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ABSTRACT
The dynamics of (few) electrons dissolved in an ionic fluid—as when a small amount of metal is added to a solution while upholding its elec-
tronic insulation—manifests interesting properties that can be ascribed to nontrivial topological features of particle transport (e.g., Thouless’
pumps). In the adiabatic regime, the charge distribution and the dynamics of these dissolved electrons are uniquely determined by the nuclear
configuration. Yet, their localization into effective potential wells and their diffusivity are dictated by how the self-interaction is modeled. In
this article, we investigate the role of self-interaction in the description of the localization and transport properties of dissolved electrons in
non-stoichiometric molten salts. Although the account for the exact (Fock) exchange strongly localizes the dissolved electrons, decreasing
their tunneling probability and diffusivity, we show that the dynamics of the ions and of the dissolved electrons are largely uncorrelated,
irrespective of the degree to which the electron self-interaction is treated and in accordance with topological arguments.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0169474

I. INTRODUCTION

Extremely diluted alkali-metal/alkali-halide solutions feature
solvated electrons released by the excess metal atoms that tend to
localize in bound states analogous to polarons in dielectric solids.1–9

Solvated electrons are the simplest anions in nature. They often
appear as reaction intermediates in diverse chemical processes such
as, e.g., radiolysis, photolysis, and electrolysis of polar materials.10

Despite having been observed for more than two centuries, since
the solutions of potassium in gaseous ammonia were examined by
Davy,11 their properties are far from being completely explained,
with some important advancements in their full understanding
having appeared relatively recently in the literature, aided by the
increasing accuracy and affordability of electronic-structure and
machine-learning methods.12–15

Solvated electrons in molten metal–metal halide solutions
have been experimentally investigated, especially since the 1940s,
when molten salts were employed in the context of nuclear

technologies.1,16–20 Far from the NonMetal-to-Metal (NM-M) tran-
sition, the dynamics of such electronic states is adiabatic;21,22 there-
fore, the distribution of the excess electrons at each moment is
entirely determined by the instantaneous ionic configuration, and
the electronic motion is due to the ionic one.

The adiabatic variation of the potential energy surface deter-
mined by the nuclear dynamics is a natural playground for Thouless’
theory of charge pumping;23,24 in particular, the theorem of charge
quantization, together with a recently discovered gauge invari-
ance of transport coefficients,25–27 provides a theoretical foundation
for describing the charge-transport properties of ionic conductors
according to the topology of their electronic structure. Notably,
topological arguments demonstrate that in non-stoichiometric sys-
tems, which feature dissolved electrons, nontrivial charge transport
can occur, meaning that adiabatic transport of charge can take place
even without a net ionic displacement.22,28 This happens in non-
stoichiometric molten salts such as metal/metal-halide solutions,
where the electrical (ionic) conductivity can be recast as the sum of a
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part due to ions and one due to solvated electrons alone, the two
contributions being uncorrelated from one another,22,28 resulting
in a much increased electrical conductivity even before the NM-M
transition.2 The whole machinery behind these concepts is rooted
in the modern theory of polarization;29,30 the latter provides also a
means to rigorously characterize the electronically insulating state
by exploiting its defining feature, i.e., the absence of dc conductivity,
in terms of the localization of the electronic wavefunction.31

In practical calculations, electronic localization—and, vice
versa, electronic diffusion—is determined by how self-interaction
is accounted for in the employed theoretical framework. It is well
known that standard Density Functional Theory (DFT) is affected
by self-interaction errors due to the interaction of each electron
with the total one-body electron density, including its own density.32

The spurious contribution is partially removed by the approximate
eXchange and Correlation (XC) functional, but errors are still large,
especially for local and semi-local XC functionals.32,33 The excess
electrons in metal–metal halide solutions are effectively few-electron
systems and, as such, are particularly affected by spurious self-
interactions.33 Since the fluids are structurally disordered materials,
the localization of a small number of electrons is often facilitated
with respect to crystalline systems, so even calculations employing
semi-local XC functionals result in rather localized electronic states
whose dynamics has been studied from Ab Initio Molecular Dynam-
ics (AIMD) simulations based on standard DFT.3–6,21,22 Nonetheless,
the inclusion of a fraction of EXact (Fock) eXchange (EXX) naturally
leads to a stronger degree of electronic localization since the EXX
partially removes the effect of self-interaction, and helps describing,
e.g., polarons in solids,34 and the localization in cavities of excess
electrons in fluids.14

It is thus expected that the EXX would quantitatively alter the
charge transport properties of an ionic system containing solvated
electrons, as the latter tend to be more localized and their inter-
action with the ionic species becomes more pronounced. Focusing
on the paradigmatic case of non-stoichiometric molten salts, we
show how the electrical conductivity remains separately determined
by a purely ionic contribution and one uniquely due to the excess
electrons’ dynamics, with the cross contribution still being vanish-
ingly small. At the same time, we demonstrate that the effect of
EXX is observed primarily when examining average structural and
electronic properties, rather than instantaneous quantities.

II. DISCUSSION
We study the non-stoichiometric molten salt Na1+xCl1−x, with

x ≈ 0.06, and we compare its properties using two different func-
tionals. The first, chosen as our reference, is the semi-local PBE
functional35 that has previously been employed in ab initio sim-
ulations of molten salts.22 The second, hybrid functional, aims to
enhance the localization of excess electrons. However, determining
the appropriate amount of EXX to include in the calculation is often
challenging. Advanced techniques have been developed to deter-
mine the optimal EXX fraction and provide an accurate description
of excess electrons, especially polarons, in materials. These tech-
niques involve approaches such as enforcing piecewise linearity on
the DFT energy with respect to electron occupation, addressing in
this way the self-interaction errors of DFT.36,37 Here, we have instead
chosen to employ the widely used PBE0 formulation,38 which is
parameter-free and features 25% of EXX. We have found this

fraction of EXX to be sufficient to induce a suitable level of localiza-
tion of the excess electrons that allows us to qualitatively compare
the differences in properties of non-stoichiometric molten salts
under the influence of EXX.

We focus on the simple case of 33 Na atoms and 31 Cl atoms.
Simulations employing both functionals are carried out in a cubic
cell with a side of 13 Å at a density of 1.40 g/cm3 and a temper-
ature of 1300 K. Further information is provided in Appendix B.
The presence of two extra Na atoms with respect to the stoichiomet-
ric formula leads to ionization and the release of one electron each,
forming a solvated electronic pair called a bipolaron.3–5,21,22,28,39

The Highest Occupied Molecular Orbital (HOMO) corresponds to
the bipolaron’s wavefunction.22,28 To comprehend the bipolaron’s
characteristics, we determine the location and spatial extent of the
HOMO. This can be achieved by transforming the Kohn–Sham
Bloch states into a localized basis, such as the Wannier Func-
tions (WFs). We can thus determine Wannier Centers (WCs) and
Spreads (WSs), where the WS quantifies the spatial extent of the
orbitals. In particular, the HOMO WS represents the bipolaron’s
position, while the HOMO WS provides insights into its degree of
localization.22,31,40 We employ the widely used Maximally Localized
Wannier Functions (MLWFs),40 where the HOMO WS is defined
as the variance of the position operator evaluated over the HOMO
WF. In the following, we will loosely speak of spread referring also to
its square root, which, having the dimensions of a length, facilitates
comparisons with distances.

A typical snapshot taken from a simulation of non-
stoichiometric molten NaCl is shown in the left panel of Fig. 1, where
several isosurfaces of the HOMO charge density are colored green.
In the right panel, we show the distribution of the HOMO WSs com-
puted during the two simulations. Here, it is worth mentioning that
the MLWF construction may underestimate the WS when the lat-
ter is not small compared to the simulation box size,41 as it occurs
when EXX is not considered. Therefore, the difference in the WS
distribution between PBE and PBE0 may even be amplified, if the
WS is estimated according to the accurate formulation of Ref. 41.
Including a portion of EXX in the XC functional impacts both the
structural and dynamical properties of non-stoichiometric NaCl. In
the subsequent sections, we will address these aspects.

A. Structural properties
To understand the structural effects of adding the EXX to the

XC functional, we compute the Radial Pair Distribution Function
(RPDF), g(r), of the bipolaron (hereon labeled by b) and the atomic
species in NaCl that are shown in Fig. 2. We observe several distinct
features that reveal the differences between PBE and PBE0. First,
the likelihood of locating a Cl ion in close proximity to the bipo-
laron is significantly lower in the case of PBE0 as compared to PBE.
Second, RPDF for the interaction between the bipolaron and any
ion exhibits a much more pronounced structure with PBE0. This
indicates the existence of a well-defined shell structure surrounding,
on average, the bipolaron, which is notably absent when using the
PBE functional. In contrast, PBE predicts a comparatively uniform
distribution of ions around the bipolaron, lacking any discernible
shell-like organization. It must be noted that size effects can affect
the results at large distances since the RPDFs have not completely
decayed within half the simulation cell’s size. Features at shorter
distances are nonetheless significantly different for PBE and PBE0.
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FIG. 1. In the left panel, a typical snapshot taken from molecular dynamics simula-
tions of non-stoichiometric molten NaCl. The volumetric data represents different
isosurfaces of the bipolaron’s charge density. Pink spheres represent Na nuclei,
while light blue spheres represent Cl nuclei. In the right panel, the distribution (nor-
malized histogram) of the bipolaron’s spread computed with the PBE and the PBE0
functionals is reported in blue and red, respectively. The shaded bar-plots are the
normalized histograms of the spread values; solid lines are log-normal fits to the
histogram counts.

Since incorporating a fraction of EXX affects both the
bipolaron’s spread distribution (see the right panel of Fig. 1) and
its local environment (see Fig. 2), we investigated the potential cor-
relation between electronic and structural properties. To this end,
we calculated the time-correlation functions of the (square root of
the) bipolaron’s spread, Ϛ, and the distance of the first peak in the
instantaneous partial RPDF between the bipolaron and Na ions,
rpeak, which we use as a proxy for the bipolaron’s local environment.
The results are reported in Fig. 3. The time-correlation functions
were calculated using standardized time-series data for the spread
and rpeak, according to

CAB(t) =
⟨(A(t) − ⟨A⟩)(B(0) − ⟨B⟩)⟩√
⟨(A − ⟨A⟩)2⟩⟨(B − ⟨B⟩)2⟩

, (1)

with A and B being Ϛ or rpeak. The characteristic Ϛ–Ϛ and rpeak–rpeak
correlation times appear to be the same for the PBE0 functional.
For PBE, instead, the correlation time of rpeak is shorter than that
of the spread, likely due to the fact that the erratic motion of the
bipolaron in the presence of a semi-local functional makes its local
environment rapidly change in time. The cross-correlation function
is relatively small in both cases, suggesting that the two quantities are
nearly uncorrelated with each other.

This analysis suggests that the effect of EXX can be fully under-
stood only by examining average quantities sampled throughout the
entire dynamics, rather than focusing on instantaneous values. This
is in accordance with the fact that the distribution of the values of
the spread—a statistical quantity—is markedly different in the two
simulations, but the allowed values—instantaneous quantities—are
partially overlapping. As a result, by evaluating a single snapshot,
it is almost impossible to discern whether the simulation was per-
formed using a PBE or PBE0 functional. This is confirmed by a
Principal Component Analysis (PCA) performed on Smooth Over-
lap of Atomic Positions (SOAPs) descriptors42–46 associated with
the bipolaron’s local environments, whose results are presented in
Appendix A.

B. Transport properties
Charge transport in electronically insulating fluids relies on

ionic motion. Allowing ions to move enables charge displacement.
In the linear regime, the electrical conductivity, σ, can be expressed
by the Green–Kubo (GK) formula,47–51

σ = Ω
3kBT∫

∞

0
⟨J(t) ⋅ J(0)⟩dt, (2)

or, equivalently, by the Helfand–Einstein formula,27,52

σ = 1
3ΩkBT

lim
t→∞

1
2t
⟨∣Δμ(t)∣2⟩. (3)

Here, Ω represents the system’s volume, kB is Boltzmann’s con-
stant, T is the temperature, J denotes the charge flux, and Δμ(t)
= Ω∫ t

0 J(t′)dt′ is the displaced dipole. For a quantum system in the
adiabatic approximation, the definition of J must consider the quan-
tum nature of electrons, while nuclei are treated as classical point
charges. In principle, any partitioning of the continuous electronic
charge density is equally valid. Within an independent-electron
picture, J is usually defined in terms of either the macroscopic polar-
ization30 and its derivatives with respect to nuclear coordinates, the
Born effective-charge tensors,30,53 or MLWFs.40

This perspective is quite different from the classical view of
ionic fluids, where ions are considered point charges with a well-
defined charge attached to them. This classical picture can be
restored under suitable topological conditions by considering a
combination of the gauge invariance of transport coefficients and
Thouless’ theory of quantization of particle transport. This approach
allows the use of a charge flux defined in terms of integer atomic
Oxidation States (OSs)26,28

J(t) = e
Ω

N

∑
ℓ=1

QℓVℓ(t). (4)

Here, Qℓ and Vℓ represent the OS and velocity of the ℓth nucleus,
respectively. This holds when the topology of the configuration
space of nuclear coordinates does not contain relevant regions where
the electronic gap closes and the system becomes metallic; a class of
systems where this holds is that of stoichiometric molten salts.26,28

Conversely, when this condition is not met, charge is displaced not
only as OSs attached to nuclei, but also through adiabatic electronic
diffusion, as seen in the case of solvated electrons in molten salts.22,28

A classical picture can still be maintained from the perspective of
MLWFs: in the Wannier representation, the charge flux becomes

J(t) = e
Ω

⎡⎢⎢⎢⎢⎣

N

∑
ℓ=1

ZℓVℓ(t) − 2
Nel/2
∑
j=1

Ṙ(W)j

⎤⎥⎥⎥⎥⎦
, (5)

where R(W)j refers to the position of the Wannier center associated
with the jth occupied electronic band, and Zℓ is the nuclear (core)
charge of the ℓth nucleus.28,40,54

It was shown in Refs. 22 and 28 that, for the calculation of
the electrical conductivity, we can employ the following (alternative)
definition for the total charge flux:

J(t) = Jions(t) + Jb(t), (6)
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FIG. 2. RPDFs of the bipolaron with Na (left), Cl (middle), and both (right), both with and without EXX. The shaded areas represent standard deviations obtained via a block
average of 2.5 ps-long segments of trajectory.

FIG. 3. Time-correlation functions of the bipolaron’s spread, Ϛ, and the first peak
in the instantaneous bipolaron-sodium RPDF, rpeak. The shaded areas represent
the standard errors on the means computed via block-averaging over 1 ps-long
segments of trajectory.

where the flux associated with ions is Jions(t) ≡ e
Ω∑

N
ℓ=1 QℓVℓ(t), and

the one associated with the bipolaron is Jb(t) ≡ −2eΩ−1Ṙ(W)HOMO(t).
In essence, here the charge flux is expressed as integer atomic OSs
for the nuclei in the system, with +1 for Na ions and −1 for Cl
ions (first term at RHS), supplemented by the neutralizing effect of
a solvated bipolaron with an “oxidation state” of −2 and a veloc-
ity corresponding to the time-derivative of the HOMO WC position
(second term at RHS).22 The corresponding displaced charge dipoles
can be obtained by time integration of the charge fluxes and then
substituted in Eq. (3). The resulting total electrical conductivity is,
in general, the sum of

σ = σions + σb + σcross, (7)

where σcross ∝ ∫ ∞0 ⟨Jions(t) ⋅ Jb(0)⟩dt.
The expectation values appearing here, denoted by angled

brackets, are estimated by block-averaging over trajectory segments
and, within each block, via an average over initial times. This is
implemented in the software analisi.55 Figure 4 shows the plot of
the Mean Square Displaced Dipole (MSDD), (6L3kBT)−1⟨∣Δμ(t)∣2⟩,

FIG. 4. MSDD of non-stoichiometric molten NaCl computed with the PBE or the
PBE0 functional. The shaded areas represent standard deviations from the mean
computed via block averages.

as a function of time for various displaced dipoles related to the
ions alone and to the bipolaron. The purely ionic contributions,
whose slopes are the respective values of σions, are comparable in
both simulations. However, the bipolaron’s contribution, σb, in the
PBE0 case is significantly smaller than that in the PBE simulation,
where it played a leading role in determining the electrical con-
ductivity value. In fact, the bipolaron diffusivity is reduced from
38 × 10−4 cm2 s−1 for PBE to 3 × 10−4 cm2 s−1 for PBE0, while the
ionic diffusivity is of the order of 10−4 cm2 s−1 in both cases. Despite
the reduced bipolaron contribution due to the inclusion of EXX,
the total conductivity is consistent with the sum of the ionic and
bipolaronic contributions, as already demonstrated for PBE in non-
stoichiometric KCl in Ref. 22 and confirmed here, thus showing
the lack of correlation between the two. The total ionic conductiv-
ity is significantly reduced after the inclusion of EXX, going from
σ ≈ 18 S cm−1 in the PBE case to σ ≈ 5 S cm−1 in the PBE0 case. The
latter compares fairly well with experimental conductivity measure-
ments on Na–NaCl melts at similar metal concentration,2 while the
former appears rather overestimated.

To determine whether any form of dynamical correlation can
exist, at least locally, we computed the cross-contribution to the con-
ductivity between the bipolaron’s charge flux and a local ionic flux.
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The latter is defined as

Jloc(λ, t) = e
Ω

N

∑
ℓ=1

QℓVℓ(t)Θ(λ − ∣Rℓ(t) − RHOMO(t)∣), (8)

where Θ(x) is the Heaviside step-function, and λ is some distance
cutoff. Simply put, Eq. (8) contains the contribution to the charge
flux due to ions within a distance λ from the bipolaron at each
instant. A large value of λ (up to half the simulation cell’s side) entails
computing the entire ionic flux, while a small value of λ yields a
quantity that depends only on the neighborhood of the bipolaron’s
position. The correlation between ionic and bipolaronic contribu-
tions to the electrical conductivity is estimated from the total local
(i.e., λ-dependent) electrical conductivity, which we indicate with σ
in order to distinguish it from the true electrical conductivity, σ. The
local conductivity can be computed from Eq. (2) as

σ(λ)∝ ∫
∞

0
⟨(Jloc(λ, t) + Jb(t)) ⋅ (Jloc(λ, 0) + Jb(0))⟩dt. (9)

Due to the relatively short PBE0 trajectories available, we
employ the efficient cepstral analysis technique,56 as implemented
in SPORTRAN,57 to obtain the conductivity value from the fluxes’
time-series. Expanding the sums in the correlation function in
Eq. (9) enables us to separate the contribution due to the bipo-
laron, σb, and the one due to the ions closest to it, σloc, isolating the
cross-correlation contribution between the two, σcross

σ(λ) = σb + σloc(λ) + σcross(λ), (10)

σb ∝ ∫
∞

0
⟨Jb(t)) ⋅ Jb(0)⟩dt, (11)

σloc(λ)∝ ∫
∞

0
⟨Jloc(λ, t) ⋅ Jloc(λ, 0)⟩dt. (12)

FIG. 5. Local electrical conductivity of molten non-stoichiometric NaCl computed
from the local charge flux of Eq. (8) as a function of the ratio between the local
flux cutoff and the average bipolaron’s spread. Filled circles indicate bona fide GK
results obtained from Eq. (9); empty triangles indicate the conductivity computed
neglecting the correlation between the local ionic flux and the bipolaron’s motion.
Note that the y-axis of the upper panel starts from 9 S cm−1.

Excluding σcross entails neglecting cross-correlation contributions
between the ions and the bipolaron. The value of σb + σloc as a
function of the ratio between λ and the average Wannier spread of
the bipolaron along the dynamics, Ϛavg, is shown in Fig. 5. When
λ/Ϛavg ≪ 1, Jloc is small because only a few to no ions are within
the cutoff distance from the bipolaron, and σcross approaches zero;
thus, σ and σb + σloc are indistinguishable. Around λ = Ϛavg, the local
charge flux includes the contributions due to the ions that are clos-
est to the bipolaron, and nothing else. Therefore, the correlation
between the local charge flux and the bipolaron’s is maximal. When
λ is sufficiently large with respect to Ϛavg (i.e., λ ≳ 1.5Ϛavg), correlation
effects tend to vanish, as the local charge flux becomes equivalent
to the global one. In fact, σ and σb + σloc become again compatible
within error bars. The PBE0 results display a larger degree of cor-
relation between ions and the bipolaron compared to the PBE ones:
in fact, the relative difference between σ and σb + σloc becomes as
large as 74% for PBE0 at λ = Ϛavg, while it stays at 19% for PBE. Once
again, this can be explained by the effect of EXX, which strengthens
the interactions between the ions and the bipolaron.

III. CONCLUSIONS
In this work, we have explored the impact of self-interaction

on the structural and transport properties of dissolved electrons in
non-stoichiometric molten salts through MD simulations of a binary
NaCl melt with excess Na. We have found that, when EXX is taken
into account, the bipolaron exhibits a tendency to localize within
well-defined solvation cells, whereas the RPDF appears structureless
when using a semi-local functional. The localization of the bipolaron
in the solvation cell is manifested as a statistical property, rather
than an instantaneous one, as the RPDFs computed separately on
each step of the trajectory are uncorrelated with the bipolaron’s spa-
tial extent, both statically and dynamically. The distribution of the
bipolaron’s spread, entailing its spatial extension, testifies the larger
average degree of localization in the PBE0 simulation, in accordance
with the reduced self-interaction induced by the presence of EXX.

The implications of these observations on the ionic transport
properties of the melt are substantial. Notably, the inclusion of EXX
significantly decreases the electrical conductivity. On a local level,
charge transport due to ions alone correlates with the bipolaron’s
motion. This feat notwithstanding, this correlation dissipates on
larger scales, resulting in a total electrical conductivity that can be
decomposed into a purely ionic contribution, rationalized through
integer and constant atomic OSs, and a purely bipolaronic con-
tribution, associated with the motion of the WCs related to the
HOMO.

Our study sheds light on the intricate interplay between charge
and mass transport in non-stoichiometric molten salts, highlighting
the importance of accurately accounting for self-interaction in sim-
ulations to capture the underlying mechanisms. By confirming the
nontrivial regime where charge and mass transport are effectively
uncorrelated, this work represents a first step toward further inves-
tigations into the fundamental processes governing the transport
properties of complex fluids.
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The data, sample input files, and data-analysis scripts

that support the plots and relevant results within this paper
are available on the Materials Cloud platform.58 See DOI:
https://doi.org/10.24435/materialscloud:8f-d7.

APPENDIX A: DATA-DRIVEN METHODS

The distinction between the two functionals is further empha-
sized by a principal component analysis (PCA) conducted to inves-
tigate the presence of clusters within the features characterizing the
local atomic environments of the system.46 To describe local envi-
ronments we employed the widely used SOAP descriptors,42–44 with
parameters provided in Table I, as implemented in LIBRASCAL.45

Snapshots were sampled every 100 fs to ensure data uncorrelation.
The SOAP descriptors for all the considered local environments
and for both functionals were collected into a single feature matrix,
[X]e, f , where rows represent local environments and columns repre-
sent SOAP f eatures. The matrix, X, was subsequently centered, and
its covariance matrix, C = XTX, was diagonalized with eigenvalues
sorted in descending order. The PCA was then obtained by project-
ing X onto the first nPC eigenvectors of C, thereby accounting for
as much variance in X as possible while simultaneously reducing its
dimensionality.

Figure 6 shows the correlation between the first PC, which
accounts for 17% of the variance, and the distance of the first peak of
the instantaneous Na-b RPDF, rpeak. The Pearson correlation coef-
ficients between these quantities for PBE and PBE0 are −0.43 and
−0.69, respectively. Notably, the correlation for the PBE data gets to

TABLE I. SOAP hyper-parameters used to conduct the PCA of the bipolaron’s local
environments.

Keyword Value

‘soap_type’ ‘PowerSpectrum’
‘interaction_cutoff’ 6.5
‘max_radial’ 12
‘max_angular’ 10
‘gaussian_sigma_constant’ 0.3
‘gaussian_sigma_type’ ‘Constant’
‘cutoff_smooth_width’ 0.5
‘radial_basis’ ‘GTO’
‘inversion_symmetry’ True
‘normalize’ True

−0.55 when considering only structures where Na is the closest ion.
This suggests that the first PC of the bipolaron’s SOAP descriptors
is related to the ionic species and the proximity of its closest neigh-
bor. The correlation is more robust for the PBE0 calculation, further
corroborating the fact that the inclusion of EXX influences the first
solvation shell of the bipolaron.

APPENDIX B: COMPUTATIONAL DETAILS

MD simulations are performed with the CP2K code,59 version
9.1. The PBE and PBE0 functionals are parameterized according
to the revised formulation, also known as revPBE.60 The elec-
tronic density is expanded in the TZV2P-GTH Gaussian basis set.
We employed Gödecker–Teter–Hutter (GTH) pseudopotentials61

encompassing electrons lying in the second shell, allowing for polar-
ization effects that may contribute significantly to the accuracy of the

FIG. 6. Correlation between the first PC of the bipolaron’s local environments and
the distance of the first peak of the instantaneous Na-b RPDF. Diamond-shaped
markers represent configurations where the closest ion is sodium, while circles
represent configurations where the closest ion is chlorine.
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simulations.62 Gaussian functions are mapped to a multi-grid with
four levels; the plane-wave cutoff for the finest level is set to 400 Ry,
with a relative cutoff of 60 Ry. Computations are sped up with the
Auxiliary Density Matrix Method (ADMM).63 The hybrid calcu-
lations employ a Coulomb operator truncated64 at 6 Å to further
reduce the computational effort while retaining its accuracy. Long-
range Van der Waals interactions are modeled through Grimme’s
D3 corrections.65 All calculations are spin-polarized in the singlet
state, which is energetically favored.22,39

Both MD simulations sample the canonical ensemble at 1300 K
by using a Bussi–Donadio–Parrinello thermostat66 with a time con-
stant of 1 ps, i.e., two thousand times the integration time-step of
0.5 fs. The Kohn–Sham wavefunctions are transformed to the basis
of MLWFs40 through Jacobi rotations every 1 fs to collect WCs and
spreads to be used to compute the charge flux of Eq. (5). The PBE
simulation has been thermalized for 5 ps. The production run is
50 ps long. The PBE0 simulation has been initialized from a snap-
shot drawn from the equilibrated PBE simulation and then further
thermalized for 2 ps. The production run is 15 ps long. Input files
can be found in the Materials Cloud.58
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