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Abstract: With the advent of IoT, cities will soon be populated by autonomous vehicles and managed
by intelligent systems capable of actively interacting with city infrastructures and vehicles. In this
work, we propose a model based on reinforcement learning that teaches to autonomous connected
vehicles how to save resources while navigating in such an environment. In particular, we focus on
budget savings in the context of auction-based intersection management systems. We trained several
models with Deep Q-learning by varying traffic conditions to find the most performance-effective
variant in terms of the trade-off between saved currency and trip times. Afterward, we compared
the performance of our model with previously proposed and random strategies, even under adverse
traffic conditions. Our model appears to be robust and manages to save a considerable amount of
currency without significantly increasing the waiting time in traffic. For example, the learner bidder
saves at least 20% of its budget with heavy traffic conditions and up to 74% in lighter traffic with
respect to a standard bidder, and around three times the saving of a random bidder. The results and
discussion suggest practical adoption of the proposal in a foreseen future real-life scenario.

Keywords: deep reinforcement learning; smart city; intersection management; auctions; connected
vehicles; autonomous vehicles

1. Introduction

The Internet of Things (IoT) [1] is rapidly expanding, offering new possibilities in
almost any aspect of our daily life by “making things smart”. In this work, we concentrate
on urban mobility, as it plays a critical role in shaping urban life. However, this crucial
element is often beset with challenges that significantly impact the overall urban experience.
The intricate web of transportation systems, including road networks and public transit,
not only influences the efficiency of daily commutes but also has far-reaching implications
on environmental sustainability, air quality, and the overall quality of life for citizens. The
delicate balance required to ensure smooth urban mobility is often disrupted by factors
such as traffic congestion and the environmental toll of excessive vehicular activity. As
cities continue to grow and evolve, addressing the complexities of urban mobility becomes
imperative for fostering sustainable, accessible, and livable urban environments. In this
context, smart mobility has the potential to enhance street safety as well as the driving
experience in smart cities. We can imagine a future in which our streets will be populated
by autonomous vehicles that not only pick the quickest route from point A to B but also
factor in safety, route cost, driver preferences, current traffic, even the proximity of cultural
spots, and so on [2].

To reach this goal, the implementation of smart mobility requires not only a robustly
connected infrastructure connecting vehicles and their environment but also appropriated
algorithms and methods for effective management and coordination of vehicle movements.
For example, semantic traffic understanding might be exploited to define the number
of vehicles in a lane by means of vision-based algorithms [3]. Indeed, road traffic is an
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extremely complex system and intersections, in particular, pose a significant challenge:
a delicate balance is required between assigning priority in a fair way and the flexibility
needed for emergency situations. Traditional solutions involve traffic yield rules, traffic
lights, and roundabouts that are used to address the unpredictable nature and reaction
times of human drivers, as well as the characteristics of the intersections (e.g., yielding to
larger and more heavily trafficked lanes). These solutions, however, are not always the
best-performing ones, as demonstrated by the frequent traffic jams occurring in our cities.

With the advent of autonomous and connected vehicles, and the possibility to equip
them with intelligent systems, new solutions for intersection management can be devised to
make the most of the potential of new technologies. In particular, it is possible to precisely
instruct vehicles on their movements, predict their behavior and position, and make them
communicate with each other and with city infrastructure to make informed decisions.

In this paper, we place ourselves in a scenario in which vehicles are autonomous and
connected (falling under Level 5 automation [4]) and we assume that intersections are
managed by means of auctions [5]: vehicles approaching an intersection place a bid to win
the right to go through the intersection, and only the winner of the auction (i.e., the one
placing the highest bid) is granted this right. The problem is to determine how to define
the amount of the bids so that trip times are fair for all vehicles, to avoid vehicles getting
stuck at an intersection because they run out of budget, and to make sure that traffic flows
even in heavy traffic conditions.

We propose a vehicle bidding strategy based on reinforcement learning that is to
be used when vehicles travel on frequently traveled routes: vehicles learn how to bet in
order to grant themselves the right to cross intersections and to save a percentage of their
budget for successive trips. We tested the proposal of the paper with an extensive set of
experiments that show that the proposal is effective, robust, and usable in real life scenarios.
Indeed, the percentage of the saved budget might be very large, at the expense of a small
delay in arrival time at the destination. Moreover, the trained solution works well even
under conditions that differ from the ones used for the training.

The paper is organized as follows: the rest of this section presents related work on
autonomous vehicles coordination, intersection management systems using auctions and
reinforcement learning; Section 2 presents the scenario we place ourselves in, the proposal of
this paper for the bidder exploiting reinforcement learning and the experimental assessment;
Section 3.2 presents and discuss the results of the experiments and future works; finally,
conclusions are drawn in Section 4.

1.1. Related Work

The coordination of autonomous vehicles can be tackled from different points of view
and by different solutions [6]. In connection with the work we carried out and presented in
this paper, we report on general approaches in the field (Section 1.1.1), then we focus on the
management of intersections by means of auctions (Section 1.1.2) and finally we present
some related work about learning (Section 1.1.3).

1.1.1. General Coordination of Autonomous Vehicles

There are different research efforts that address the design of the smart cities [6] in
which autonomous vehicles will have to interact with each other and with their surrounding
environment, requiring the vehicles (or, better, their software) to make decisions and take
actions.

Even if the exploration of such topics is not new, it is only in recent times that newly
introduced computer accelerators have achieved the requisite Size, Weight, and Power
(SWaP) characteristics, enabling experimentation on medium to large-scale fleets of intelli-
gent vehicles within specifically equipped urban areas [7,8].

Pinciroli et al. [9], drawing from their expertise in autonomous robots, draw attention
to the distinction between smart devices and autonomous vehicles in the scenario of
navigation. They emphasize that smart devices have limited capabilities of interaction with
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the physical world, while robots in general, and autonomous vehicles in particular, have
the capability to engage with, and act upon, the surrounding environment through the
utilization of sensors and actuators. Their proposed solution centers on a swarm language
construct allowing the categorization of robots into swarms and the assignment of tasks
to these swarms. Their primary objective is to ensure re-usability and predictability of the
coded behavior, addressing crucial issues arising in the autonomous driving domain.

Murthy et al. [10] present a simulated environment designed for the aim of hav-
ing cars travel on a highway and self-organize into platoons, so that they might reduce
fuel consumption through drafting off one another. This approach aligns with the pre-
ceding one, emphasizing the pursuit of reusability and predictability within a specific
application scenario.

Other research focuses on the capabilities of the smart city to manage different common
urban problems such as parking [11,12]. For example, in [13] the smart city infrastructure
is exploited to monitor the availability of parking spots, and the authors propose a mobile
app that provides the parking spot information to the final user. In [14], the possibility
of reserving a parking spot is introduced and in [15] this feature is extended to permit
the booking some days in advance. In [16] the system ensures that a booked parking
spot will be occupied only by the user that has booked that spot. On the other hand,
in [17] the system does not ensure that a vehicle will find a free spot when it reaches the
selected parking area but, in the case that there is not an available spot, the system can
suggest the closest parking area with a free spot. In [18], a centralized system is proposed
to manage the parking area taking into consideration the ideas above. Moreover, they
consider an environment in which connected and non-connected vehicles coexist. Finally,
in [19], the authors propose a city-wide parking guidance system that is able to suggest
active recommendations and real-time adjustment while the vehicle is roaming. They use a
generative network to generate parking lots without data. This network is trained using
real data capturing the size of the parking area concerning the surrounding environment.

Lastly, the smart city infrastructure is exploited to suggest alternative routes to vehicles
to reduce traffic congestion. For example, in [20], the authors propose an algorithm to
suggest the best route based on the actual traffic situation. A vehicle continuously asks for
the actual best route to react to traffic changes. Other works, instead, focus on extraordinary
events like accidents [21] or bridge collapses [22]. In the first, the authors propose a system
that suggests an alternative route to avoid accidents sites and reduce the emergency vehicle
response by asking vehicles to flush the emergency vehicle’s route. In the second, the
authors propose a system in which users can be informed about a disruptive event and can
reschedule their trips and activities. Moreover, the authors analyze the impact on traffic of
these changes.

1.1.2. Intersection Management by Auctions

The proposal presented in this paper uses auctions to manage intersections. One of
the first contributions in the domain of auction-based intersection management that has
significantly shaped subsequent research endeavors is presented in the work authored by
Carlino, Boyles, and Stone [5]. This work systematically addresses vehicles value of the
time, employing a wallet system designed for automated bidding. This bidding mechanism
is based on diverse parameters, including trip characteristics, driver-specified budget
considerations, and the remaining distance to the destination. Furthermore, the authors
extend their study to the optimization of the traffic ecosystem.

A more complex proposal is provided by Schepperle and Böhm [23], presenting a two-
step second-price sealed-bid auction mechanism [24] to address intersection management:
the vehicle with the highest bid wins but it has to pay only for the second-highest bid
amount. In the initial phase, only vehicles with the capability to traverse intersections
participate, while the subsequent phase expands bidding privileges to vehicles occupying
the second position in the lane. In our work, we also consider other vehicles in the lanes
than the first one, but not just the second in line: all the vehicles in line might contribute to
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the bid of the one bidding to get through the intersection, and the auction resolves in one
phase only.

Vasirani and Ossowski [25] present an alternative solution for urban intersection
management, employing a reservation-based intersection control model together with
rules inspired by market dynamics. The authors scrutinize two distinct scenarios, one
involving only one intersection and the other one with a network of intersections, with the
aim of understanding the effectiveness of the policy-driven slot reservation mechanism and
the impact of a traffic assignment strategy influenced by competitive markets on drivers’
route selections.

In our work, we placed ourselves in the context of auction intersection management
by keeping the single-step approach without reservation, and we made an effort to improve
the bidding strategies by adding learning capabilities to vehicles with the aim of making
them save budget on routes traveled frequently.

1.1.3. Learning

Over the past few years, reinforcement learning techniques have been integrated into
theautonomous driving context [26]. An example includes improving the interaction
between the driver and the vehicle [27]. Moreover, reinforcement learning is used in the
management of road infrastructures such as traffic signals [28]. As an example, in [29], a
dynamic approach to intersection management is employed. A manager is trained using
Q-Learning [30], enabling adaptive selection of the most effective method to facilitate traffic
flow near the intersection at any given moment. In [31] Joo et al. use Q-learning to train a
traffic light manager whose goal is to maximize the throughput of the crossroad while also
minimizing the standard deviation of the queue’s length. A popular variant of Q-learning is
called Deep Q-Learning, proposed by Google DeepMind in one of their milestone papers [32].
It solves the problem of curse of dimensionality by using neural networks instead of a matrix
to store the learning information.

P. Karthikeyan et al. [33] propose a complex manager trained with Deep Q-learning
made of three different models (Break safe control model, Intersection control model, and Priority
assignment model) whose continuous interaction handles the whole crossroad. The first
ensures traffic safety by preventing collisions between vehicles, the second chooses the best
crossing policy at each time to maximize efficiency, and the latter handles priority requests
sent by the waiting vehicles to the manager. In [34] the concept of latency introduced by the
network is integrated in the intersection manager. Using reinforcement learning, the system
can learn a control policy that is able to deal with changes in communications latencies. It
internally models the behavior of autonomous vehicles based on their latency, and adapts
the control of these vehicles to avoid collisions.

A different approach is proposed in [35], by applying Multi-Agent Reinforcement
Learning to control traffic signals, the system learns traffic lights’ green and red signal
duration and optimizes traffic flow.

In another line of research, the focus is on the vehicle and not on the intersection
manager. For instance, in [36], reinforcement learning is used to learn the maneuvers of a
connected autonomous vehicle in unsignalized intersections. The goal is to learn to break,
steer, and throttle to safely cross the intersection. In [37], vehicles learn the desired policy
to cross the intersection without any prior information about the scenario and infer both
the intentions of the adversarial vehicles and the type of intersection.

A summary of works in the field of intersection management is reported in Table 1.
Our work, unlike the cited works, focuses on auction-based intersection management,

with the goal of learning the optimal bidding strategy that allows for lower bids without
sacrificing much travel time.
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Table 1. Summary of works for intersection management.

Focus On Intersection Type Method

[5] intersection manager unsignalized auctions (driver-specified budget)

[23] intersection manager unsignalized auctions (two-step second-price sealed-bid)

[25] intersection manager unsignalized reservation-based

[29] intersection manager unsignalized reinforcement learning (to select predefined policy)

[31] intersection manager signalized reinforcement learning

[33] intersection manager unsignalized reinforcement learning

[34] latencies unsignalized reinforcement learning

[35] intersection manager signalized multi-agent reinforcement learning

[36] vehicle manoeuvers unsignalized reinforcement learning

[37] vehicle manoeuvers unsignalized and signalized reinforcement learning

2. Materials and Methods

We place ourselves in a scenario where all vehicles are autonomous and connected.
In this context, they possess the capability to communicate with each other and with city
infrastructure, eliminating the need for human intervention in driving. We propose a
solution for budget management at intersections that are based on auctions (i.e., vehicles
approaching an intersection participate in an auction to win the right to cross it) in which
vehicles that frequently travel on the same route have the possibility to save some of their
budget by learning how to properly place bids on the routine route.

In this section we first present the scenario and then the new proposal in detail.

2.1. Scenario

In this section, we present the scenario we work in and the assumptions we make.
Street maps. We assume that each street has only one lane per direction. When streets

intersect we have an intersection (or crossing). Street maps can be represented as graphs:
there is a node for each intersection and a directed edge (called link or lane) for each street
connecting two crossroads.

Auctions. Vehicles participate in auctions when they are the first of their lanes at the
intersection site, with the aim of winning the right to go through. To define the auction
strategy we describe how bids are computed and placed, and how the controller states
which lane wins the auction.

Initial budget. Each vehicle is assigned a trip budget and this is used to place bids. It is
outside the scope of this paper to define how budgets are assigned to vehicles, as we think
that this issue is more an administrative/political than technical one: local administrations
might decide to assign budgets according to drivers’ conduct, ecological incentives, drivers’
average Km/yds traveled per year, and so on, or even decide to sell budget.

Vehicle bidder (or bidder for short). Vehicles place bids when they reach an intersection,
i.e., when they do not have any other vehicle ahead in the lane. The bidder defines the
vehicle bidding policy. We call standard bidder a bidder that adopts the policy defined in [5]:
the bid is computed as B

crossroads , where B is the vehicle’s total trip budget and crossroads is
the number of intersections the vehicle will encounter in its route, starting from the current
position to the destination. The bidder also defines the vehicle sponsorship [38], i.e., when
waiting in line, the vehicle might endorse the bid of the vehicle currently at the intersection
site by tipping a small percentage of its available budget. This tip is computed as B · β,
where β is a positive parameter that depends on the vehicle, always strictly smaller than 1.

Auctioneer (or intersection manager). Each intersection is equipped with a traffic
manager that collects the bids coming from the vehicles that are at the front of their lanes
and, eventually, the sponsorships. Then it proceeds to determine the winner of the auction.
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Auction winner. The winner of the auction is the one with the total higher bid, com-
puted as the sum of the vehicle bid and its sponsorships. Only the winner of the auction is
given the right to cross the intersection and has to pay its bid, while the others will have
to participate in the next auction again. To avoid starvation, we exploit budget redistribu-
tion [38]: the amount of the bet of the winner is redistributed among the participants of the
auction that did not win. In this way, even a vehicle with a low budget and no (or small)
sponsorship will eventually collect enough budget to win the auction.

2.2. The Proposal

We present vehicle bidding policy that allows a vehicle to save budget on a route that
it frequently takes at a specific time of day, without significantly impacting its waiting time
in traffic.

Through reinforcement learning the bidder can autonomously learn how to place
smart bids and sponsorships in order to achieve its goal. More specifically, the bidder
applies a “discount” on the bid or sponsorship that he would normally place (according to
the description in Section 2.1). Experiments will show that applying discounts in a smart
way leads the bidder to save a considerable amount of currency sacrificing negligible time.

2.3. Reinforcement Model

The proposed reinforcement learning model uses Deep Q-learning to teach the bidder
how to manage the vehicle’s budget. The bidder is the agent attempting to maximize the
reward over time, which is a feedback signal sent by the environment to the agent. It is
positive if aligned with the agent’s desired behavior and negative otherwise.

Each vehicle waiting in a lane is given a position at each iteration, that is the number of
vehicles it has ahead in the lane at the beginning/end of the iteration, and thus the vehicle
at the front of the lane has position zero.

The reward R is a linear combination of two rewards, one relative to the vehicle’s
position and the other to the bid discount:

• The Position Reward Rp depends on the result of the vehicle’s bid or sponsorship. If
the vehicle participates in an auction and wins, it gets a positive reward, if it loses it
receives a negative one. Otherwise, if the vehicle sponsors another one it receives a
reward proportional to its advancement in the lane;

• The Discount Reward Rd is the fraction of the bid saved with the discount, with re-
spect to the standard bid. High values are obtained if the bidder applies convenient
discounts.

Equation (1) shows how R is computed:

Rp =


w if the vehicle wins an auction,
ℓ if the vehicle loses an auction,
Pi − Pf if the vehicle is sponsoring,

Rd = 1− d,

R = αRp + (1− α)Rd,

(1)

where:

- Pi is the initial position of the agent, i.e., the position at the end of the previous
iteration;

- Pf is the final position of the agent, i.e., the position at the current iteration;
- w > 1 is a positive parameter representing the reinforcement signal when the vehicle

wins an auction.
- ℓ < 0 is a negative parameter representing the reinforcement signal when the vehicle

does not win an auction.



Sensors 2024, 24, 1288 7 of 20

- d is the multiplier returned by the bidder, related to a specific action action at. For
example, a discount of 90% on a bid corresponds to a multiplier of 0.1 returned by the
bidder. This translates to a discount reward (Rd) of 0.9, which is high;

- α is a tuning parameter used to balance the position reward and the discount reward.

2.4. Neural Network Architecture

We used a simple multilayer perceptron neural network. The input of the first layer is
a state of the system st, represented as a tensor of C values as described in Equation (2):

st =


x1t
x2t
...

xCt

, (2)

where, C is the number of crossroads managed with auctions on the map, each entry xit is
defined in Equation (3):

xit =

{ L−Pf
L , if the test vehicle is waiting at crossroad i

0 otherwise
(3)

and L is the number of vehicles ahead in the lane.
This encoding allows the bidder to accurately determine its current intersection and

roughly estimate its position in the queue of vehicles. The value L represents the length of
the queue at the intersection ahead of the bidder and is used as a normalization factor to
scale the values of xit between [0, 1], ensuring that the input stays in a controlled range. On
the other hand, this scaling reduces the bidder’s understanding capabilities, as it doesn’t
precisely know how many vehicles are present in its lane (L itself is not part of the input
forwarded through the neural network).

The input layer is followed by 3 hidden dense layers, each one composed of 128
neurons. For each hidden layer we use the activation function ReLU. The output layer has
eleven neurons, one for each possible discount that can be chosen by the bidder.

At each forward step t, the output neurons p⃗ will contain the Q-values of available
actions. The model exploits the best action by choosing the index of the neuron containing
the highest Q-value, or explores the action space by picking a random index. To compute
the corresponding discount dt, the chosen index is divided by 10, as in Equation (4):

at =

{
argmax( p⃗), if agent is exploiting,
rand(0, 10) if agent is exploring

dt =
at

10

(4)

By performing action at, the bidder multiplies a bid or a sponsorship by the discount
factor dt. Finally, we use Adam [39] as the optimizer.

2.5. Training

The vehicle bidder has been trained using the Deep Q-learning algorithm described
in Algorithm 1. The algorithm uses two neural networks Q and T to improve the overall
training stability [40] and it is based on experience replay as shown in Algorithm 2. the
weights of the Q-network Q are updated by using MSE (mean squared error) as the loss
function, and are periodically copied in the Target-network T.
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Algorithm 1 Q-learning algorithm

Input
Untrained Q (Q-network) and T (Target network)
Variables
at: action executed at time t;
st: state of the environment at time t;
R: reward obtained by executing at in state st;
M: experience replay memory;
F: training frequency;
K: target-network update frequency;
Output
Q, T: trained Q-network and Target network;

1: samples← 0 ▷ sample counter
2: t← 0 ▷ training counter
3: for each bid or sponsorship made by test vehicle do
4: Observe st;
5: Pick a random at with probability ϵ, else choose at = argmax

(
Q(st)

)
;

6: Perform action at (apply multiplier dt on either bid or sponsorship);
7: Observe st+1 and reward R;
8: M.append(< st, at, st+1, R >);
9: samples← samples + 1;

10: if samples == F then
11: samples← 0;
12: t← t + 1;
13: Experience replay (Q, M); ▷ train Q using Algorithm 2
14: if t == K then
15: t← 0;
16: Update target network; ▷ copy weights of Q in T
17: end if
18: end if
19: st = st+1;
20: end for

Algorithm 2 Experience replay

Input
Q: Q-network;
M: experience replay memory, containing tuples < st, at, R, st+1 >;
Variables
b: batch size;
γ: discount factor;
η: learning rate;
T: Target network;

1: if len(M) > b then
2: L = randomly sample b tuples from M;
3: for < st, at, R, st+1 > ∈ L do
4: p⃗, t⃗ = Q(st)

5: h⃗ = T(st+1)

6: t⃗[at] = R + γ max h⃗
7: Q.fit (prediction = p⃗, target = t⃗, epochs = 1, learning rate = η)
8: end for
9: end if

The experience replay memory M contains tuples of the form < st, at, R, st+1 >, where
the sis are the states of the environment at time i ∈ {t, t + 1}, at is the action taken at time t,
and R is the reward obtained by executing action at in state st computed using Equation (1).
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Hyperparameter F represents the training frequency, meaning that the neural network
Q is trained only once each F samples is stored in M. This introduces more variability at
each training step and makes the simulation faster. Hyperparameter K represents the target
network update frequency, i.e., after how many training time steps the target network T
is updated.

We use a variant of the ϵ-greedy strategy [41] in which ϵ varies to favor exploration in
the early stages of the simulation and exploitation in the later stages. Given the number of
samples len(M) in experience replay memory M, ϵ is defined as in Equation (5):

ϵ =


0.3 if 0 < len(M) < E

2

0.2 if E
2 < len(M) < E

0.1 otherwise

(5)

where E is a threshold value.

2.6. Experiments

We tested the proposal in a simulated environment using the urban mobility simulator
SUMO [42].

We chose SUMO among the plethora of urban traffic simulators present in litera-
ture [43], due to its open-source nature. Another commonly used open source simulator is
MATSim [44]. Many works conclude that there is not a simulator that clearly outperforms
the other [45,46] but we choose SUMO for its Python interface that allows us to easily
integrate the RL tools.

The hardware on which we performed both the training and testing has the following
specifications: Intel(R) Core(TM) i5-8400 2.80 GHz CPU (Intel, Santa Clara, CA, USA)
NVIDIA GeForce GTX 1060 6 GB GPU (Intel, Santa Clara, CA, USA) and 8 Gb of RAM.

We performed a set of preliminary experiments in order to train the model under
different configurations and select the best- performing one. The latter will be then be used
in the experimental phase to show the effectiveness and robustness of the proposed bidder.

In all experiments, there will be one test vehicle always traveling the same route and
adopting a specific bidder, while all other vehicles adopt the standard bidding strategy
introduced in Section 2.1.

2.6.1. Set Up

Both Preliminary Experiments and Experiments were performed using a Manhattan-
style map of 5 × 5 streets and 25 intersections. This size of a map is adequate for around
120 vehicles, meaning that roads are neither not too congested nor too empty. The innermost
9 intersections have four lanes competing for crossing and are managed using the auction
systems proposed in Section 2.1.

Each run of an experiment has a fixed number of vehicles (VS), all of which are able to
participate in auctions. Vehicles follow circular routes and, when one ends, they start again
with a new one. At the beginning of each route, their budget is reset to a default initial
budget IB. This ensures a fair and consistent financial starting point for every iteration,
allowing a balanced experience across all vehicles in the simulation.

For the test vehicle, β and v are fixed among both Preliminary Experiments and Exper-
iments, and they have been set to 0.10 (average sponsorship) and 4 (slow), respectively.
These choices are meant to put the test vehicle in a slightly harder situation than an
average vehicle.

Other parameters related to simulations and auctions (including β and v for non-test
vehicles, IB for the test vehicle, and VS) may vary depending on the experiment. In Table 2,
a summary of the parameters and their respective ranges of values is provided.

Speed values are expressed in the simulator’s unit of measurement. The absolute
value of speed is not crucial. Rather, relative speed is, and it is significant that some vehicles
are nearly as twice as faster than others. This adds variability to the simulations, emulating
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what typically occurs in city traffic. The number of vehicles depends on the size of the map
and has been selected in order to avoid two extreme situations: vehicles roam on empty
streets (any solution will work well), and vehicles are in deadlock (no solution will work).
As for the sponsorship parameter, referring to [47], in which vehicles could allocate up
to 25% of their budget for sponsorships, here vehicles adopt a slightly more conservative
strategy: we allow vehicles to spend maximum 15% of their available budget. This choice
is driven by the fact that in our experiments, we have a larger number of vehicles (up to
150) compared to the previously mentioned work (at most 120).

Table 2. Summary of parameters related to vehicles and auctions.

Explanation Symbol Value

Sponsorship β ∈ [0.05, 0.15]

Initial Budget IB ∈ [50. . . 150]

Number of vehicles VS ∈ [80. . . 150]

Maximum speed v ∈ [4, 5, 6, 7]

Table 3 summarizes and reports the values of all parameters, hyperparameters, and
thresholds used through simulations for the reinforcement learning algorithm. Values have
been tuned by extensive simulations to determine best-performing ones.

Table 3. Summary of parameters, hyperparameters and thresholds.

Explanation Symbol Value

Reward signal w 2

Penalty signal ℓ −0.3

Balancing parameter α 0.3

Training frequency F 10

Update frequency K 10

Threshold E 400

Batch size b 32

Discount factor γ 0.3

Learning rate η 10−4

2.6.2. Preliminary Experiments

We train the model under different configurations, resulting in different trained models.
The best performing one will then be used for the experiments; for this purpose, we are
interested in the model that shows the best trade-off between saved budget and waiting
times with more emphasis on saved budget. With this aim, we select one test vehicle
that uses the reinforcement learning bidder and compare its performances with that of an
identical vehicle that adopts either the standard bidder or a random behavior for what
concerns its discount policy.

Each configuration has two types of vehicles:

• Routine Vehicles perform the same routine every day (same trip at the same time),
e.g., they simulate drivers going to work in the morning and back home in the
afternoon. The parameters associated with these vehicles do not change among
simulations.

• Random Vehicles do not have a repetitive or predictable behavior, e.g., they simulate
vehicles that are passing through the block or city. Parameters β and v associated with
these vehicles are initialized randomly at each simulation.
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Each configuration is associated with a percentage of random vehicles roaming the
map, where the percentage is chosen in the set {0%, 10%, 20%, 30%}, and one single test
vehicle. All vehicles, with the exception of the test vehicle, adopt the standard bidding
strategy described in Section 2.1. Each configuration is trained and evaluated while varying
the number of vehicles on the map, ranging from 80 to 150.

We measure the performance of a trained configuration by means of the following metrics:

• Saved Budget percentage (S), i.e., how much budget is left at the end of a trip, given
as the percentage of the initial budget.

• Waiting times. In particular:

– Traffic Waiting Time (TWT): the time spent waiting in lanes, i.e., from when a
vehicle enters a lane until it exits the lane. The counter related to each vehicle
measuring its TWT is updated only when its speed is approaching zero (meaning
it is waiting in traffic).

– Crossing Waiting Time (CWT): the time spent waiting at the intersection site as
the first vehicle of the lane, i.e., from when the vehicle becomes the first vehicle to
when it crosses the intersection.

For each configuration, we compute mean and standard deviation for S, TWT, and
CWT over 10 runs, where vehicles follow the same routes but might vary their maximum
speed v and β.

The average of saved budget over N trips is computed as in Equation (6):

Sa =
( 1

N

N

∑
i

IB− FBi
IB

)
× 100, (6)

where FBi is the final budget left at the end of trip number i, and the number N of trips
depends on the length of the simulation (it is 8 on average in our experiments).

We compare the performances of such a test vehicle with that of a vehicle that has
exactly the same parameters and the same behavior (e.g., same routes) as the tested vehicle
but that uses (1) the standard bidder, and (2) a random bidder that randomly chooses a
discount to apply to each bid or sponsorship made by the test vehicle.

Results presented in Section 3.1 show that the best-performing configuration is the one
trained with 20% of random vehicles and this is the selected one used for the experiments.

2.6.3. Experiments

We performed a set of exhaustive experiments using the best model retrieved from
preliminary experiments. Results are described and discussed in Section 3.2. Note that the
model is not trained again, and the aim is to test the robustness of that model in scenarios
that are different from the training one. This is a crucial aspect of the proposal, since in the
real world conditions might vary with respect to those in which the model has been trained
and it is important that a model performs well also in those situations. If it does not, it is of
limited use.

We performed three experiments by varying: (1) the number of vehicles (VS) on the
map, to show the robustness of the proposal when the traffic is more variable and heavier
than the scenario in which the model was trained; (2) the ratio of random vehicles, to show
the robustness against unpredicted vehicle behavior, and (3) the initial budget IB of the
test vehicle, to show robustness against budget assignation choices. We measured waiting
times and savings again, as described in Section 2.6.2.

3. Results

In this section, we report the results of both preliminary experiments and experiments.

3.1. Preliminary Experiments

Four models were trained in different configurations, by varying the percentage of
random vehicles on the map. We then tested each trained model by varying the total
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number of vehicles on the map. Vehicles start each trip with a fixed budget that is the same
for all.

We compared the performances, by means of saved budget and waiting times, of the
test vehicle adopting the learning strategy against an identical vehicle adopting either the
standard bidding strategy or a random discount policy for bidding and sponsorship. As for
saved budget, we do not report results for the standard bidder strategy, because a vehicle
adopting this approach will always have drained all its budget by the end of the route.

The trained bidder is always able to save more budget than the random bidder (and
of course, than the standard bidder) even in different traffic conditions (i.e., number of
vehicles) with respect to the training conditions. Conversely, we will see that the largest
savings occur when the trained vehicle is slightly slower than its identical copies adopting
the other strategies. This shows that there is a trade-off between the saving capacity and the
duration of the trip. As the differences in budget savings are greater than the differences in
trip times, we focus on the former and we will select the model leading to larger savings.

As a result of the preliminary experiments, we selected the model in which the bidder
was trained with 20% of random vehicles.

In the following portions of this section, we show detailed results for the tested
configuration.

Scenario 1: percentage of random vehicles is 0%.

The first model was trained with no random vehicles, and the results are reported in
Figure 1.

Figure 1. Preliminary Experiments. Results for scenario 1: percentage of random vehicles is equal to
0%. Vertical black lines represent standard deviations. Standard bidder’s savings are not reported
because saved budget is always 0%.

We observe that the trained bidder shows a saving of up to 57% of the initial budget
when there are 80 vehicles on the map, a situation that simulates low-traffic conditions.
Saving decreases when the number of vehicles increases, however, it is always at least
25% also in heavy traffic conditions, and it is always significantly larger than the savings
obtained by the random strategy (always at least 1/3 more, up to more than double).
Regarding waiting times, as it might be expected, times increase with the number of
vehicles. However, the trained bidder performs better than the random strategy, even if it
does not always show a great difference. Moreover, times are always close to those of the
standard strategy even if, sometimes, the latter outperforms the trained bidder, meaning
that the model is able to save budget without sacrificing too much time.

Observe that experiments where the test vehicle adopts the standard strategy or uses
the trained bidder do not present any standard deviation. This is because with no vehicle
behaving randomly, the simulations are identical.
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Scenario 2: percentage of random vehicles is 10%.

The second model was trained using 10% of random vehicles over the total amount of
vehicles. The results are reported in Figure 2.

Figure 2. Preliminary Experiments. Results for scenario 2: percentage of random vehicles is equal to
10%. Vertical black lines represent standard deviations. Standard bidder’s savings are not reported
because saved budget is always 0%.

Again, the trained bidder always saves more than the random bidder: up to 36%
of its initial budget with 80 vehicles on the map, and decreasing when the number of
vehicles increases (also in this case, the trained bidder is about 1/3 more efficient than
the random bidder). Regarding times, the trained bidder outperforms the random one
with the exception of heavy traffic conditions in which the latter is slightly faster in traffic
time. However, the final trip time is comparable, as the trained bidder is faster in crossing
time. The trained bidder also outperforms the standard bidder in heavy and light traffic
conditions, while it is outperformed in regular traffic conditions.

Scenario 3: percentage of random vehicles is 20%.

The third model was trained using 20% of random vehicles over the total amount of
vehicles. The results are reported in Figure 3.

Figure 3. Preliminary Experiments. Results for scenario 3: percentage of random vehicles is equal to
20%. Vertical black lines represent standard deviations. Standard bidder’s savings are not reported
because saved budget is always 0%.

Again, the trained bidder saves more budget than the random bidder. However, in
this case, the gain is much higher than in previous configurations and huge in general: up
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to 76% (resp. 74%) with 100 (resp. 80) vehicles (i.e., low traffic), 42% (resp. 39%) with 120
(resp. 130) vehicles (i.e., regular traffic), and still 25% with 140 vehicles (i.e., heavy traffic).
On the contrary, the random bidder slightly decreases its savings, so the trained bidder
always saves almost three times what the random bidder saves.

However, when concerning waiting times, the trained bidder is outperformed by the
random and the standard bidders (with the exception of the random bidder with heavy
traffic), even if with small differences.

Scenario 4: percentage of random vehicles is 30%.

The fourth model was trained using 30% of random vehicles over the total amount of
vehicles. The results are reported in Figure 4.

Again, the trained bidder’s savings are larger than the random ones, with values
that are similar to scenario 2 (also for the random bidder), in which there were 10% of
random vehicles. Again, analogously to scenario 3, the trained bidder is outperformed by
the random and the standard bidders for what concerns. Here the difference is slightly
more evident than in the previous case, but again it is still contained.

Figure 4. Preliminary Experiments. Results for scenario 4: percentage of random vehicles is equal to
30%. Vertical black lines represent standard deviations. Standard bidder’s savings are not reported
because saved budget is always 0%.

3.2. Experiments

We used the model selected in preliminary experiments (i.e., trained with 20% random
vehicles) to perform a set of tests to show the robustness of the proposed trained bidder
under different conditions. We compared the performances of the trained bidder against
the random and standard bidder as in the preliminary experiments and showed that the
trained bidder is actually robust.

Experiment 1: varying the number of vehicles on the map.

We thoroughly investigated the preliminary experiment in scenario 3 by testing a finer
and larger variance in number of vehicles on the map. The percentage of random vehicles
is set and fixed to 20% and the initial budget is fixed to 100 for all vehicles. The results are
shown in Figures 5 and 6.

The results confirm that the trained bidder is capable of achieving significant savings
with low traffic, but also that there is still an almost 20% savings value in very heavy traffic.
In almost every case, the trained bidder’s savings are nearly 3 times those of the random
bidder.
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Figure 5. Experiments. Saved Budget for experiment 1: varying the number of vehicles, percentage
of random vehicles is equal to 20%, and initial budget is fixed. Vertical black lines represent standard
deviations. Standard bidder’s savings are not reported because saved budget is always 0%.

Figure 6. Experiments. Waiting times for experiment 1: varying the number of vehicles, percentage
of random vehicles is equal to 20%, and the initial budget is fixed. Vertical black lines represent
standard deviations.

Experiment 2: varying the number of random vehicles on the map.

We thoroughly investigated the preliminary experiments by testing a different ratio of
random vehicles on the map. The number of vehicles is set and fixed to 120, i.e., regular
traffic conditions and the initial budget is fixed and equal for all vehicles.

This experiment is meant to simulate a real situation where the number of vehicles
that do not perform routine paths might vary day by day in the city, so it is important
that the trained bidder is robust among this type of variation. The results are shown in
Figures 7 and 8.

The results show that the percentage of saving does not change much when varying the
number of random vehicles. The trained bidder saves at least 37% of the budget, even 46%,
compared with the random bidder that saves at most 17% of the initial budget (meaning
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that the savings of the trained bidder are at least 2.5 times those of the random bidder). The
times are comparable to competitors even if the trained bidder is often outperformed.

Figure 7. Experiments. Saved Budget for experiment 2: varying % of random vehicles, number of
vehicles is set to 120 and initial budget is fixed. Vertical black lines represent standard deviations.
Standard bidder’s savings are not reported because saved budget is always 0%.

Figure 8. Experiments. Waiting times for experiment 2: varying % of random vehicles, number of
vehicles is set to 120 and initial budget is fixed. Vertical black lines represent standard deviations.

Experiment 3: varying the initial budget of the test vehicle.

We varied the initial budget of the trained bidder, to simulate the situations in which
the bidder has different budget values at the beginning of its trip (depending, for example,
on how much of its wallet is left after several other trips). The other vehicle’s budget is
fixed and equal to 100 for all. The total number of vehicles is 120 and the percentage of
random vehicles is fixed to 20%. The results are shown in Figures 9 and 10.

We observe that the trained bidder always saves almost 40% (in between 37% and
47%) of its initial budget (regardless of its value), outperforming the random bidder that
saves no more than 18% of (nearly twice less).
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Concerning times, we can see that they tend to decrease while the budget increases, as
one would expect. We also see that the trained bidder is often outperformed by the others,
even if the times are still comparable.

Figure 9. Experiments. Saved Budget for experiment 3: varying test vehicle’s initial budget, percent-
age of random vehicles is equal to 20% and number of vehicles is equal to 120. Vertical black lines
represent standard deviations. Standard bidder savings are not reported because saved budget is
always 0%.

Figure 10. Experiments. Waiting times for experiment 3: varying test vehicle’s initial budget,
percentage of random vehicles is equal to 20% and the number of vehicles is equal to 120. Vertical
black lines represent standard deviations.

3.3. Discussion and Future Work

The results of the experiments show that the proposed trained bidder is able to save
even huge percentages of the initial budget when vehicles travel on routine trips, at the
expense of a small increase in trip times. Moreover, the model that has been trained in a
given configuration is robust to variations in this configuration.

These results strongly indicate the proposal’s effectiveness, suggesting its practical
adoption in the foreseen real-life scenarios, i.e., with autonomous vehicles and auction
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intersection management. Indeed, the trained bidder can find practical applications in
everyday commuting, such as traveling between home and work/school and vice versa.
This is especially beneficial for drivers who can tolerate a slight delay in reaching their
destination. Note that drivers know the typical trip duration, so they can make a conscious
choice. Even if traffic conditions are not exactly the same every day, there will be a sensible
budget saving resulting in an overall positive trade-off between saved budget and trip
time. This aspect might incentivize the adoption of the system in real-life situations, as the
saved budget can be redirected for other trips, eliminating the need to earn or buy more
(according to the budget distribution policy).

Furthermore, the robustness of the trained model implies that it can be trained offline
through simulations, using synthetic traffic data on the driver’s city map. Subsequently,
the bidder will exhibit effective performance in real-world scenarios.

This stands as a pivotal advantage for the practical implementation and adoption of
the system: vehicles are not required to be equipped with powerful expensive computa-
tional devices essential for the training phase, and there is no need for continuous online
training, saving valuable time. Vehicles merely require the capability to communicate with
a sufficiently powerful external device. When a vehicle opts to integrate the trained bidder,
it is a matter of selecting the city map and the routine trip, waiting for the simulator to
complete the training (a process taking just a few minutes with the proper resources), and
then putting it to use. Needless to say, the quality of the simulated data directly influences
the bidder’s performance. We believe that the best method to train such models would
be through running simulations on real-world maps, populated with vehicles based on
traffic predictions and real-time data. The latter can be gathered by leveraging smart city
infrastructures and/or vehicles themselves.

The results of our experiments, coupled with the preceding considerations, affirm that
the proposed approach is worthy of further exploration. Consequently, in our future works,
we intend to conduct a more extensive series of experiments to thoroughly assess the
model’s capabilities and stress its limitations. Specifically, we plan to introduce increased
variability, such as variations in the initial budget of the vehicles, test diverse redistribution
policies of the winning bet, and incorporate real city maps into our assessments.

Moreover, our current experiments were conducted with only one test vehicle. This
limitation was imposed by the considerable time and computational power required to
expand our experiments to include more than one trained vehicle. As part of our future
work, we aim to overcome this constraint and explore the model’s performance with
multiple vehicles adopting the training bidder. Finally, it would be interesting to improve
the neural network architecture, in order to forward more useful information regarding
currency management to the model to be trained.

4. Conclusions

In this paper, we proposed a reinforcement-learning-based system that can be used by
any connected vehicle to manage its budget when traveling in a smart city on a routine
trip, when intersections are managed with auction-based systems. We trained various
models and we have extensively tested the best-performing one in terms of balance between
budget savings and waiting times. We then verified its robustness even under adverse
traffic conditions.

We elaborated regarding the fact that the proposal was demonstrated to be effective
and suitable for adoption in a future foreseen scenario, thus it is worth pursuing. Such
a trained model might be installed on autonomous vehicles without requiring specific
hardware upgrades, providing them with a smart method to manage their virtual wallet on
a frequently traveled route. Future works are intended to enhance and better understand
the potential of the trained bidder. In particular, these include improvements to the neural
network architecture and more extensive experiments to determine the capabilities and the
limitations of the system.
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