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Abstract

We propose a computational protocol for quantum simulations of Fermionic Hamil-

tonians on a quantum computer, enabling calculations on spin defect systems which

were previously not feasible using conventional encodings and unitary coupled-cluster

ansatz of variational quantum eigensolvers. We combine a qubit-efficient encoding

scheme mapping Slater determinants onto qubits with a modified qubit-coupled cluster

ansatz and noise-mitigation techniques. Our strategy leads to a substantial improve-

ment in the scaling of circuit gate counts and in the number of required qubits, and

to a decrease in the number of required variational parameters, thus increasing the

resilience to noise. We present results for spin defects of interest for quantum tech-

nologies, going beyond minimum models for the negatively charged nitrogen vacancy

center in diamond and the double vacancy in 4H silicon carbide (4H-SiC) and tackling

a defect as complex as negatively charged silicon vacancy in 4H-SiC for the first time.
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1 Introduction

Obtaining accurate solutions of the electronic structure of many-body systems is a major

challenge in computational science, and an important endeavor that may benefit problems in

several fields, ranging from catalysis1–3 and drug discovery4 to quantum technologies.5,6 In

addition to steady efforts in the development of algorithms to solve the electronic structure

problem on classical computers, research into the use of quantum computers to solve the

time independent Schrödinger equation has been flourishing in the past decades.7–14 The

motivation behind this trend is the promise that a fault-tolerant quantum computer may

be able to solve the electronic structure problem for many-body systems15 in polynomial

time, for example using a quantum phase estimation (QPE)7,16–18 algorithm. The latter is

a probabilistic method to obtain the eigenstate of a unitary operator that assumes that the

initial state of a given system, prepared on a quantum computer, has a non vanishing overlap

with the target state.

The possibility of reaching exponential quantum advantage for quantum chemistry prob-

lems remains controversial.19 However, it is interesting to explore whether quantum com-

puters may in fact turn out to be advantageous over classical ones, even in the absence of

exact polynomial scaling, and in particular whether even today’s noisy intermediate scale

quantum (NISQ) platforms may be utilized for interesting problems. Recent efforts14,20,21

to incorporate quantum computations into quantum Monte Carlo methods22 suggest new

route for such benefits to be achieved, in practice, even with noisy hardware. Specifically,

Ref14 reported a calculation of the atomization energy of the strongly correlated square H4

molecule, using a quantum-classical hybrid quantum Monte Carlo method on the Sycamore

quantum processor,23 which achieved accuracy that is competitive with state-of-the-art clas-

sical methods. The algorithm relies on the preparation of a so called a priori quantum

trial state on the quantum hardware, which is considered as an approximation to the target

ground state. Therefore it appears that one strategy to obtain computational advantage on

both NISQ and fault-tolerant quantum devices, relies on the efficient preparation of an ac-
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curate initial state; this strategy has been explored for both molecular8,24–35 and condensed

systems.36–40

An appealing and popular protocol to obtain the ground state of Fermionic systems is

that of writing the Hamiltonian in second quantization and using a variational quantum

eigensolver (VQE).8,41 This algorithm parameterizes the many-body wavefunction through

a quantum circuit, and the energy is measured on a noisy hardware. Upon optimization of

the parameters on classical hardware, one obtains a variational upper bound on the ground

state energy. The efficiency and reliability of VQE depend on the number of available qubits

on the quantum hardware, on the qubit coherence time and usually VQE faces optimization

challenges due to the hardware noise. However, despite theses challenges, this algorithm has

been successfully applied to study systems with up to 12 electrons.30

In a recent paper, we utilized VQE to solve the electronic structure of the minimum model

of realistic solid state systems with strongly correlated states, and we carried out calculations

on a quantum computer. In particular we considered spin-defects in solids, i.e. the negatively

charged nitrogen vacancy center (NV– ) in diamond and the neutral di-vacancy (VV0) in 4H-

SiC,40 which are of interest for quantum information applications,42,43 including quantum

sensing,44 communication45 and bioimaging.46 Although we obtained encouraging results,

we also identified several problems awaiting for more efficient and accurate solutions. For

example, the so called unphysical state problem,47 caused by an imperfect conservation of the

number of particles on a noisy hardware, leads to values of the energy that lie below the exact

classical reference value. We solved this problem by post selecting48 the measured values

of the energy and considering only those corresponding to the correct number of particles.

The combination of post-selection and zero-noise extrapolation (ZNE) techniques49–52 led us

to solve the electronic structure of realistic spin-defects. However, we could do so only for

minimum models, as the ansatz circuit used in VQE usually leads to a large gate count and

hence calculations are hard to scale.

Here we propose a computational strategy leading to an improved scaling with gate counts
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of VQE optimizations, thus enabling electronic structure calculations of complex spin-defects

previously not feasible with conventional VQE algorithms. In particular, we combine a qubit-

efficient encoding (QEE) scheme53 with a modified qubit-coupled cluster (QCC) ansatz54 and

noise-mitigation techniques. Such a protocol leads to a substantial decrease in the number of

required variational parameters in VQE calculations, thus increasing the resilience to noise

and enabling calculations of spin defects beyond the minimum model.40 The rest of the paper

is organized as follows. In Section 2 we discuss the quantum algorithms adopted to solve

the electronic structure of systems whose parametrized Hamiltonian is expressed in second

quantization. In Section 3, we present calculations on a real quantum computer of three

spin defect systems, i.e. NV– in diamond, VV0 and a new defect–negatively charged silicon

vacancy (V–
Si) in 4H-SiC, which for some applications55,56 is a promising alternative to NV

centers. Section 4 concludes our work with a summary and outlook.
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2 Methods

𝒆
𝒂𝟏

Fermionic Hamiltonian from Quantum 
Embedding
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Slater Determinants mapped onto qubits
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Figure 1: Workflow used to simulate the ground and excited state energies of spin defects
on a quantum computer. a The effective Hamiltonian in second quantization describing the
electronic structure of spin defects is obtained from a quantum defect embedding theory
(QDET), see Sec 3.1 for detail. b The Slater determinants are mapped onto qubits using a
qubit-efficient encoding scheme, where the molecular orbitals represent a Slater Determinant.
c The ground state of the effective Hamiltonian is obtained using a variational quantum
eigensolver (VQE) and a qubit coupled-cluster (QCC) ansatz. d The excited states of the
effective Hamiltonian are obtained using a quantum subspace expansion (QSE) algorithm.

The workflow adopted here to obtain the ground and excited states of a Fermionic Hamil-

tonian Ĥelec on a quantum computer is summarized in Fig. 1 and consists of the following
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steps: (i) define a Fermionic Hamiltonian using a quantum defect embedding theory (QDET),

(ii) derive a qubit Hamiltonian by mapping selected electronic configurations (Slater deter-

minants) of the Fermionic Hamiltonian onto qubits, (iii) compute the ground state energy

of the qubit Hamiltonian using VQE, (iv) compute the excited states using the quantum

subspace expansion (QSE) algorithm. The qubit Hamiltonian Ĥq =
∑

i giP̂i contains coef-

ficients gi obtained from the one- and two- body terms of Ĥelec multiplied by Pauli strings,

i.e., P̂i ∈ {I,X, Y, Z}⊗Nq , where Nq is the number of qubits and I, X, Y , Z are Pauli op-

erators. When using a VQE algorithm, an ansatz circuit, usually a parametrized unitary

operator Û(~θ), is defined and applied to a chosen initial state |Ψ0〉. Finally, the ground state

energy Eg is variationally obtained by optimizing the parameters ~θ of the ansatz such that

Eg = min~θ〈Ψ0|Û †(~θ)ĤÛ(~θ)|Ψ0〉. As mentioned above, excited states are obtained with the

QSE algorithm.

For a detailed discussion of the derivation of a Fermionic Hamiltonian describing spin

defects in solids using QDET we refer the reader to Ref.36,57–59 Below we discuss in details

steps (ii–iv: see panels b-d of Fig. 1).

2.1 Qubit Efficient Encoding for Fermionic Mapping

The Fermion to qubit encoding is an isometry E : Helec → Hq,60 where Helec and Hq

represent the physical and qubit Hilbert space spanned by the eigenvectors of Ĥelec and

Ĥq, respectively. Commonly used encoding schemes such as the Jordan–Wigner (JW),61

Bravyi–Kitaev (BK)62 and parity encoding methods60 require Nq = N qubits for a system

with N spin-orbitals, and generate a 2N -dimensional Hq. However, our goal is to compute

the eigenvectors and eigenvalues of Ĥelec subject to specific physical constraint on the number

of electrons in the two spin channels (m↑,m↓). In practice this constraint can be enforced by

restricting the solutions of the VQE or QSE algorithms to a subspace of the qubit Hilbert

space with dimension Q =
(
N/2
m↑

)
×
(
N/2
m↓

)
< 2N . However, the JW and BK encoding maps

do not enforce such a physical constraint and thus lead to a qubit Hilbert space that is
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larger than the physical one,47 e.g., the former contains all Fock states, some corresponding

to a number of electrons different from those of the physical system. In principle, on a

fault-tolerant computer the VQE algorithm should preserve the initial number of electrons

throughout the optimization process; however, the noise present in NISQ devices does not

guarantee the preservation of the physical constraints,63 leading to errors in ground state

energies that in Ref.40 we have mitigated with a post-selection procedure. Note that other

symmetry constraints, e.g., point group symmetry64 could also be taken into account when

choosing relevant Slater determinants, which would be interesting to explore in future works.

Here we adopt instead the QEE scheme,53 a compact Fermion to qubit encoding map65–67

that by definition excludes from the qubit Hilbert space all Fock states with nonphysical

number of electrons, leading to a robust solution of the unphysical state problem. The QEE

encoding has also the benefit of requiring a smaller number of qubits than the conventional

encoding maps. The use of QEE has already been shown to be beneficial on quantum

hardware53 for molecules such as H2 and LiH; here we show that its use is crucial in the

case of spin-defects, where the number of qubits required to go beyond minimum models by

conventional encodings would be impractical on NISQ devices.

In the QEE scheme, one pre-selects all the electronic configurations F = {|f〉i
∣∣|f〉i ∈

Helec} that satisfy the required set of physical constraints, e.g., fixed number of particles and

fixed spin projection Ŝz. The implementation of the QEE scheme requiresNq =
⌈
log2Q

⌉
< N

qubits. Using the QEE isometry, configurations in F are mapped to Q = {|0〉q, |1〉q}⊗Nq , the

computational basis states of a Nq-qubit system. To reduce the state preparation error,53

a good practice in defining the QEE isometry E is to first sort both F and Q in ascending

order according to the electronic energy of |f〉i and the decimal number associated to the

binary string representing the qubit state. By doing so, a correspondence E|f〉i = |q〉i is

established. We note that in general the size Q is not necessarily a power of 2. To fit the

requirements of quantum circuits, unphysical states may therefore be included in QEE so

as to build a Hilbert space with a size that is a power of 2. In this case, post-selection of
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measurement results may be helpful to exclude results involving unphysical states.

In common Fermionic-to-qubit encoding schemes, there is a one to one correspondence

of both creation and annihilation operators (â†p, âq) with qubit operators. In QEE, where

by definition only states with fixed number of particles are considered, there is a one to one

correspondence between the excitation operator Êpq ≡ â†pâq and a qubit operator
ˆ̃
Epq, where

the excitation operators are first rewritten as a sum of projection of Slater determinants

|fi〉 〈fj| and then transformed into qubit space through four entry operators: 1
2
(X+iY ), 1

2
(X−

iY ), 1
2
(I−Z), 1

2
(I+Z), see Ref53 for detail. The qubit Hamiltonian can then be constructed

using
ˆ̃
Epq. For a generic Hamiltonian, where the projection operators would lead to a

linear combination of up to an exponential number of Pauli operators, and in principle one

needs to consider an exponentially large number of determinants, no quantum advantage

would be achieved. QEE therefore should be considered as an intermediate solution for

NISQ hardware. However, we note that both the size of the qubit Hamiltonian and the

total number of Slater determinants scale polynomially as a function of N for the systems

considered in our study, as we explain in the Section 3.1.

2.2 Qubit Coupled-Cluster Ansatz for Variational Quantum Eigen-

solvers

After constructing a qubit Hamiltonian using the QEE encoding, we discuss the choice of the

wavefunction ansatz. One popular ansatz used in the literature is the unitary coupled-cluster

(UCC) ansatz,8,68,69 inspired by coupled-cluster theory.70 Such an ansatz can yield accurate

results for many-body systems, but it leads to calculations suffering from poor scaling as a

function of the number of gates, due to the inclusion of all possible electronic excitations.

A typical implementation of the UCC ansatz on quantum computers leads to the following
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expression in terms of Pauli strings (entanglers) P̂k:

ÛUCC =
∏
k

Ûk =
∏
k

e−iθkP̂k/2, P̂k ∈ {I,X, Y, Z}⊗Nq . (1)

The number of entanglers required when using the UCC ansatz may be large even for in-

termediate scale systems with 4 ∼ 6 electrons. The QCC ansatz54 bypasses the formulation

of the ansatz in physical space, and instead directly implements Eq. 1 in the qubit space.

In particular, the QCC method proposed in Ref.54 implements a screening process to select

and retain the entanglers that contribute the most to the evaluation of the energy.

In QCC, the variation of the energy induced by each entangler is evaluated by expanding

the energy to second order in the parameter θk:

δE[θk; P̂k] = E[θk; P̂k]− E0 ≈ θk
dE[θk; P̂k]

dθk

∣∣∣∣
θk=0

+
θ2
k

2

d2E[θk; P̂k]

dθ2
k

∣∣∣∣
θk=0

, (2)

where E[θk; P̂k] = 〈Ψ0|Û †kĤÛk|Ψ0〉 and E0 = 〈Ψ0|Ĥ|Ψ0〉. The first derivative in Eq. 2 can

be efficiently computed through quantum measurements as

dE[θk; P̂k]

dθk

∣∣∣∣
θk=0

=

〈
Ψ0

∣∣∣∣− i

2

[
Ĥ, P̂k

] ∣∣∣∣Ψ0

〉
, (3)

which results from the similarity-transformed Hamiltonian being in closed form71

Û †kĤÛk = Ĥ − isin θk
2

[
Ĥ, P̂k

]
+

1

2
(1− cos θk) P̂k

[
Ĥ, P̂k

]
. (4)

The expression of the second order derivative can be found in Ref.54

The implementation of the QCC method proceeds by ranking the entanglers according to

the magnitude of their first-order derivative and sign of the second-order derivative, and by

considering only the entanglers with highest rank. This amounts to screening the value of the

first and second derivative of the energy for each of the ∼ 4N entanglers and choosing those
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Figure 2: The upper panel shows a representative quantum circuit representing the qubit
coupled-cluster ansatz with 4 qubits. The box circled by the dashed line shows the qubit
mean-field (QMF) part of the circuit, which enables the construction of any product states.
The circuit component following the QMF part enbales the construction of the expo-
nential of entangler XXXY , and it is built with the CNOT gate ladders. The lower
panel shows a circuit representative of the modified ansatz, where the three entanglers are
IIIY, IY II,XXXY , as defined in the pre-screening process.

with values of the first derivatives substantially different from zero or second derivatives

substantially smaller than zero. By using a qubit basis state as |Ψ0〉 we can reduce the

dependency of the total number of P̂k with respect to the number of qubits from exponential

to polynomial. The reduction is achieved by grouping the terms in the Hamiltonian and

performing the pre-screening within each group; see Ref.72 for detail. In practice, the second

derivatives could also be neglected to decrease computational cost,72 as we did in this work.

The quantum circuit is finally constructed using a ladder-like block procedure,73 as shown

in Fig. 2. As pointed out by Ref.,54 for molecules like LiH and H2O, the two-qubit gate count

is greatly reduced compared to that of the UCC ansatz by bypassing any explicit Fermionic

construction of electronic excitations and thus saving as many quantum resources as possible.

In the original proposal of the QCC54 method, only entanglers with more than one non-
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identity gate (X, Y, Z) were considered, and the quantum circuit was started with a qubit

mean-field (QMF) component, as shown in Fig. 2. This QMF component consists of single

Rx and Rz rotations on each qubit, allowing for access to any point on the Bloch sphere.

Although it remains to be investigated whether such an implementation suffers from the

Barren plateau problem,74 the QMF component resembles the hardware-efficient ansatz27

and might pose optimization challenges75 due to the large number of required variational

parameters (2Nq). In addition, Rx and Rz rotations are likely redundant degrees of freedom,

since often times both the Hamiltonian and wavefunction of many-body systems of interest

are real.

To solve the potential optimization challenges introduced by the QMF component, we

propose a modification of the original QCC ansatz. We simply discard the QMF component,

and consider all the possible entanglers when performing the screening operation, regardless

of the number of qubits that the entangler involves. In this way, the number of necessary vari-

ational parameters are reduced and eventually a quantum circuit only contains exponentials

of entanglers, as shown in the bottom panel of Fig. 2.

The QCC ansatz is suitable for NISQ devices, where a trade off between circuit depth

and number of quantum measurements is desirable. We note that similar ideas to construct

efficient ansatz circuits using gradient methods have been explored in recent years, including

iterative QCC,72 ADAPT-VQE and its several variants,76,77 e.g. ClusterVQE,78 factorized-

form of UCC,79 and projective quantum eigensolver.80 Besides being hardware friendly, an

additional benefit of the QCC ansatz is that it leads to differentiable potential energy surfaces

given its functional dependence on the entanglers, and the gradients can be estimated using

the parameter-shift rule.81,82 The QCC ansatz has shown the correct size-consistent behavior

when applied to study the dissociation of H2, LiH and H2O in Ref.54 However, there is no

guarantee that it will always yield the correct behavior for any systems since it depends on

how the entanglers are truncated when the circuit is constructed. We also speculate that in

general size-extensivity may be satisfied as entanglers for noninteracting fragments act only
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on each fragment, and, therefore, commute and we thus have E(2A) = 2E(A).

2.3 Quantum Subspace Expansion for Excitation Energies

We now turn to the discussion of the calculations of excitation energies, for which subspace

type methods83–88 are suitable. These methods can be viewed as a quantum analog of CI and

its variants, e.g., selected CI approach.89 Here we choose the quantum subspace expansion

(QSE) algorithm,83,84,90 which uses the same quantum circuit as the one to obtain the ground

state and involves only additional quantum measurements.84 Specifically for the ground state

|Ψ〉, a set of expansion operators {Ôi} is chosen, which act on |Ψ〉 to form a basis given by

{Ôi |Ψ〉}, where Ô ∈ {â†aâi, â†aâ
†
bâj âi|i, j ∈ A; a, b ∈ V}. We use this basis to evaluate the

Hamiltonian and overlap matrix elements:

HQSE
ij = 〈Ψ| Ô†i ĤÔj |Ψ〉 , SQSE

ij = 〈Ψ| Ô†i Ôj |Ψ〉 . (5)

Note that the expansion operators are not limited to double excitations, and we did not

include additional excitations as double ones are sufficient to obtain the FCI spectrum of

our systems. Using the matrices defined above, we then solve the generalized eigenvalue

problem in the well conditioned subspace given by HQSEC = SQSECε, where C is the matrix

of eigenvectors and ε the diagonal matrix of eigenvalues. As mentioned in section 2.1, the

QEE encoding is used to transform the excitation operators â†i âj into Pauli strings acting

on Nq qubits, and the matrix elements are evaluated as weighted sums of the expectation

values of these Pauli strings. The cost of QSE has two components: i) determining the

matrix elements through measurements, and ii) solving the generalized eigenvalue problem.

In the QEE-QCC scheme adopted in this work, the measurement cost is negligible since the

majority of Pauli operators have been measured already when computing the ground state.

Therefore the cost of the QSE calculations mainly comes from ii). We also note that the

effectiveness of QSE is achieved with a careful choice of creation and annihilation operators,
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which would be facilitated by using chemical intuition, e.g., by identifying the most dominant

excitations.
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3 Results

In this section we present results for the many-body ground and excited states of the NV–

center in diamond, VV0 and V–
Si in 4H-SiC. Using the methods described in Sec. 2, we

performed calculations on the ibmq guadalupe quantum computer using the IBM Qiskit

package.91 We have applied measurement error mitigation92,93 to all the measurements.

3.1 Reference results on classical hardware

We use QDET to obtain the effective second quantized Hamiltonian, which is then used

as input for our quantum computations.57–59 As a first step we define a periodic supercell

with hundreds of atoms, representing a crystal with a defect center embedded in it, and we

compute its electronic structure using Kohn-Sham (KS) density functional theory (DFT)

with the PBE functional, the G0W0 approximation, and the Quantum Espresso94,95 and

WEST96 codes. A subset of KS orbitals localized around the defect is then chosen based on

the localization criterion defined in Ref.58 This subset constitutes the so-called active space

A spanned by the second quantized effective Fermionic Hamiltonian Ĥelec =
∑A

ij t
eff
ij â
†
i âj +

1
2

∑A
ijkl v

eff
ijklâ

†
i â
†
j âlâk. The effective two-body matrix elements veff

ijkl are computed using the

constrained random-phase approximation (cRPA) method. The effective one-body matrix

elements teff
ij are computed from the G0W0 Hamiltonian removing a double counting term.

Notably, in Ref.58 we rigorously derived an expression of the double counting term within

the G0W0 approximation.

We computed the electronic structure of NV– , VV0 and V–
Si using a 215-, 198- and

127-atom supercell, respectively. We performed restricted closed-shell plane wave DFT cal-

culations with the optimized structure from unrestricted open-shell calculations. We used

the PBE97 exchange-correlation functional, SG15 norm-conserving pseudopotentials,98 and

a 50 Ry kinetic energy cutoff for the plane wave basis set. The active space was defined con-

sidering all KS orbitals with highest localization factor LV (ψKS
n ) =

∫
V
|ψKS
n (x)|2dx, where

14



VV0NV-

a cb ed f

Figure 3: Spin defects studied in this work: the NV– center in diamond, the VV0 and V–
Si

in 4H-SiC. Panels a, c and e show a ball-and-stick representation of the defects. Panels b,
d and e show single particle states obtained by solving the Kohn-Sham equations for the
entire periodic solid, where gray and green shaded areas represent the conduction (CB) and
valence band (VB), respectively; the single particles states are shown as black lines.

the integration is performed on a predefined volume V around the defect center (see Fig. 4),

as originally defined in Ref.58 In our full-frequency G0W0 calculations we used 512 projective

dielectric eigenpotentials (PDEPs) to represent the dielectric response. The QDET method

is implemented in the WEST code.96,99

In Fig. 4 we show the convergence of vertical excitation energies of the three defects w.r.t.

the localization threshold, which sets a lower bound for the KS orbitals to be included in the

active spaces. We note that the energies are relatively well converged at 10%, 10% and 20%

threshold in the three cases, corresponding to (14e, 8o), (22e, 12o) and (9e, 6o) active spaces,

respectively. Due to the limitation in quantum resources, a compromise had to be made in

selecting the active space to generate the effective Hamiltonians for the three defects: we

chose the (14e, 8o) active space for VV0 and NV– . For NV– , the convergence threshold for

the (14e, 8o) active space lies between 20% and 10% and its excitation energies differ by

approximately 0.1 eV from those obtained with a 10% localization threshold. Considering

the complexity of the V–
Si, for this defect we had to resort to a 30% localization threshold,

leading to a (5e, 4o) active space, which we refer to as the “minimum model”.

We also note that when the localization threshold is lowered, the size of the active space

N is increased by the inclusion of additional occupied orbitals. The total number of Slater

15
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Figure 4: The left, middle and right panel show computed vertical excitation energies for
the NV– center in diamond, VV0 and V–

Si in 4H-SiC as a function of the chosen localization
threshold. States are labeled using the irreducible representation of the C3v point group. We
note that the largest threshold corresponds to a (4e, 3o), (8e, 5o) or (5e, 4o) active space for
the three defects, respectively, and the smallest threshold corresponds to a (26e, 14o), (64e,
33o) or (57e, 30o) active space, respectively.

determinants with a constant number of holes in each spin channel, c↑(↓) = N
2
− m↑(↓),

scales polynomially as O(N (c↑+c↓). This leads to an encoded effective Hamiltonian which is

expressed as a linear combination of up to O(N2(c↑+c↓) Pauli operators. The size of the QEE

Hamiltonian and its corresponding classical preprocessing step do not pose a computational

challenge for the systems considered here, where c↑(↓) ≤ 2.

3.2 Calculation of the ground state using a quantum computer

3.2.1 VV0 in 4H-SiC and NV– in diamond

The ground state of the effective Hamiltonian constructed for both the VV0 in 4H-SiC and

the NV– center in diamond is a 3A2 triplet state, whose mS = 0 state has a multi-reference

character. To obtain such a state on quantum computers using VQE, a good guess for the

initial wavefunction is key to achieving fast convergence.40 These systems are open-shell with

the highest occupied molecular orbitals (HOMOs) in the active space being e orbitals; hence
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it is wise to use |Ψ0〉 = |..a1a1exey〉 due to Hund’s Rule, where a1, ex, ey (spin-up) and ā1,

ēx, ēy (spin-down) denote the single particle orbitals in the active space, as shown in Fig. 3.

As mentioned above, we choose the (14e, 8o) active space for both defects, leading to a

total of 64 Slater determinants, and requiring the use of 6 qubits to span the full qubit Hilbert

space, i.e., Heff ⊆ Hq. To construct the QCC ansatz, we first measure the energy gradients

of different entanglers using Eq. 3. The amplitude of these gradients are obtained both on

a real quantum device (noisy) and on a simulator (noiseless). They are listed in Tab. 1 for

VV0. We find that the difference between noisy and noiseless results is negligible (within

1 ∼ 2%). This is due to the fact that the measurement circuits does not contain two-qubit

gates, which are major sources of error in NISQ devices. We also note that the four entanglers

with top rank correspond to entanglers with the identity gate I at the two left-most qubit

indices. Because of the chosen QEE scheme, the two left-most qubit indices control Slater

determinants with the highest excitation energy, and originate from transitions from the

lowest four occupied single particle orbitals. This suggests that we can use the frozen core

approximation100 to reduce the computational cost without sacrificing accuracy. Therefore

we freeze the lowest four occupied orbital and in practice we work with 4 qubits, 4 entanglers,

and a qubit Hamiltonian with 136 terms. The QCC circuit is constructed using 14 CNOT

gates in total. The UCC counterpart, however, would require ∼ 400 CNOT gates, indicating

the critical advantage of the QCC method. For NV– , the same logic applies and its circuit

has 10 CNOT gates. Note that in the interest of generality, during the construction of the

QCC ansatz, we did not take into consideration the point group symmetry of the ground

state so as to design calculations that would be viable also for systems under strain or for

moderately disordered lattices. If symmetry is invoked, both UCC and QCC can be reduced

to a simple circuit with a single parameter and only two CNOT gates.40

Results from the VQE optimization of VV0 and NV– are shown in the upper and middle

panel of Fig. 5. The energy is evaluated on the quantum hardware as the weighted sum of

the expectation values of Pauli strings, i.e., E =
∑

i gi〈P̂i〉. The expectation values of all
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Table 1: Top entanglers for the electronic structure calculation of VV0 and V–
Si from Eqn. 3

before the frozen core approximation is carried out, with their magnitude computed using a
noiseless simulator and a quantum hardware ibmq guadalupe (Atomic units)

Rank VV0 V–
Si

Entanglers Noiseless Noisy Entanglers Noiseless Noisy
1 IIIIXY 0.009243 0.009170 IXY II 0.006969 0.006754
2 IIXIY Z 0.008177 0.008100 IIIY I 0.006693 0.006601
3 IIXXIY 0.008165 0.008065 IIIIY 0.004352 0.004352
4 IIXIXY 0.006587 0.006529 IIIXY 0.004350 0.004350

Pauli strings were obtained by measuring 8192 times Nc independent circuits so that the

standard deviation (σ) of measurement is within 15 meV, where Nc is the number of groups

that contain mutually commuting strings. In the case of VV0 (NV– ), we find that the VQE

calculation converges to a state that is ∼ 0.5 (0.4) eV higher than the FCI reference energy

obtained on a classical computer. The fluctuations are more pronounced for the NV– center

because our calculations were carried out at different times and the hardware environment

was not identical for each measurement. The insets in Fig. 5, where the reference values are

from noiseless simulations, show that in our optimization procedure we indeed converge to

the ground state of the system. We find that for both VV0 and NV– , only the parameter

associated with entangler IIXY is nonzero (π/2), indicating that the other ones are negligible

in determining the ground state, thus reducing the circuit to one exponential block of IIXY .

This simplified circuit is exactly what we obtained in Ref.40 by taking into consideration the

point group symmetry of the lattice.

To obtain an accurate estimate of the ground state energy, error mitigation is required

and here we adopted the ZNE method. The latter is straightforward to implement and

does not require additional qubits. The basic idea of ZNE is to amplify the noise of the

circuit to various controllable levels and obtain the zero noise limit by extrapolation. The

key to success of ZNE lies in how noise is artificially boosted. We employ a split exponential

technique that we originally proposed in Ref.40 to artificially increase the circuit depth of

each exponential block eiθkP̂k of the QCC quantum ansatz, i.e., n replicas are generated
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with
(
ei
θk
n
P̂k

)n
. We note that this technique is suitable for both UCC and QCC-type of

ansatzes54,101–104 and it does not affect the Trotter error.40 The extrapolation procedure is

shown in Fig. 7. We worked with the reduced circuit with only one entangler IIXY , and

considered n = [1, 2, 3, 4, 5]. For each value of n, we increased the measurements to 320000,

so σ is kept within 2.5 meV and the stability of the extrapolation procedure is improved.

A quadratic function is used for extrapolation and the difference between the ground state

energy and the reference value obtained on a quantum simulator is one order of magnitude

smaller than in the absence of ZNE.

3.2.2 V–
Si in 4H-SiC

We now turn to the discussion of the V−Si spin defect in 4H-SiC, which has a |4A2〉 ground

state, with multi-reference character for ms = ±1
2
.56 The HOMOs of V−Si consists of three

quasi-degenerate orbitals: a1, ex, ey that are all singly occupied in the ground state, as shown

in Fig. 3. Therefore the ms = ±1
2

spin manifold is considerably more complicated than those

of VV0 and NV– . We use only a minimal model of (5e, 4o) for the active space to describe

this system, which is adequate to demonstrate the advantages of QCC over UCC in terms

of finding the ground state with a shallow circuit depth. In this minimal model, the ms = 1
2

component of the ground state wavefunction consists of 6 Slater determinants

|Ψg〉 = α (|a′1a1
′a1exey〉+ |a′1a1

′a1exey〉+ |a′1a1
′a1exey〉)

+ β (|a1
′a1a1exey〉+ |a′1a1a1exey〉+ |a′1a1a1exey〉) ,

(6)

where we have only used two coefficients, α and β because of symmetry. From the FCI

solutions on a classical computer we know that the first three configurations with doubly

occupied a′1 are dominant (|α| = 0.576, |β| = 0.0391), hence we use one of them as the initial

state of our VQE optimization. Specifically, we use |Ψ0〉 = |a′1a1
′a1exey〉.

When adopting the UCCSD ansatz, one needs to explicitly construct the relevant elec-

tronic excitations, whose associated parameters are θa1a′1
, θa1exexa1

, θ
a1ey
eya1

, θa1exexa1′
, θ
a1ey
eya1′

. The result-
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ing circuit requires ∼200 CNOT gates, and with the UCCSD ansatz we only obtained the

exact ground state on a noiseless simulator. A reasonable approximation is to assume β = 0,

which would require only the first two parameters with a corresponding reduction of the

number of CNOT gates to ∼80. This approximation leads to an error of ∼11 meV, as shown

in 6. However, both circuits are beyond the capability of NISQ quantum devices.

Here the QCC ansatz presents a remarkable advantage and we were able to simulate the

V–
Si defects on a real quantum processor. The screening of entanglers are summarized in

Tab. 1. We selected the entanglers with top rank to construct the circuit for the ansatz,

which contains only a total of 4 CNOT gates. The VQE optimization on a real quantum

processor is shown in Fig. 5, where the error due to noise is about ∼0.2 eV. We note that

also in this case the ZNE is applied at the end of the VQE optimization to obtain a more

accurate ground state energy, as shown in Fig. 7.

3.3 Calculation of the excited states using a quantum computer

As mentioned earlier, we computed excited states of the VV0 and NV– using the QSE

algorithm. To avoid propagating the errors introduced by VQE, we used the exact energy

of the 3A2 state with ms = 0 as the ground state energy.

We constructed a quantum subspace that is identical to the configuration state space, so

the dimension of the QSE matrices is the same as that of their classical FCI counterpart.

The QSE matrix is built by evaluating, on the quantum hardware, the expectation values

of all Pauli strings. In our zero noise mitigation, we used a linear extrapolation for the off-

diagonal elements of the QSE matrix and we computed diagonal elements with linear and

quadratic extrapolations. The number of measurements was 320000 for both defects. The

QSE matrix was finally diagonalized on a classical computer.

The errors of excitation energies with and without extrapolation are summarized in Fig. 8.

The accuracy of the energy of non-degenerate excitations is in general improved when using

the ZNE. We note that overall different choices of extrapolation functions lead to similar
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results, and hence linear extrapolation is a desirable choice, since a smaller number of pa-

rameters is expected to lead to a more stable fit. The degeneracy of states is spuriously lifted

on the quantum hardware due to the presence of noise, though it is slightly mitigated after

applying the linear ZNE.
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Figure 5: The upper, middle and bottom panel show the total energy as a function of
the number of iterations during an optimization of the ground state energy of the VV0

in 4H-SiC, the NV– in diamond and the V–
Si in 4H-SiC carried out with the variational

quantum eigensolver (VQE) algorithm on ibmq guadalupe (quantum hardware); the variation
of parameters associated with each entangler of the qubit coupled cluster (QCC) ansatz is
plotted in the inset. The full configuration interaction (FCI) energy is reported for reference.
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Figure 6: Total energy as a function of the number of iterations used to optimize the ground
state energy of V–

Si in 4H-SiC using the variational quantum eigensolver (VQE) algorithm
on a noiseless simulator, with a unitary coupled cluster (UCC) ansatz and the COByLA
optimizer.105 The blue and orange curves represent results using two variants of the ansatz
circuit with different levels of approximation; see text. The inset shows the error of different
VQE optimizations relative to the reference energy. The full configuration interaction (FCI)
energy (dashed black line) is reported for reference.
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Figure 7: The ground state energy of the NV– center and the VV0 and V–
Si in 4H-SiC as a

function of the number of replicas used in the zero-noise extrapolation (see text), obtained
using ibmq guadalupe. The x axis is scaled with the number of CNOT gates used in the
quantum circuit for clarity of comparison. The reference, noiseless result has been set to 0.
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Figure 8: The upper and bottom panel show the error in the excitation energies (eV) of the
VV0 and NV– defects calculated using the quantum subspace expansion (QSE) method on
ibmq guadalupe. The x axis shows transitions between states labeled using the representation
of the point group C3v, following Ref.36 ∆1E and ∆3E indicate the breaking of degeneracy
due to noise (see text). The reference values are obtained with a noiseless simulator and are
identical to those of classical full configuration interaction (FCI) calculations on a classical
computer. The blue, orange and green bar represent results obtained using no extrapola-
tion, linear and quadratic zero-noise extrapolation techniques, respectively. For the results
labeled with “quadratic extrapolation”, we only carried out a quadratic extrapolation for
the diagonal elements of the QSE matrix elements, and a linear extrapolation was applied
to the off-diagonal elements.
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4 Conclusions

In summary, we presented a computational protocol to diagonalize Fermionic Hamiltonians

on noisy-intermediate-quantum computers, which combines the QEE scheme to map elec-

tronic excitations onto qubits, a modified QCC ansatz for VQE optimizations of the ground

state and noise mitigation techniques. The QEE mapping offers a robust solution to the

unphysical state problem and the QCC ansatz provides a relatively short quantum circuit

suitable for calculations on near-term intermediate-size quantum devices. We applied our

protocol on quantum hardware to compute the electronic structure of strongly correlated

ground and excited states of three spin defects, i.e., the NV– center in diamond, the VV0

and V–
Si in 4H-SiC, and we presented calculations that would have been unfeasible with con-

ventional algorithms. In particular, we could go beyond the minimum models for the NV–

and VV0 and tackle a complex defects such as V–
Si for the first time. Work is in progress to

improve the efficiency of the measurements of 〈H〉 on quantum architectures, for example

by adopting advanced measurements techniques with different term groupings,106,107 frag-

mentation procedures108,109 and classical shadow,110,111 and to extend the applicability of

our protocol to larger active spaces appropriate, e.g. to investigate adsorbates on surfaces or

ions and nanostructures in solution. We finally note that establishing which algorithms are

better suited to achieve quantum advantage in electronic structure calculations remains an

open area of research. For example, recent papers have argued that simulations in first quan-

tization offer some important advantages over approaches in second quantization including

faster convergence to the continuum limit and the opportunity for practical simulations be-

yond the Born-Oppenheimer approximation.112 Interestingly, in addition to efforts towards

reaching a practical advantage with quantum computers, the development of algorithms for

quantum computations is having a positive impact on the development of classical algorithms

in various fields, e.g., machine learning113 and computational spectroscopy.114
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