indices constraint programming model

This model is the direct extension of that discussed in Section 2.2 for
he 𝐶𝑃1 and delegates the Constraint Programming solver to handle the

multiple truck tours. The variables remain the same, although now the
𝑥 can take the shape of multiple tours instead of a single one. Another
important difference is the definition of the variables 𝑇𝑗 . In the 𝐶𝑃1
model of Section 2.2, they are only related to the drones and represent
the time in which the mission to a customer is completed. Here, they
are extended to the customers served by the trucks and represent the
starting time of the service of the truck to the customer. Formally we
use the new variables 𝑇 with the following meaning

• 𝑇 𝑗 ∈ 𝑅+: continuous variables with a different meaning depend-
ing of the type of vehicle involved. It represents the time at which
the mission to customer 𝑗 ∈  is completed when the visit is
carried out by drones (it is the time they are back to the depot). If
the customer is serviced by a truck, it is the time the truck reaches
the customer and the service is started. 𝑇 0 denotes the start time
of the operations (typically 0), with all the vehicles at the depot.

(𝐶𝑃 2) min 𝛼 (17)

𝑠.𝑡. 𝛼 ≥ 𝑇 𝑗 + 𝑡𝑗0𝑥𝑗0 𝑗 ∈  (18)

𝑥𝑗𝑗 =
∑

𝑞𝑗≤𝑘≤𝑝𝑗

𝑧𝑘𝑗 𝑗 ∈  (19)

MultipleCircuit(𝑥𝑖𝑗 , with 𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 0 ∨ 𝑗 ≠ 0, 𝑗 ≠ 𝑖 if 𝑖 ∈  )(20)
∑

𝑗∈
𝑥0𝑗 ≤ 𝑠 (21)

𝑥𝑖𝑗 ⟹ 𝑇 𝑗 ≥ 𝑇 𝑖 + 𝑡𝑖𝑗 𝑖 ∈ 𝑉 , 𝑗 ∈ , 𝑖 ≠ 𝑗 (22)
∑

𝑗∈

𝑓0𝑗 ≤ 𝑚 (23)

∑

𝑖∈∪{0},𝑖≠𝑗
𝑓𝑖𝑗 =

∑

𝑞𝑗≤𝑘≤𝑝𝑗

𝑘𝑧𝑘𝑗 𝑗 ∈  (24)

∑

𝑖∈∪{0},𝑖≠𝑗
𝑓𝑖𝑗 =

∑

𝑙∈∪{0},𝑙≠𝑗
𝑓𝑗𝑙 𝑗 ∈  ∪ {0} (25)

𝑓𝑖𝑗 ≤ 𝑚𝑦𝑖𝑗 𝑖, 𝑗 ∈  ∪ {0}, 𝑖 ≠ 𝑗 (26)

𝑦𝑖𝑗 ⟹ 𝑇 𝑗 ≥ 𝑇 𝑖 +
∑

𝑞𝑗≤𝑘≤𝑝𝑗

𝜏𝑘𝑗 𝑧
𝑘
𝑗 𝑖 ∈  ∪ {0}, 𝑗 ∈  , 𝑖 ≠ 𝑗 (27)

0 ≤ 𝑓𝑖𝑗 ≤ 𝑚 𝑖, 𝑗 ∈  ∪ {0}, 𝑖 ≠ 𝑗 (28)

𝑥𝑖𝑗 ∈ {0; 1} 𝑖, 𝑗 ∈ 𝑉 (29)

𝑧𝑘𝑗 ∈ {0; 1} 𝑗 ∈  , 𝑞𝑗 ≤ 𝑘 ≤ 𝑝𝑗 (30)

𝑦𝑖𝑗 ∈ {0; 1} 𝑖, 𝑗 ∈  ∪ {0}, 𝑖 ≠ 𝑗 (31)

𝑇 𝑗 ≥ 0 𝑗 ∈ 𝑉 (32)

The constraints strictly follow the meaning already described for the
𝐶𝑃1 model in Section 2.2. The only changes are as follows. Constraints
(18) are now extended to cover also the case of truck visits. In this
case 𝛼 is defined based on the time required by each truck to go
back to the depot after visiting each of its assigned customers. This
constraint is valid since the travel times satisfy the triangular property,
although it could be made valid also for the general case with the use
of a OnlyEnforceIf statement (see below). Constraint (20) describes a
set of circuits through the MultipleCircuit command of CP-SAT (Perron
and Furnon, 2023) to reflect we are now dealing with several tours
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instead of one. The command takes in input the set of arcs feasible
to be traversed, with the possibility of self-loops in case a customer is
visited by the drones. Notice that the arc (0, 0) is excluded in order to
void subtours not involving the depot, as well as self-loops involving
ustomers that cannot be visited by the drones. The number of tours is
ot a parameter of the command, and therefore the new constraint (21)
s necessary to force the number of tours to be 𝑠 at most. Whereas the
ew constraints (22) calculate the service start time for each customer
isited by a truck (remember that ⟹ indicates the OnlyEnforceIf,
hich activates the constraint if, and only if, 𝑥𝑖𝑗 = 1).

.3. A 3-indices constraint programming model

This model is another extension of the 𝐶𝑃1 model in Section 2.2
hat uses 𝑠 separate sets of variables to describe the tours of the 𝑠 trucks.

All the variables remain the same, apart from the 𝑥 variables which
are substituted by a set of variables 𝑤 such that 𝑤𝑘

𝑖𝑗 = 1 if edge (𝑖, 𝑗) is
traveled by truck 𝑘 ∈ 𝑆, 0 otherwise. Notice that 𝑤𝑘

𝑗𝑗 = 1 means that
customer 𝑗 is not served by truck 𝑘, hence it is not part of its tour. In
addition, 𝑤𝑘

00 = 1 means that truck 𝑘 is not operated in the solution.
Notice that differently from model 𝐶𝑃2, here all the loop variables for
the truck are inserted when invoking the method Circuit used to find a
circuit for each truck (see (38) below) since now only one of the trucks
will have to visit a node contained in  (as imposed by the constraints
(37) below). Finally notice that the timing variables 𝑇 are the same
used in model 𝐶𝑃1 of Section 2.2.

(𝐶𝑃 3) min 𝛼 (33)

𝑠.𝑡. 𝛼 ≥
∑

𝑖∈𝑉

∑

𝑗∈𝑉 ,𝑖≠𝑗
𝑡𝑖𝑗𝑤

𝑘
𝑖𝑗 𝑘 ∈ 𝑆 (34)

𝛼 ≥ 𝑇𝑗 𝑗 ∈  (35)

𝑠
∑

𝑘=1
(1 −𝑤𝑘

𝑗𝑗 ) +
∑

𝑞𝑗≤𝑘≤𝑝𝑗

𝑧𝑘𝑗 = 1 𝑗 ∈  (36)

𝑠
∑

𝑘=1
𝑤𝑘

𝑗𝑗 = 𝑠 − 1 𝑗 ∈  (37)

Circuit(𝑤𝑘
𝑖𝑗 , with 𝑖, 𝑗 ∈ 𝑉 ) 𝑘 ∈ 𝑆 (38)

𝑤𝑘
𝑖𝑗 ≤ 1 −𝑤𝑘

00 𝑘 ∈ 𝑆, 𝑖, 𝑗 ∈  (39)
∑

𝑗∈

𝑓0𝑗 ≤ 𝑚 (40)

∑

𝑖∈∪{0},𝑖≠𝑗
𝑓𝑖𝑗 =

∑

𝑞𝑗≤𝑘≤𝑝𝑗

𝑘𝑧𝑘𝑗 𝑗 ∈  (41)

∑

𝑖∈∪{0},𝑖≠𝑗
𝑓𝑖𝑗 =

∑

𝑙∈∪{0},𝑙≠𝑗
𝑓𝑗𝑙 𝑗 ∈  ∪ {0} (42)

𝑓𝑖𝑗 ≤ 𝑚𝑦𝑖𝑗 𝑖, 𝑗 ∈  ∪ {0}, 𝑖 ≠ 𝑗 (43)

𝑦𝑖𝑗 ⟹ 𝑇𝑗 ≥ 𝑇𝑖 +
∑

𝑞𝑗≤𝑘≤𝑝𝑗

𝜏𝑘𝑗 𝑧
𝑘
𝑗 𝑖 ∈  ∪ {0}, 𝑗 ∈  , 𝑖 ≠ 𝑗 (44)

0 ≤ 𝑓𝑖𝑗 ≤ 𝑚 𝑖, 𝑗 ∈  ∪ {0}, 𝑖 ≠ 𝑗 (45)

𝑤𝑘
𝑖𝑗 ∈ {0; 1} 𝑘 ∈ 𝑆, 𝑖, 𝑗 ∈ 𝑉 (46)

𝑧𝑘𝑗 ∈ {0; 1} 𝑗 ∈  , 𝑞𝑗 ≤ 𝑘 ≤ 𝑝𝑗 (47)

𝑦𝑖𝑗 ∈ {0; 1} 𝑖, 𝑗 ∈  ∪ {0}, 𝑖 ≠ 𝑗 (48)

𝑇𝑗 ≥ 0 𝑗 ∈  ∪ {0} (49)
5

The constraints strictly follow the meaning already described for the
𝑃1 model in Section 2.2. The changes reflect the presence of multiple

rucks and are as follows. Inequalities (34) now constrain 𝛼 to be equal
o or larger than the length of the tour of each truck 𝑘. Equalities (36)
ow express that each drone-eligible customer has to be visited either
y one of the trucks or the drones. The new constraints (37) state that
ustomers in  cannot be visited by drones, and have to be serviced
y exactly one truck. Constraints (38) are now independently defined
or each truck 𝑘, dropping the concept of giant-tour introduced for the
𝑃2 model. The new technical constraint (39) forces the circuit of a

ruck 𝑘 to be empty once the relative variable 𝑤𝑘
00 takes the value 1.

.4. A 3-indices mixed integer linear programming model

We finally present the Mixed Integer Linear Programming (MILP)
ormulation of the PDSVRP-c, which is based on the 3-indices 𝐶𝑃3
odel of Section 3.3. For the sake of simplicity in the presentation

f the model, we adopt a new variable 𝑢𝑘𝑗 that for 𝑗 ∈ 𝐶 takes value
if 𝑘 ∈ 𝑆 serves customer 𝑗, 0 otherwise. In case 𝑗 = 0, 𝑢𝑘0 takes

nstead value 1 if 𝑘 ∈ 𝑆 is deployed (used), 0 otherwise. Notice that
his variable can be defined as 𝑢𝑘𝑗 = 1 − 𝑤𝑘

𝑗𝑗 in the logic of the 𝐶𝑃3
odel, but in the MILP model the loop variables 𝑤𝑘

𝑗𝑗 are not used.

𝑀𝐼𝐿𝑃 ) min 𝛼 (50)

𝑠.𝑡. 𝛼 ≥
∑

𝑖∈𝑉

∑

𝑗∈𝑉 ,𝑖≠𝑗
𝑡𝑖𝑗𝑤

𝑘
𝑖𝑗 𝑘 ∈ 𝑆 (51)

𝛼 ≥ 𝑇𝑗 𝑗 ∈  (52)
∑

𝑘∈𝑆
𝑢𝑘𝑗 +

∑

𝑞𝑗≤𝑘≤𝑝𝑗

𝑧𝑘𝑗 = 1 𝑗 ∈  (53)

∑

𝑘∈𝑆
𝑢𝑘𝑗 = 1 𝑗 ∈  (54)

𝑢𝑘𝑗 ≤ 𝑢𝑘0 𝑗 ∈ , 𝑘 ∈ 𝑆 (55)
∑

𝑖∈𝑉 ,𝑖≠𝑗
𝑤𝑘

𝑖𝑗 +
∑

𝑙∈𝑉 ,𝑙≠𝑗
𝑤𝑘

𝑗𝑙 = 2𝑢ℎ𝑗 𝑗 ∈ 𝑉 , 𝑘 ∈ 𝑆 (56)

∑

𝑖,𝑗∈𝐻,𝑖≠𝑗
𝑤𝑘

𝑖𝑗 ≤ |𝐻| − 1 𝐻 ⊆ , 𝑘 ∈ 𝑆 (57)

𝑓𝑖𝑗
𝑚

≤ 𝑦𝑖𝑗 ≤ 𝑓𝑖𝑗 𝑖, 𝑗 ∈  ∪ {0}, 𝑖 ≠ 𝑗 (58)

𝑇𝑗 +𝑀(1 − 𝑦𝑖𝑗 ) ≥ 𝑇𝑖 +
∑

𝑞𝑗≤𝑘≤𝑝𝑗

𝜏𝑘𝑗 𝑧
𝑘
𝑗 𝑖 ∈  ∪ {0}, 𝑗 ∈  , 𝑖 ≠ 𝑗 (59)

0 ≤ 𝑓𝑖𝑗 ≤ 𝑚 𝑖, 𝑗 ∈  , 𝑖 ≠ 𝑗 (60)

𝑤𝑘
𝑖𝑗 ∈ {0; 1} 𝑘 ∈ 𝑆, 𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗 (61)

𝑧𝑘𝑗 ∈ {0; 1} 𝑗 ∈  , 𝑞𝑗 ≤ 𝑘 ≤ 𝑝𝑗 (62)

𝑢𝑘𝑗 ∈ {0; 1} 𝑗 ∈ , 𝑘 ∈ 𝑆 (63)

𝑦𝑖𝑗 ∈ {0; 1} 𝑖, 𝑗 ∈  ∪ {0}, 𝑖 ≠ 𝑗 (64)

𝑇𝑗 ≥ 0 𝑗 ∈  ∪ {0} (65)

The model minimizes the time to serve all the customers (50).
Constraints (51) force 𝛼 to be larger than any tour of the trucks, and
inequalities (52) guarantee that 𝛼 is larger than the completion time of
any drone’s mission time. Eqs. (53) assign customers from  to either
a drone or a truck, while constraints (54) force the customers that can
be visited only by a truck ( ) to receive such a visit. Inequalities (55)
impose that a customer can be visited by a truck only if it is in use.
Equalities (56) are flow conservation constraints for the truck tours.
Inequalities (57) are subtour elimination constraints (Dantzig et al.,
1954) and guarantee that truck tours are circuits including the depot.
Notice that these constraints are exponential in number, depending
on any possible subset 𝐻 of . In our implementation, they will be
generated dynamically as described in Section 3.4.1 below. Constraints
(58) refers to the flow of drones and guarantee that the number of
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Table 1
Experimental results on the PDSTSP-c. Small instances.

Instance RnR fast (Nguyen and Hà, 2023)a RnR (Nguyen and Hà, 2023)a MILP (Nguyen and Hà, 2023)b 𝑀𝐼𝐿𝑃+(16)c 𝐶𝑃1d 𝐶𝑃1+ (16)d Best

UB Secbst UB Secbst [LB, UB] Sectot [LB, UB] Sectot Secbst [LB, UB] Sectot Secbst [LB, UB] Sectot Secbst bounds

15-r-e 92 0.32 92 0.95 [92, 92] 8.65 [92, 92] 1215.79 850.00 [92, 92] 0.84 0.44 [92, 92] 1.14 1.10 92
15-rc-c 44 0.43 44 1.46 [31.74, 44] – [44, 44] 1837.95 1790.09 [40, 44] – 28.79 [44, 44] 12.00 11.94 44
16-c-c 60 0.52 60 2.14 [60, 60] 2.61 [60, 60] 3.66 3.63 [60, 60] 2.95 2.90 [60, 60] 2.10 2.05 60
16-r-e 112 0.55 112 1.52 [112, 112] 63.86 [98.20, 112] – 250.10 [112, 112] 2.00 1.94 [112, 112] 1.61 1.57 112
18-c-c 56 0.42 56 1.86 [38.72, 56] – [56, 56] 1258.06 50.89 [44, 56] – 302.76 [56, 56] 42.22 42.13 56
18-r-e 96 0.59 96 1.79 [86.94, 96] – [87.86, 96] – 2338.15 [92, 96] – 55.83 [96, 96] 4.70 4.63 96
18-rc-c 58 0.54 57 2.40 [37.78, 57] – [56, 57] – 3060.21 [38, 60] – 399.43 [57, 57] 1803.93 6.57 57
19-c-c 44 0.48 44 1.81 [28.06, 44] – [40.85, 44] – 3302.58 [32, 44] – 64.50 [44, 44] 24.91 11.00 44
20-c-c 43 0.60 43 2.54 [30.99, 44] – [39.42, 43] – 2374.04 [40, 43] – 102.82 [40, 43] – 147.26 [40, 43]
20-r-c 64 0.43 64 1.91 [55.35, 64] – [61.80, 64] – 3326.72 [56, 64] – 276.15 [64, 64] 73.39 73.29 64
20-r-e 82 0.62 80 2.00 [62.59, 88] – [72.80, 82] – 3237.98 [72, 80] – 606.13 [80, 80] 38.11 38.00 80
20-rc-c 96 0.41 96 2.37 [96, 96] 0.90 [96, 96] 460.30 1.14 [96, 96] 6.48 6.42 [96, 96] 6.23 6.17 96
20-rc-e 100 0.46 100 1.09 [100, 100] 88.78 [90, 100] – 292.98 [100, 100] 6.92 6.87 [100, 100] 4.70 4.65 100
21-c-c 62 0.48 62 2.25 [41.80, 64] – [44, 64] – 2281.04 [36, 64] – 18.02 [60, 62] – 58.44 [60, 62]
21-r-e 85 0.59 85 1.74 [59.52, 100] – [75.25, 88] – 3572.98 [49, 88] – 1512.11 [85, 85] 940.55 128.94 85
23-c-e 80 0.60 80 2.49 [58.15, 80] – [58.15, 80] – 2698.31 [80, 80] 0.84 0.78 [80, 80] 1.31 1.25 80
23-r-c 88 0.42 88 1.83 [88, 88] 3293.16 [84, 88] – 3042.55 [88, 88] 218.07 217.97 [88, 88] 8.97 8.90 88
24-c-e 84 0.79 84 2.50 [78.4, 84] – [78.40, 84] – 3567.08 [84, 84] 14.07 13.98 [84, 84] 11.05 10.97 84
24-r-e 112 0.52 112 1.57 [91.05, 112] – [101, 112] – 1819.74 [108, 112] – 4.76 [112, 112] 955.94 3.60 112
24-rc-c 72 0.73 71 4.06 [69.58, 88] – [69.58, 72] – 14.13 [68, 71] – 2245.17 [70, 70] 190.03 189.86 70
25-c-c 56 0.60 56 2.92 [37.33, 56] – [37.83, 56] – 694.26 [35, 56] – 764.50 [56, 56] 44.85 38.62 56
25-r-e 106 0.96 104 3.14 [76.11, 120] – [95.73, 108] – 3533.88 [58, 108] – 60.58 [104, 104] 288.19 288.04 104
25-rc-e 92 0.71 92 2.25 [66.99, 100] – [83.60, 96] – 2636.83 [60, 97] – 90.45 [92, 92] 113.76 113.63 92
26-r-c 103 0.53 103 2.58 [95.26, 128] – [100.18, 103] – 3409.09 [84, 104] – 2746.86 [101, 103] – 107.06 [101, 103]
27-c-c 84 0.49 84 2.18 [83.23, 84] – [64.72, 84] – 2672.84 [84, 84] 1.91 1.85 [84, 84] 1.80 1.75 84
27-c-e 68 0.72 68 6.27 [42.04, 68] – [42.04, 68] – 1429.86 [31, 68] – 1.76 [68, 68] 33.23 1.36 68
27-rc-c 100 0.77 100 5.30 [100, 100] 721.25 [85.34, 100] – 2915.17 [100, 100] 394.35 394.19 [100, 100] 71.17 71.06 100
27-rc-e 84 0.79 84 2.70 [59.52, 100] – [64.29, 88] – 1202.70 [42, 88] – 2066.04 [84, 84] 576.56 54.8 84
29-rc-e 116 0.72 116 1.69 [97.71, 124] – [109.75, 116] – 2214.71 [116, 116] 654.58 654.40 [116, 116] 8.60 8.53 116
30-c-c 96 0.65 96 3.76 [83.78, 96] – [83.78, 96] – 1827.64 [96, 96] 2.30 2.22 [96, 96] 3.22 3.14 96

Average 81.17 0.58 80.97 2.44 [68.69, 84.83] – [72.42, 81.63] – 2013.71 [69.77, 81.70] – 421.69 [80.70, 80.93] – 48.01 [80.70, 80.93]

a CPU AMD Ryzen 3700X - 4 × 3.6 GHz, 4 × 4.4 GHz, 16 threads; RAM 32 GB; best results over 30 runs.

CPU AMD Ryzen 3700X - 4 × 3.6 GHz, 4 × 4.4 GHz, 16 threads; RAM 32 GB; CPLEX 12.1; 3600 s time limit.

CPU Intel Core i7 12700F - 4 × 3.6 GHz, 8 × 4.9 GHz, 20 threads; RAM 32 GB; Gurobi 10.0; 3600 s time limit.

CPU Intel Core i7 12700F - 4 × 3.6 GHz, 8 × 4.9 GHz, 20 threads; RAM 32 GB; OR-Tools CP-SAT 9.6; 3600 s time limit.
Table 2
Experimental results on the PDSTSP-c. Large instances.

Instance RnR fast (Nguyen and Hà, 2023)a RnR (Nguyen and Hà, 2023)a 𝐶𝑃1b 𝐶𝑃1+(16)b Best

UB Secbst UB Secbst [LB, UB] Sectot Secbst [LB, UB] Sectot Secbst bounds

50-r-e 120 2.45 116 20.00 [49, 140] – 2123.27 [116 , 128] – 2083.72 116
53-r-e 136 2.23 132 15.17 [68, 160] – 2631.50 [132, 140] – 3177.59 132
66-rc-e 128 3.13 124 16.61 [80, 168] – 393.29 [124, 132] – 2927.03 124
67-c-c 76 2.32 76 29.05 [68, 80] – 133.82 [73, 80] – 403.51 [73, 76]
68-rc-c 79 2.12 76 20.45 [72, 112] – 2488.01 [76, 76] 3089.06 3088.37 76
76-c-c 52 2.15 52 10.46 [40, 52] – 26.87 [52, 52] 379.86 31.99 52
82-c-e 64 2.63 64 18.07 [64, 64] 33.30 30.55 [64, 64] 59.21 58.42 64
82-rc-c 108 2.65 104 27.42 [100, 140] – 2373.65 [104, 144] – 3269.15 104
88-c-e 108 3.56 108 9.62 [108, 108] 51.03 50.09 [108, 108] 92.47 91.56 108
91-r-c 128 3.64 124 72.49 [116, 188] – 2887.23 [120, 164] – 3302.76 [120, 124]
99-rc-c 108 3.64 100 51.21 [80, 168] – 1640.06 [98, 164] – 2575.79 [98, 100]
101-r-c 124 3.98 120 99.71 [96, 176] – 3456.53 [114, 180] – 3338.22 [114, 120]
103-rc-c 128 4.38 124 94.25 [108, 176] – 1967.67 [120, 164] – 2147.63 [120, 124]
105-rc-e 124 5.78 120 62.71 [80, 184] – 903.40 [109, 132] – 1831.25 [109, 120]
108-rc-e 144 5.56 136 61.71 [112, 188] – 3088.15 [134, 188] – 2521.07 [134, 136]
114-rc-c 100 4.69 96 62.73 [68, 152] – 2591.56 [94, 148] – 2821.57 [94, 96]
121-rc-e 128 6.41 124 68.74 [108, 180] – 2865.31 [121, 160] – 1201.60 [121, 124]
126-r-c 161 5.89 160 120.93 [104, 228] – 1457.72 [151, 216] – 3028.00 [151, 160]
126-rc-e 148 7.38 144 71.04 [124, 196] – 2945.63 [136, 188] – 1053.63 [136, 144]
144-rc-r 132 6.52 128 172.75 [120, 188] – 2801.00 [122, 204] – 3289.31 [122, 128]
154-c-c 72 7.17 72 62.96 [68, 72] – 63.64 [68, 72] – 61.68 [68, 72]
165-r-c 176 7.61 164 280.18 [118, 292] – 2386.33 [140, 312] – 3528.39 [140, 164]
167-r-e 200 10.55 188 228.31 [72, 296] – 3309.32 [160, 304] – 2209.10 [160, 188]
173-r-c 180 8.64 164 373.43 [92, 312] – 2439.90 [141, 280] – 2184.87 [141, 164]
173-rc-r 144 9.22 133 135.20 [51, 208] – 2539.43 [115, 208] – 3556.41 [115, 133]
181-r-e 232 11.20 224 196.09 [125, 332] – 3252.35 [199, 348] – 3566.96 [199, 224]
185-c-c 96 11.26 96 61.53 [96, 96] 1279.96 1276.68 [96, 96] 622.29 619.07 96
187-rc-e 200 12.67 196 119.95 [78, 284] – 2464.47 [167, 288] – 3228.65 [167, 196]
198-c-c 64 11.38 64 94.12 [64, 68] – 82.40 [64, 68] – 155.40 64
200-r-e 224 13.88 212 368.97 [40, 324] – 3541.42 [162, 328] – 2132.93 [162, 212]

Average 129.47 6.16 124.70 100.86 [85.63, 177.73] – 1940.38 [116.00, 171.20] – 2116.19 [116.00, 124.70]

a CPU AMD Ryzen 3700X - 4 × 3.6 GHz, 4 × 4.4 GHz, 16 threads; RAM 32 GB; best results over 30 runs.
b CPU Intel Core i7 12700F - 4 × 3.6 GHz, 8 × 4.9 GHz, 20 threads; RAM 32 GB; OR-Tools CP-SAT 9.6; 3600 s time limit.
6
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Table 3
Experimental results on the PDSVRP-c. Small instances, 2 trucks.

Instance 𝑀𝐼𝐿𝑃+(16)a 𝐶𝑃 2+(16)b 𝐶𝑃 3+(16)b Best

[LB, UB] Sectot Secbst [LB, UB] Sectot Secbst [LB, UB] Sectot Secbst bounds

15-r-e [92 , 92] 2654.11 745.82 [92, 92] 157.10 0.21 [92, 92] 2.49 0.45 92
15-rc-c [33, 33] 9.42 7.46 [33, 33] 0.92 0.52 [33, 33] 5.14 2.92 33
16-c-c [40, 40] 50.04 3.42 [40, 40] 6.43 0.29 [40, 40] 7.17 2.26 40
16-r-e [104, 108] – 783.12 [108, 108] 83.49 0.69 [108, 108] 5.03 1.75 108
18-c-c [44, 44] 22.76 22.72 [44, 44] 3.09 2.40 [44, 44] 7.45 5.98 44
18-r-e [92, 92] 1153.19 197.42 [92, 92] 43.36 1.57 [92, 92] 6.92 4.52 92
18-rc-c [44, 46] – 3569.88 [46, 46] 459.47 161.29 [46, 46] 401.32 45.46 46
19-c-c [34, 36] – 3220.87 [36, 36] 7.85 4.15 [36, 36] 15.41 3.84 36
20-c-c [40, 40] 907.04 5.25 [40, 40] 4.35 2.23 [40, 40] 4.26 1.75 40
20-r-c [48, 48] 2023.70 1886.70 [48, 48] 454.46 9.19 [48, 48] 62.72 43.56 48
20-r-e [63, 76] – 2707.00 [72, 72] 462.23 331.95 [72, 72] 27.42 23.27 72
20-rc-c [63, 64] – 1977.44 [58, 64] – 1.15 [64, 64] 14.57 8.09 64
20-rc-e [72, 80] – 3031.82 [64, 80] – 1.49 [80, 80] 24.93 7.82 80
21-c-c [40, 40] 59.12 8.87 [40, 40] 9.94 1.36 [40, 40] 11.60 2.01 40
21-r-e [51, 76] – 3348.26 [76, 76] 475.63 4.08 [76, 76] 82.46 9.41 76
23-c-e [44, 80] – 0.98 [42, 80] – 0.98 [80, 80] 17.85 0.67 80
23-r-c [60, 60] 1536.90 1379.17 [57, 60] – 9.64 [60, 60] 475.01 10.69 60
24-c-e [56, 60] – 505.00 [60, 60] 116.75 34.53 [60, 60] 54.04 53.77 60
24-r-e [68, 100] – 0.89 [67, 100] – 3.09 [100, 100] 68.82 35.52 100
24-rc-c [49, 52] – 42.34 [52, 52] 1350.35 25.78 [52, 52] 307.80 82.07 52
25-c-c [40, 40] 2523.46 1988.78 [40, 40] 899.80 26.80 [40, 40] 79.98 63.91 40
25-r-e [72, 92] – 693.55 [85, 88] – 35.41 [88, 88] 175.75 44.11 88
25-rc-e [64, 80] – 239.90 [59, 76] – 80.16 [76, 76] 189.81 3.42 76
26-r-c [68, 70] – 1381.35 [65, 70] – 20.87 [70, 70] 2701.81 700.35 70
27-c-c [40, 52] – 83.87 [42, 52] – 2.32 [52, 52] 37.07 16.67 52
27-c-e [7, 68] – 6.18 [68, 68] 2741.90 0.65 [68, 68] 130.71 1.56 68
27-rc-c [64, 72] – 58.13 [64, 72] – 8.96 [72, 72] 79.95 53.96 72
27-rc-e [36, 80] – 171.86 [47, 76] – 20.22 [76, 76] 198.05 46.71 76
29-rc-e [62, 100] – 3092.20 [65, 100] – 13.71 [100, 100] 59.26 48.57 100
30-c-c [36, 64] – 2935.06 [48, 64] – 2.09 [64, 64] 39.64 2.99 64

Average [54.20, 66.17] – 1136.51 [58.33, 65.63] – 26.93 [65.63, 65.63] 176.48 44.27 65.63
a CPU Intel Core i7 12700F - 4 × 3.6 GHz, 8 × 4.9 GHz, 20 threads; RAM 32 GB; Gurobi 10.0; 3600 s time limit.
b CPU Intel Core i7 12700F - 4 × 3.6 GHz, 8 × 4.9 GHz, 20 threads; RAM 32 GB; OR-Tools CP-SAT 9.6; 3600 s time limit.
v
i
n
i
t
k

drones going from customer 𝑖 to 𝑗 must be lower than 𝑚, only if there
is a flow from 𝑖 to 𝑗. Inequalities (59) regulate completion of the
service time for the customers visited by the drones. Finally, constraints
(60)–(65) define the domain of the variables.

3.4.1. Separation of the subtour elimination constraints
The subtour elimination constraints (57) are dynamically added

to the MILP as Lazy constraints (available in the most popular MILP
solvers). Specifically, the solver starts by disregarding the constraints
declared lazy and once a feasible integer solution is found it invokes
a user defined separation procedure. In our case, since the solution on
hand is integer, the separation is a simple 𝑂(|𝐸|) exploration of the
graphs 𝐺𝑘 = (𝑉 ,𝐸𝑘) with 𝐸𝑘 = {(𝑖, 𝑗) ∈ 𝐸 ∶ 𝑤𝑘

𝑖𝑗 = 1} to look for
subtours not involving the depot.

4. Experimental results

All the models presented in previous sections have been coded in
Python 3.11.2. The Constraint Programming models of Sections 2 and 3
have been solved via the CP-SAT solver of Google OR-Tools 9.6 (Perron
and Furnon, 2023) while the Mixed Integer Linear model of Section 3
has been solved with Gurobi 10.0 (Gurobi Optimization, 2023).

The outcome of the experimental campaign is discussed in the
remainder of this section and is organized according to the different
problems tackled. Tables 1–8 report, for each instance: (i) the instance
name; (ii) the lower bound eventually produced and the best heuristic
solution ([LB, UB]); (iii) the computing time to find the best heuristic
7
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solution (Secbst); (iv) the eventual computing time to prove optimal-
ity (Sectot); (v) a final summary column (Best bounds) containing
the current state-of-the-art results of each instance for easing future
research.

In addition, we use a dash whenever a result is not retrieved or the
time limit is reached, and we mark in italics the results of our models
not matching nor improving best-known bounds while in bold those
producing new best bounds. A line with the average of the relevant
column is present in the bottom of each table, to ease the interpretation
of the results. Hardware configurations, solvers used, experimental
settings and time limits are finally reported in the notes of the tables
for each approach.

4.1. Benchmark instances

To evaluate the performance of the proposed models for both the
PDSTSP-c and the new PDSVRP-c, we consider the instances originally
introduced in Nguyen and Hà (2023) for the PDSTSP-c, and available
at http://orlab.com.vn/home/download. The number 𝑛 of customers
aries from 15 to 200 (first number of the instance name) and the
nstances are divided into small (𝑛 ≤ 30) and large (𝑛 > 30). The
umber 𝑚 of drones available varies in the range [3, 6] for the small
nstances and [5, 10] for the large ones. The traveling distances for
rucks are computed using Manhattan distances and a speed of 30
m/h, while drones follow the Euclidean distance and the optimal
ravel times (rounded up to the nearest integer) are pre-calculated for

http://orlab.com.vn/home/download
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Table 4
Experimental results on the PDSVRP-c. Small instances, 3 trucks.

Instance 𝑀𝐼𝐿𝑃+(16)a 𝐶𝑃 2+(16)b 𝐶𝑃3+(16)b Best

[LB, UB] Sectot Secbst [LB, UB] Sectot Secbst [LB, UB] Sectot Secbst bounds

15-r-e [72, 92] – 3401.20 [92, 92] 331.05 0.19 [92, 92] 4.44 0.36 92
15-rc-c [32, 32] 11.08 11.01 [32, 32] 1.43 1.27 [32, 32] 5.95 3.66 32
16-c-c [36, 36] 2.20 2.18 [36, 36] 1.21 1.17 [36, 36] 6.01 5.41 36
16-r-e [68, 108] – 2332.97 [108, 108] 290.70 1.05 [108, 108] 6.55 1.15 108
18-c-c [44, 44] 25.27 25.21 [44, 44] 3.02 1.61 [44, 44] 6.37 2.12 44
18-r-e [88, 92] – 614.09 [92, 92] 22.3 0.92 [92, 92] 12.00 2.10 92
18-rc-c [40, 40] 18.60 18.53 [40, 40] 5.22 5.09 [40, 40] 30.65 24.69 40
19-c-c [29, 36] – 3554.00 [36, 36] 2.26 0.86 [36, 36] 19.25 3.59 36
20-c-c [40, 40] 383.19 139.78 [40, 40] 1.90 0.72 [40, 40] 7.35 1.27 40
20-r-c [37, 37] 1202.72 582.24 [37, 37] 8.30 3.81 [37, 37] 99.17 36.74 37
20-r-e [44, 72] – 45.40 [72, 72] 443.37 7.40 [72, 72] 17.12 9.27 72
20-rc-c [48, 48] 604.42 8.91 [48, 48] 99.53 3.15 [48, 48] 94.88 26.53 48
20-rc-e [60, 68] – 595.63 [68, 68] 122.18 42.00 [68, 68] 45.74 8.25 68
21-c-c [36, 36] 28.87 6.92 [36, 36] 4.96 4.75 [36, 36] 16.50 7.81 36
21-r-e [34, 76] – 689.44 [76, 76] 891.56 11.30 [76, 76] 427.99 28.05 76
23-c-e [36, 80] – 3.88 [66, 80] – 0.94 [80, 80] 25.44 0.93 80
23-r-c [48, 48] 203.22 44.94 [48, 48] 20.92 14.24 [48, 48] 590.10 135.03 48
24-c-e [56, 60] – 2000.96 [60, 60] 135.61 3.35 [60, 60] 28.56 11.45 60
24-r-e [47, 100] – 8.28 [80, 100] – 1.72 [100, 100] 64.88 8.77 100
24-rc-c [41, 44] – 3456.94 [44, 44] 227.22 77.94 [44, 44] 926.73 387.43 44
25-c-c [30, 40] – 97.39 [37, 37] 70.58 31.83 [37, 37] 107.30 42.94 37
25-r-e [57, 96] – 3298.63 [59, 85] – 44.60 [85, 85] 404.43 242.54 85
25-rc-e [52, 69] – 2601.65 [65, 66] – 141.25 [66, 66] 356.83 61.26 66
26-r-c [56, 56] 180.88 67.14 [52, 56] – 1399.21 [55, 56] – 70.15 56
27-c-c [36, 36] 1367.86 936.48 [36, 36] 577.74 3.69 [36, 36] 121.70 39.48 36
27-c-e [8, 68] – 4.92 [68, 68] 2315.01 1.31 [68, 68] 437.75 1.71 68
27-rc-c [60, 60] 223.20 213.85 [60, 60] 6.79 6.01 [60, 60] 74.79 63.90 60
27-rc-e [28, 76] – 155.68 [56, 76] – 8.02 [76, 76] 520.40 14.61 76
29-rc-e [53, 108] – 3337.59 [72, 100] – 23.67 [100, 100] 56.98 35.42 100
30-c-c [26, 38 ] – 3182.76 [38, 38] 96.12 5.63 [38, 38] 145.11 15.99 38

Average [44.73, 61.20] 1047.95 [56.60, 60.37] – 61.62 [60.33, 60.37] – 43.09 60.37
a CPU Intel Core i7 12700F - 4 × 3.6 GHz, 8 × 4.9 GHz, 20 threads; RAM 32 GB; Gurobi 10.0; 3600 s time limit.
b CPU Intel Core i7 12700F - 4 × 3.6 GHz, 8 × 4.9 GHz, 20 threads; RAM 32 GB; OR-Tools CP-SAT 9.6; 3600 s time limit.
b

each collaborative cluster of 𝑘 drones. The interested reader can find
ll the details of the instances in Nguyen and Hà (2023).

For generating PDSVRP-c instances we used the same set of bench-
arks and added the number 𝑠 of trucks chosen in the range [2, 3] for

small instances and in [2, 5] for large instances.

4.2. PDSTSP-c

In this section, we aim at comparing the results obtained by solving
the 𝐶𝑃1 model described in Section 2.2, with and without the valid
inequality (16). The results are summarized in Table 1 for the small
instances and in Table 2 for the large ones. We compare 𝐶𝑃 1 with the
methods introduced in Nguyen and Hà (2023), namely a Mixed Integer
Linear Programming (MILP) model solved with IBM CPLEX 12.1 (IBM
ILOG, 2023) and two versions of a Ruin&Recreate metaheuristic: RnR
fast and RnR. Notice that the results of the MILP model in Nguyen and
Hà (2023) are only available for small instances and those reported
for the Ruin&Recreate methods are the best over 30 runs. To fully
understand the impact of inequality (16), we also considered the MILP
model described in Section 3.4 for the PDSVRP-c and run it with 𝑠 = 1
(one truck only) as well as the inequality (16). This method is run on
small instances only, since a previous study (Nguyen and Hà, 2023)
showed MILP models are not suitable for the large instances.

We are not aware of other existing methods to deal with this
problem.

From the results displayed in Table 1, we see that inequality (16) is
very effective in improving the performance of the models, both 𝐶𝑃1
and 𝑀𝐼𝐿𝑃 . Given this evidence, we will always consider inequalities
8

(16) for the next experiments.
Table 1 reveals that the CP-based approach matches (or improves
in the case of instance 24-rc-c) all the best-known heuristic solutions
and outperforms the exact MILP method, both in terms of quality and
times. Additionally, we observe how the 𝐶𝑃1+(16) improves several
lower bounds and closes all but three instances.

To better highlight the differences between the MILP and the CP
methods, we report in Fig. 2 their percentage optimality gaps, calcu-
lated as 100 ⋅ 𝑈𝐵−𝐿𝐵

𝑈𝐵 , and in Fig. 3 their required time to find the
est solution (Secbst). Fig. 2 shows that the 𝐶𝑃1 model clearly leads

to lower optimality gaps than the 𝑀𝐼𝐿𝑃 model with a time limit
of 3600 s, the latter also demonstrating scalability issues on larger
instances as remarked by its linearly increasing trend (dashed line).
Whereas Fig. 3 shows that the 𝐶𝑃1 model is substantially faster in
retrieving the best heuristic solution. These results suggest that the
Constraint Programming-based approach has great potential for the
PDSTSP-c problem.

Moving to the larger instances reported in Table 2 we observe that
𝐶𝑃1+(16) is able to provide, for the first time, valid lower bounds for
all instances. Moreover 10 over 30 bounds equal to the best known
solution, hence proving for the first time the optimality of these solu-
tions. In the remaining instances the gaps, between the lower bound
and the heuristic solution is generally small. However the upper bound
provided by the CP models is not competitive with respect to that of
the metaheuristic methods. Also the running times are larger, although
it is worth to observe once again that for the RnR methods the best
results over 30 runs is provided, making the timing presented less fair.
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Table 5
Experimental results on the PDSVRP-c. Large instances, 2 trucks.

Instance 𝐶𝑃 2+(16)a 𝐶𝑃 3+(16)a Best

[LB, UB] Secbst [LB, UB] Secbst bounds

50-r-e [65, 116] 206.57 [63, 120] 168.48 [65, 116]
53-r-e [77, 112] 894.09 [82, 128] 1756.80 [82, 112]
66-rc-e [72, 112] 1829.73 [73, 136] 866.28 [73, 112]
67-c-c [38, 52] 22.33 [31, 52] 827.01 [38, 52]
68-rc-c [50, 56] 3332.51 [52, 104] 3088.50 [52, 56]
76-c-c [26, 36] 20.60 [16, 40] 185.95 [26, 36]
82-c-e [32, 64] 25.41 [17, 64] 73.68 [32, 64]
82-rc-c [62, 116] 2974.84 [56, 132] 2615.62 [62, 116]
88-c-e [54, 84] 298.18 [58, 112] 49.28 [58, 84]
91-r-c [75, 152] 405.02 [75, 160] 2249.67 [75, 152]
99-rc-c [63, 96] 2083.65 [51, 144] 564.95 [63, 96]
101-rc [71, 164] 2921.49 [53, 152] 1731.45 [71, 152]
103-rc-c [69, 124] 2603.95 [52, 128] 2912.93 [69, 124]
105-rc-e [65, 136] 2170.84 [57, 148] 1383.74 [65, 136]
108-rc-e [79, 172] 1683.07 [70, 160] 831.13 [79, 160]
114-rc-c [58, 124] 3417.23 [49, 140] 411.62 [58, 124]
121-rc-e [70, 156] 647.12 [56, 152] 2088.27 [70, 152]
126-rc-e [87, 220] 3115.59 [67, 184] 1956.96 [87, 184]
126-r-c [78, 160] 2679.11 [56, 156] 1448.65 [78, 156]
144-rc-c [67, 272] 2610.83 [47, 168] 3103.46 [67, 168]
154-c-c [35, –] – [8, 72] 279.16 [35, 72]
165-r-c [88, –] – [67, 224] 3544.74 [88, 224]
167-r-e [100, –] – [74, 256] 3151.22 [100, 256]
173-r-c [85, 204] 2929.34 [59, 240] 2251.40 [85, 204]
173-rc-c [79, –] – [48, 180] 1797.98 [79, 180]
181-r-e [112, –] – [78, 252] 3388.32 [112, 252]
185-c-c [48, –] – [24, 96] 316.31 [48, 96]
187-rc-e [100, 308] 3391.71 [65, 212] 1567.38 [100, 212]
198-c-c [32, –] – [12, 64] 271.52 [32, 64]
200-r-e [105, –] – [68, 324] 2072.94 [105, 324]

Average [68.07, –] – [52.80, 150.00] 1565.18 [68.47, 141.20]
a CPU Intel Core i7 12700F - 4 × 3.6 GHz, 8 × 4.9 GHz, 20 threads; RAM 32 GB; OR-Tools CP-SAT 9.6; 3600 s time limit.
Fig. 2. The optimality gap in percentage for the 𝑀𝐼𝐿𝑃+(16) and 𝐶𝑃1+(16) on small
PDSTSP-c instances.

4.3. PDSVRP-c

In this section, we aim at comparing the performance of the models
𝐶𝑃 2, 𝐶𝑃3 and 𝑀𝐼𝐿𝑃 described in Sections 3.2–3.4 for the PDSVRP-c.
Their results are summarized in Tables 3 and 4 for the small instances,
covering respectively 2 and 3 trucks, and in Tables 5–8 for the large
instances, using respectively 2, 3, 4, and 5 trucks. The PDSVRP-c is first
introduced in this paper, so no comparison is available with methods
from other authors.
9

Fig. 3. The time required in seconds by the 𝑀𝐼𝐿𝑃+(16) and 𝐶𝑃1+(16) to retrieve
the best heuristic solution (UB).

Tables 3 and 4 suggest that solving the 𝑀𝐼𝐿𝑃 is less effective than
solving the CP models, both in terms of bounds provided and computing
time. The only remarkable exception is instance 26-r-c with 3 trucks
(Table 4), which is closed by the former but not by the latters.

One can also observe that the performances of 𝑀𝐼𝐿𝑃 degrade
with the increasing of the instance size, much more than that of
the CP methods. After some test with larger instances (not reported
here), and considering the analogous decision made for the PDSTSP-c
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Table 6
Experimental results on the PDSVRP-c. Large instances, 3 trucks.

Instance 𝐶𝑃 2+(16)a 𝐶𝑃 3+(16)a Best

[LB, UB] Secbst [LB, UB] Secbst bounds

50-r-e [48, 112] 79.65 [47, 112] 411.11 [48, 112]
53-r-e [56, 96] 860.00 [51, 112] 2074.85 [56, 96]
66-rc-e [53, 108] 282.64 [38, 116] 139.49 [53, 108]
67-c-c [27, 52] 32.82 [9, 52] 353.35 [27, 52]
68-rc-c [39, 56] 756.18 [34, 104] 655.52 [39, 56]
76-c-c [18, 24] 42.28 [12, 52] 81.65 [18, 24]
82-c-e [22, 64] 21.88 [8, 64] 26.79 [22, 64]
82-rc-c [47, 80] 1727.16 [38, 128] 312.65 [47, 80]
88-c-e [36, 76] 375.27 [32, 104] 587.30 [36, 76]
91-r-c [56, 120] 3036.11 [42, 148] 726.56 [56, 120]
99-rc-c [47, 64] 2650.32 [29, 128] 196.67 [47, 64]
101-rc [52, 128] 2645.43 [36, 144] 2520.98 [52, 128]
103-rc-c [49, 96] 2229.84 [32, 136] 2332.89 [49, 96]
105-rc-e [49, 120] 877.50 [34, 132] 907.44 [49, 120]
108-rc-e [58, 184] 1969.45 [37, 160] 1273.20 [58, 160]
114-rc-c [44, 80] 1676.32 [32, 112] 466.45 [44, 80]
121-rc-e [52, 124] 2820.31 [40, 152] 1701.91 [52, 124]
126-rc-e [63, 136] 2839.24 [44, 164] 2663.93 [63, 136]
126-r-c [56, 140] 2191.71 [38, 148] 3114.44 [56, 140]
144-rc-c [50, 132] 3362.32 [35, 160] 2396.79 [50, 132]
154-c-c [24, 36] 195.44 [8, 68] 1368.67 [24, 36]
165-r-c [68, –] – [50, 212] 3120.16 [68, 212]
167-r-e [73, –] – [54, 204] 2112.65 [73, 204]
173-r-c [65, –] – [45, 212] 2004.93 [65, 212]
173-rc-c [58, 172] 2994.35 [37, 168] 2592.28 [58, 168]
181-r-e [82, –] – [55, 216] 3342.10 [82, 216]
185-c-c [32, –] – [14, 96] 1280.86 [32, 96]
187-rc-e [74, –] – [46, 212] 2849.33 [74, 212]
198-c-c [22, 36] 158.92 [8, 68] 108.97 [22, 36]
200-r-e [77, –] – [48, 252] 1817.10 [77, 252]

Average [49.90, –] – [34.43, 137.87] 1451.37 [49.90, 120.40]
a CPU Intel Core i7 12700F - 4 × 3.6 GHz, 8 × 4.9 GHz, 20 threads; RAM 32 GB; OR-Tools CP-SAT 9.6; 3600 s time limit.
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n Nguyen and Hà (2023), we decided to not consider the 𝑀𝐼𝐿𝑃 for
he experiments on large instances (Tables 5–8).

The results of the two CP models suggest that the 3-indices formula-
ion (𝐶𝑃 3) is superior, being able to close all the instances but one. The
-indices model appears slower even though the quality of its upper
ounds is the same of 𝐶𝑃 3. This highlights that the weakness of the
𝑃 2 model is in the computation of the lower bound.

The results reported in Tables 5–8 for large instances (notice that the
olumn Sectot has been omitted, since no optimality is proven) and a
arying number of trucks lead to the following observations. The model
ith 3 indices, which performs the best on small instances (see Tables
and 4), is instead performing worse than the 2-indices model on large
nes, especially in terms of retrieved lower bounds. This might suggest
hat handling multiple truck tours with the MultipleCircuit command
ecomes effective when tours are complex.

There are however a few exceptions where the 3-indices model
s better either in terms of lower or upper bounds. Specifically, the
𝑃 3 model appears to be more consistent in instances with many
ustomers and a few trucks, in which the 2-indices model often fails
o produce any feasible solution. This might indicate that the models
re approaching their natural limit.

. Conclusions

In this paper, we have discussed several advances for the Paral-
el Drone Scheduling Traveling Salesman Problem with cooperative
rones. In particular, we have proposed a Constraint Programming
odel coupled with a valid inequality that allows us to find improved

ower and upper bounds for the instances proposed in the literature.
10

dditionally, we demonstrated that the proposed valid inequality can a
e used to enhance the performance of other methods such as MILP
odels.

We have also extended the problem into the new Parallel Drone
cheduling Vehicle Routing Problem with cooperative drones, where
everal trucks are available. For this new extension, we have proposed
wo alternative Constraint Programming models and a Mixed Integer
rogramming model. Experimental results suggest that Constraint Pro-
ramming guarantees better performance, but seems to have scaling
ssues on large instances, leaving room for future studies on heuristic
pproaches tailored to the problem.

RediT authorship contribution statement

Roberto Montemanni: Conceptualization, Data curation, Formal
nalysis, Investigation, Methodology, Project administration, Resources,
oftware, Supervision, Validation, Visualization, Writing – original
raft, Writing – review & editing. Mauro Dell’Amico: Conceptualiza-
ion, Methodology, Writing – original draft. Andrea Corsini: Formal
nalysis, Investigation, Methodology, Software, Writing – original draft.

ata availability

Data will be made available on request.

cknowledgments

The authors are grateful to Minh Hoàng Hà and Minh Anh Nguyen
or the useful discussions, and for having provided the values of the
ptimized travel times for the drones.

We finally thank the anonymous reviewers for their careful reading

nd precious suggestions.



Computers and Operations Research 163 (2024) 106514R. Montemanni et al.
Table 7
Experimental results on the PDSVRP-c. Large instances, 4 trucks.

Instance 𝐶𝑃 2+(16)a 𝐶𝑃 3+(16)a Best

[LB, UB] Secbst [LB, UB] Secbst bounds

50-r-e [46, 104] 649.55 [35, 112] 213.25 [46, 104]
53-r-e [50, 96] 1068.12 [38, 112] 548.64 [50, 96]
66-rc-e [41, 104] 3493.30 [34, 108] 1019.85 [41, 104]
67-c-c [21, 48] 25.68 [8, 52] 1297.51 [21, 48]
68-rc-c [32, 52] 410.57 [29, 88] 296.61 [32, 52]
76-c-c [14, 24] 44.33 [12, 56] 24.41 [14, 24]
82-c-e [18, 64] 18.15 [8, 64] 20.44 [18, 64]
82-rc-c [38, 68] 2275.00 [31, 124] 194.26 [38, 68]
88-c-e [28, 76] 76.88 [32, 108] 1177.87 [32, 76]
91-r-c [45, 96] 3019.26 [32, 156] 248.69 [45, 96]
99-rc-c [37, 68] 1058.95 [24, 120] 322.23 [37, 68]
101-rc [42, 76] 3171.49 [30, 144] 2589.25 [42, 76]
103-rc-c [39, 80] 1490.89 [26, 140] 521.14 [39, 80]
105-rc-e [39, 116] 261.16 [26, 132] 1691.38 [39, 116]
108-rc-e [46, 124] 454.82 [28, 152] 3163.13 [46, 124]
114-rc-c [35, 88] 2564.47 [26, 120] 1369.36 [35, 88]
121-rc-e [42, 104] 3185.34 [29, 144] 410.13 [42, 104]
126-rc-e [50, 132] 3362.14 [35, 164] 2600.11 [50, 132]
126-r-c [45, 116] 1094.09 [28, 140] 729.26 [45, 116]
144-rc-c [40, 128] 3013.06 [25, 144] 2451.13 [40, 128]
154-c-c [18, 40] 949.21 [8, 72] 63.77 [18, 40]
165-r-c [54, 192] 243.15 [40, 192] 3124.08 [54, 192]
167-r-e [58, 176] 3277.00 [42, 196] 1489.17 [58, 176]
173-r-c [54, 352] 3435.45 [36, 192] 3070.29 [54, 192]
173-rc-c [46, 116] 1650.91 [29, 164] 3368.14 [46, 116]
181-r-e [65, 268] 2937.67 [42, 208] 3048.86 [65, 208]
185-c-c [24, 48] 2350.91 [14, 100] 161.08 [24, 48]
187-rc-e [58, 216] 2551.50 [37, 204] 2097.96 [58, 204]
198-c-c [16, –] – [8, 68] 122.39 [16, 68]
200-r-e [60, 308] 3550.81 [38, 228] 2613.35 [60, 228]

Average [40.03, –] – [27.67, 133.47] 1334.92 [40.17, 107.87]
a CPU Intel Core i7 12700F - 4 × 3.6 GHz, 8 × 4.9 GHz, 20 threads; RAM 32 GB; OR-Tools CP-SAT 9.6; 3600 s time limit.
Table 8
Experimental results on the PDSVRP-c. Large instances, 5 trucks.

Instance 𝐶𝑃 2+(16)a 𝐶𝑃 3+(16)a Best

[LB, UB] Secbst [LB, UB] Secbst bounds

50-r-e [47, 100] 227.16 [30, 112] 54.55 [47, 100]
53-r-e [50, 92] 645.51 [32, 112] 667.24 [50, 92]
66-rc-e [35, 100] 487.89 [24, 120] 482.57 [35, 100]
67-c-c [18, 52] 64.31 [8, 52] 1437.96 [18, 52]
68-rc-c [28, 44] 1047.89 [23, 80] 1776.83 [28, 44]
76-c-c [12, 24] 67.04 [12, 40] 400.81 [12, 24]
82-c-e [15, 64] 17.43 [6, 64] 25.43 [15, 64]
82-rc-c [32, 68] 592.96 [24, 112] 782.49 [32, 68]
88-c-e [23, 72] 218.44 [32, 108] 109.66 [32, 72]
91-r-c [38, 88] 3122.27 [28, 124] 3272.57 [38, 88]
99-rc-c [32, 64] 597.67 [20, 108] 2532.76 [32, 64]
101-rc [36, 112] 532.65 [26, 144] 505.96 [36, 76]
103-rc-c [32, 80] 1419.11 [22, 120] 3400.80 [32, 80]
105-rc-e [33, 112] 1282.90 [21, 124] 410.79 [33, 112]
108-rc-e [39, 120] 957.98 [24, 136] 1566.66 [39, 120]
114-rc-c [30, 64] 733.92 [22, 96] 299.50 [30, 64]
121-rc-e [34, 116] 1034.38 [24, 128] 3100.10 [34, 104]
126-rc-e [41, 120] 2562.32 [29, 148] 2626.65 [41, 120]
126-r-c [37, 116] 1485.59 [24, 144] 807.31 [37, 116]
144-rc-c [34, 104] 2325.39 [22, 136] 2332.08 [34, 104]
154-c-c [15, 36] 1719.34 [6, 68] 669.42 [15, 36]
165-r-c [47, 220] 1614.09 [34, 212] 3294.70 [47, 212]
167-r-e [49, 204] 1884.33 [34, 204] 1667.48 [49, 196]

(continued on next page)
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Table 8 (continued).

Instance 𝐶𝑃 2+(16)a 𝐶𝑃 3+(16)a Best

[LB, UB] Secbst [LB, UB] Secbst bounds

173-r-c [43, –] – [32, 196] 2657.03 [43, 192]
173-rc-c [39, 116] 2955.97 [24, 164] 3203.29 [39, 116]
181-r-e [54, 204] 3349.71 [35, 204] 2369.20 [54, 204]
185-c-c [20, 48] 1216.37 [12, 60] 2561.48 [20, 48]
187-rc-e [48, 128] 2645.47 [32, 192] 2310.65 [48, 128]
198-c-c [16, 36] 487.28 [8, 68] 118.12 [16, 36]
200-r-e [52, 288] 2545.74 [32, 216] 2152.81 [52, 216]

Average [34.30, –] – [23.40, 126.40] 1586.56 [34.60, 101.60]
a CPU Intel Core i7 12700F - 4 × 3.6 GHz, 8 × 4.9 GHz, 20 threads; RAM 32 GB; OR-Tools CP-SAT 9.6; 3600 s time limit.
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