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A B S T R A C T

Currently, methodologies for the identification and apportionment of air pollution sources are not widely applied 
due to their high cost. We present a new approach, combining mobile measurements from multiple sensors 
collected from the daily walks of citizen scientists, in a high population density area of Birmingham, UK. The 
methodology successfully pinpoints the different sources affecting the local air quality in the area using only a 
handful of measurements. It was found that regional sources of pollution were mostly responsible for the PM2.5 
and PM1 concentrations. In contrast, PM10 was mostly associated with local sources. The total particle number 
and the lung deposited surface area of PM were almost solely associated with traffic, while black carbon was 
associated with both the sources from the urban background and local traffic. Our analysis showed that while the 
effect of the hyperlocal sources, such as emissions from construction works or traffic, do not exceed the distance 
of a couple of hundred meters, they can influence the health of thousands of people in densely populated areas. 
Thus, using this novel approach we illustrate the limitations of the present measurement network paradigm and 
offer an alternative and versatile approach to understanding the hyperlocal factors that affect urban air quality. 
Mobile monitoring by citizen scientists is shown to have huge potential to enhance spatiotemporal resolution of 
air quality data without the need of extensive and expensive campaigns.

1. Introduction

Air pollution is a major health issue which impacts public health and 
the economy (Birnbaum et al., 2020; Liu et al., 2019; Rivas et al., 2021). 
Globally, exposure to air pollution is considered a leading risk on life 
expectancy reduction (Forouzanfar et al., 2015), as well as one of the 
most important environmental risk factors. It is estimated that approx
imately 9 million premature deaths per year are caused by poor air 
quality (Fuller et al., 2022). The dominant air pollutant with respect to 
human health is particulate matter (PM). Thus, actions to improve air 
quality, and in particular PM levels, are required. The most recent PM 
guidelines set by the World Health Organization (WHO) highlight that 
exposure to even relatively minor PM concentrations can impact upon 
health (World Health Organisation, 2021).

To build successful strategies for air pollution control, not only do air 
pollutant concentrations need to be measured, an understanding of 

where the air pollution comes from is also required, i.e. the sources of air 
pollution need to be identified and apportioned. Hence, source appor
tionment studies are crucially important, as these provide the link be
tween activities and the air pollution that they create (Belis et al., 2019; 
Coelho et al., 2023). To date, there have been many source apportion
ment studies in the scientific literature (Beddows et al., 2015; Cesari 
et al., 2016; Rivas et al., 2020). However, the routine application of 
sophisticated source apportionment techniques outside of academia is 
limited in many jurisdictions, leading to the use of less sophisticated 
methodologies for air pollution assessment. Typically, the equipment 
needed for source apportionment measurements is expensive and the 
methodologies used for their analysis are complex. As a result, source 
apportionment is often not part of the regulatory toolkit, even though it 
provides key information for air pollution management (Hopke et al., 
2020; Karagulian et al., 2015).

Low-cost sensors (LCS) have caused a paradigm shift in the 
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monitoring of air pollution allowing for pollutant mapping at a much 
finer spatial scale. These sensors provide air quality information at a 
fraction of the cost compared to research grade instruments, having both 
a lower associated capital expenditure (CapEx) and operational expen
diture (OpEx) (Peltier et al., 2021). Low-cost sensors are typically out
performed by the more expensive regulatory instruments (Alfano et al., 
2020; Kang et al., 2022; Karagulian et al., 2019), with low-cost sensors 
usually lacking the accuracy, precision and sensitivity of their research 
grade counterparts (Austin et al., 2015; Sousan et al., 2016). The per
formance of sensors may degrade over time (Anastasiou et al., 2022), 
and need special care and calibration to provide meaningful results 
(Giordano et al., 2021; Hagan and Kroll, 2020; Lung et al., 2022; Wang 
et al., 2021a). Nevertheless, their significantly lower cost and greater 
portability provide measurement opportunities that were not previously 
possible. Many studies have been conducted in which low-cost sensors 
have proved their potential in the field, for both outdoor and indoor 
applications (Ilyinskaya et al., 2017; Raysoni et al., 2023). With proper 
quality assurance and the correct methodologies, these sensors can 
provide a similar potential for a paradigm shift in source apportionment, 
by greatly reducing the financial burden associated with source appor
tionment studies. Thus, for the last 8 years, several research groups have 
explored the use of low-cost sensors for air pollution source apportion
ment (Bousiotis et al., 2023b, 2022; Westervelt et al., 2023).

Air pollution sources vary spatially and temporally, especially within 
urban environments (Alexeeff et al., 2018; Boogaard et al., 2011). 
Hence, to understand air pollution exposure, data is required at high 
spatial and temporal resolution. An obvious solution to this data 
requirement is to collect data using mobile platforms, and the use of 
mobile platforms for air quality measurements is not new (Seakins et al., 
2002). Numerous mobile campaigns using cars, bicycles and pedestrians 
have been widely performed (Apparicio et al., 2021; Samad and Vogt, 
2020; Singh et al., 2021; Solomon et al., 2020). The use of low-cost 
sensors breathe new life into such studies as they can be more versa
tile and widely applied (Chatzidiakou et al., 2019; deSouza et al., 2020; 
Macnaughton et al., 2014; Wang et al., 2021b). Specifically, laser scat
tering PM sensors are considered suitable for mobile monitoring as they 
can record the fast temporal changes in PM concentrations (Buehler 
et al., 2021; Bulot et al., 2020). As a result, studies with mobile mea
surements can provide more detailed and spatially denser measure
ments, allowing for the identification of hyperlocal sources of pollution 
in a manner that is not possible with the existing static measurement 
networks (Frederickson et al., 2023; Hassani et al., 2023), even within 
dense network of low-cost sensors (Kumar et al., 2015). However, to 
date we believe this mobile measurement approach has not been used in 
conjunction with source apportionment.

In the present study, mobile measurements from low-cost portable 
sensors were made by citizen science volunteers while on their daily 
walking commutes in a heavily populated residential area. The data of 
PM1, PM2.5 and PM10 from an Optical Particle Counter (OPC), black 
carbon (BC) by a filter absorption photometer and total particle number 
(PN) along with the lung deposited surface area (LDSA) by an aerosol 
electrometer, all having a significantly lower cost compared to their 
scientific grade counterparts, were collected from walks within the 
study area. The PM data were analysed using Positive Matrix Factor
isation (PMF), a source apportionment methodology successfully 
applied in previous works on datasets from both research grade in
struments (Beddows et al., 2015; Harrison et al., 2011; Hopke, 2016) 
and low-cost sensors (Bousiotis et al., 2023b, 2022; Mills et al., 2023). 
While in previous studies the aim was to assess the sources of pollution 
affecting a greater area, in this study we present a methodology that 
identifies and quantifies the effect of not only the regional sources of 
pollution affecting the study area, but also pinpoints local point and line 
pollution sources within the study area. A similar task was also 
attempted by (Lin et al., 2023) using measurements collected by a car 
and machine learning methods, which resulted in the identification of 
pollution sources, rather than source apportionment which was 

achieved in the present study.

2. Methods

2.1. Study area and material

The area studied is a portion of the residential area of Selly Oak of 
about 1 km2 (52◦ 26′ N, 1◦ 55′ W), 3 km SW of the city centre of Bir
mingham and directly south of the University of Birmingham (Fig. 1). As 
this area is next to the University of Birmingham, it is very densely 
populated (about 10,000 residents in peak period) mainly with students 
at the University. Apart from being a residential area, in the northern 
and southern ends of the block are two busy roads (Bristol Road and 
Raddlebarn Road), as well as lots of markets and restaurants, whereas on 
the west side of the block lies the Selly Oak train station. The mea
surement period was between the 16th and 25th of June 2023, in which 
ten walks with the sensor payload were made, in accordance with the 
ethical standards set by the University of Birmingham. Each of these 
walks included all the roads both in the perimeter and the inner part of 
the block. Four of these walks occurred in the morning (9AM to 12PM), 3 
in the afternoon (12PM to 5PM) and 3 in the evening (5PM to 9PM). The 
sensors used for this campaign are all considered as low-cost, ranging up 
to a few thousands USD. The setup comprised of: 

• The Alphasense OPC-N3, which is a laser scattering optical particle 
counter measuring in the size range between 0.35 and 40 μm, 
providing particle counts in 24 size bins as well as the mass con
centrations for PM1, PM2.5 and PM10 (Alphasense, 2019) in a 10 s 
resolution. A more detailed presentation of the sensor can be found 
in (Bousiotis et al., 2021).

• The testo DISCmini, which is a hand-held ultrafine particle counter 
measuring the number and average diameter of nanoparticles (10 to 
700 nm) based on the electrical charge of aerosols. For the present 
study, the number of particles provided by this sensor will be 
considered as the total particle number (PN). Using the data of the 
particles’ diameter, the DISCmini can also provide the Lung Depos
ited Surface Area (LDSA), a metric of the surface area concentration 
of the particles that deposit in the alveolar region of the human 
lungs. The LDSA is a very important metric as it is found to have a 
stronger correlation with reduced lung function and mortality than 
the PM2.5 and the PM10 (Hennig et al., 2018; Patel et al., 2018) and 
can be used to provide further information about the particles’ 
characteristics and composition (Haugen et al., 2022). The time 
resolution of the measurements from the DISCmini is 1 s.

• Aethlabs microAeth AE51, which is a real-time BC monitor in the 
range between 0 – 1 mg BC/m3, with a measurement precision of ±
0.1 μg BC/m3. This is done by measuring the rate of change in ab
sorption of transmitted light (wavelength at 880 nm) due to 
continuous collection of aerosol deposit on the filter within the de
vice. Measurements can be collected in different time resolutions 
starting from 1 s. Following the settings suggested by the manufac
turer for the specific environment and conditions, a 1-minute reso
lution was chosen.

These sensors were fit within a backpack (total weight is less than 3 
kg), and they were connected to silicone tubes (about 20 cm long) facing 
the right side of the backpack (Fig. S1). Additionally, a Bosch BME-280 
sensor was fit next to the OPC-N3 inlet for continuous monitoring of the 
temperature and RH, as well as a GSM module for real time monitoring 
and reporting of the measurements to the cloud. All measurements in the 
present study were averaged to a 1-minute resolution for consistency. 
The backpack was designed so the volunteer citizen scientists could 
conduct their day as normal with plenty of space left for the bag to be 
used to carry their belongings.
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2.2. Calibration

All sensors were collocated with the research grade instruments at 
the Birmingham Air Quality Supersite (BAQS) at the University of Bir
mingham (Bousiotis et al., 2021) and about 1 km north of the study area. 
Two collocation periods, before and after the campaign, of a total of 
about 4 days were done, in which the inlets of the sensors were placed 
next to the inlets of the research grade instruments at BAQS for simul
taneous measurements. For the OPC-N3, after removing the outliers, an 
exponential relationship was considered between the ratio of the mea
surements of the sensor and the research grade instrument and the 
relative humidity (RH) in the atmosphere. The precision of the low-cost 
sensors, and especially those that measure particle concentrations, is 
known to be greatly affected by atmospheric conditions and especially 
RH. As a result, an overestimation of the PM2.5 and the PM10 concen
trations from the sensor is observed with higher RH due to PM hygro
scopicity effects (Crilley et al., 2020, 2018; Khreis et al., 2022). While 
this is a common feature of the meteorological conditions in the United 
Kingdom, the RH during the campaign was rather low reducing the 
discrepancy found between the measurements of the sensors and the 
actual atmospheric conditions. Nevertheless, the calibration greatly 
improved the precision of the measurements especially for the larger 
PM2.5 and PM10 (Pearson correlation r PM1 = 0.81 to 0.84, PM2.5 = 0.63 
to 0.75, PM10 = 0.32 to 0.57).

The measurements of the microAeth AE51 were calibrated against 
those from the MAGEE Scientific aethalometer AE33 located at the 
BAQS. As the BC sensor was not significantly affected by the meteoro
logical conditions during the campaign, a linear relationship was found 
between the measurements of the sensor and the scientific instrument (r 
= 0.65). The low-cost sensor on average overestimated the BC concen
trations by a factor of 1.75. This discrepancy was corrected after the 

calibration also leading to a slight improvement of the correlation be
tween the two datasets (r = 0.66).

The DISCmini was calibrated against the TSi CPC 3775 located at the 
BAQS. The CPC 3775 is a research grade instrument which measures 
particles in the size range 4 nm up to 3 μm. As the DISCmini measures 
the total particle number in a fraction of this size range, its collocation 
measurements were calibrated against the adjusted total particle num
ber from the CPC 3775, considering only the size range that is common 
between the two instruments.

Finally, the measurements of the meteorological sensor were also 
calibrated against those from the Elms Road meteorological station at 
the University of Birmingham. As the sensor is located inside the 
container of the OPC, its values are different from the atmospheric ones, 
with the RH being underestimated and the temperature overestimated. 
Regardless, the correlation between the sensor’s and atmospheric values 
was very high (r > 0.95), thus a simple linear regression was sufficient 
for the calibration of the measurements. Finally, the traffic data for 
Bristol Road were provided by the Birmingham City Council.

2.3. Positive Matrix Factorisation and estimated PM contribution 
calculation

The Positive Matrix Factorisation is a multivariate data analysis 
method developed by (Paatero and Tapper, 1994, 1993), which has been 
successfully applied numerous times for receptor modelling studies for 
source apportionment with atmospheric data (Beddows et al., 2015; 
Cesari et al., 2016; Rivas et al., 2020). It considers the measured data of 
different variables for each timestep and their experimental un
certainties as an input. The uncertainties for the equipment used in the 
present study range between 15–25 % according to manufacturers’ 
specifications and previous studies (Alas et al., 2020; Alphasense, 2019; 

Fig. 1. Map of the study area (map ©Google). The construction signs refer to the construction sites in the area at the time of the campaign.
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Bau et al., 2015). These were used in the present study ensuring that the 
Q to Qtheoretical ratio is as close to 1 as possible. The outputs are a matrix 
of factors (F), which represent the average values associated with the 
different factors, a matrix of their contributions (G) for each timestep of 
the dataset provided, and a matrix of residuals (E) (the non-explained by 
the method part of the variation of the variables) using a least-squares 
technique (Reff et al., 2007). The matrices F and G are determined so 
that the Euclidean norm of the matrix of residuals divided by the 
experimental uncertainties is minimised. The PMF is a descriptive 
model, thus has no objective criterion for the optimal number of factors 
(Paatero et al., 2002). Thus, the optimal solution is chosen by the user 
depending on: 

• The ability to understand what each factor represents
• The uniqueness of the factors generated (having low correlations 

between ther variation)
• The significance of the factors (factors with near zero contribution to 

all the atmospheric variables were not considered)
• The reduction (as much as possible) of the unexplained variance.

The estimated PM concentrations reported are calculated using the F 
and G values provided by the model. As F(i) represents the average 
contribution of each variable for each factor and G(i) represents the 
contribution of each factor at a given timestep (normalised to one), the 
estimated PM concentrations are calculated as:

PMest(i) = FPM(i) X G(i)
This calculation also considers the non-explained variance from the 

factors in the analysis, as this is also included in the outputs of the 
model. While this method does not provide an accurate value for each 
variable at each timestep, as it considers the average contribution of all 
variables in a factor to vary as one (according to the single G contri
bution for each factor), it has been proven successful in providing a 
sensible portray of the effect of the different factors on the air quality 

conditions and provide a reliable estimation for the PM concentrations 
of the different factors (Bousiotis et al., 2023a).

For the PMF analysis, the second iteration of PMF software was used, 
developed by (Paatero, 2004). Further analysis of the results was done 
using the Openair package for R developed by (Carslaw and Ropkins, 
2012).

3. Results

3.1. General conditions

The campaign took place during the period between the 15/6/2023 
to 26/6/2023 within the Selly Oak area in the city of Birmingham, UK. 
Selly Oak is predominantly populated by students within higher edu
cation and is located directly south of the University of Birmingham. 
This campaign coincided with the end of the term at the University of 
Birmingham, and while many students still live in the area, the landlords 
take advantage of the relatively quiet period to conduct construction and 
renovation works upon the houses for the next academic year. Locations 
of construction work were pinpointed during the walks and are high
lighted within Fig. 1. During the measurement campaign period rela
tively high temperatures for the location and season occurred (18.9 ±
3.7 ◦C), the average relative humidity was 66.9 ± 29.9 % and there were 
no rainy days. Moderate winds (2.2 ± 1.9 m/s) were experienced during 
the campaign period, with wind direction predominantly from the ENE 
and SW directions.

The average pollutant concentrations of PM1, PM2.5, PM10 and black 
carbon (BC), and their relationship with wind direction and time of the 
day, measured at the nearby Birmingham Air Quality Supersite (BAQS), 
are shown in Fig. 2. The wind conditions clearly affect the pollutant 
concentrations, as more polluted conditions occur from the NE which 
corresponds to air from the direction of the city centre. The time of the 
day also affects pollutant concentrations, with BC particularly affected 

Fig. 2. PolarAnnuli plots for the average concentrations PM1, PM2.5, PM10 and BC (a, b, c, d respectively) during the campaign measurement period, measured at the 
BAQS. The concentrations are calculated using the mean concentration of the observations for the different wind conditions and time of the day. Thus, the number of 
observations for each segment may differ.
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by morning and evening rush hours.
The average pollutant and wind conditions for each of the citizen 

science walks are given in Table 1. Walks during the days with easterly 
winds have the highest PM concentrations. Furthermore, morning walks 
presented the higher average concentrations of the pollutants compared 
to other time periods.

3.2. Source apportionment

Source apportionment using the PMF algorithm was performed on 
the collected air pollution dataset. Particle counts per size bin and the 
PM mass concentrations were obtained from OPC-N3 optical particle 
counters, the BC data from microaethalometers and the PN and LDSA 
from the DISCmini devices. Solutions with different numbers of factors 
were attempted and a 5-factor solution was considered optimal to 
describe the different sources of air pollution in the area, ensuring the 
unique nature of the factors formed (Fig. S2). The particle number size 
distribution (PNSD) profiles for the different factors are found in Fig. S3. 
The average contribution of each factor on the PM, BC, PN and LDSA is 
presented in the Table 2 and the contribution of each factor for different 
wind conditions is shown in Fig. 3. Furthermore, Fig. 4 shows the 
average contribution of each factor for each block in a 12x12 grid 
(representing 0.001′x0.001′ longitude x latitude). In this case, the grid 
presentation was chosen as these are not measured values but the output 
of the model, representing the average conditions in each block.

The first factor presents a strong contribution to the PM1, PM2.5 and 
BC concentrations, while a less significant association with the LDSA 
was also observed. The lower PM10 concentration found for this factor 
indicates the lack of coarse particles associated with the source. This 
factor is largely invariant for most wind directions and speeds, however, 
a clear peak is observed with winds from the NE. Looking at the tem
poral variation of this factor (Table S1), higher contributions of this 
factor were observed during the morning walks, especially on the days 
with easterly winds, regardless of the weekday. This factor is assigned as 
an urban background factor, which includes the homogenized effect of 
the urban sources outside the study area, mainly from the direction of 
the city centre of Birmingham located about 3 km to the east of the study 
area, as well as from other urban areas surrounding the study site.

The second and fourth factors have similar characteristics, present
ing a contribution from larger sized PM, especially in the PM10 fraction, 
while their association and effect on the BC and PM1 is negligible. The 
almost exclusive effect of these factors on the larger PM sizes explains 
the minimal effect these factors had on the total PN. Both factors present 
higher contributions from the highly residential parts of the study area, 
see Fig. 4, and lower contributions on the perimeter of the Selly Oak area 
(Table S2), with few exceptions. These are mostly associated with 
possible emissions from the train station at the western side of the block 
as well as the grill restaurants located at the Raddlebarn Road on the 
southern side, which appear to affect both factors. Cooking emissions 
may also be included in this factor, especially close to restaurants. 

Though several solutions were tested, none of them introduced a clear 
cooking factor in the area. Increased contributions to the factors are 
observed at several specific points within the study area. Specifically, for 
the second factor, these often coincide with locations where construc
tion activities were being undertaken. It is interesting to note, that while 
the correlation between Factor 2 and Factor 4 is relatively high (r =
0.66), they present different spatial hot-spots and behaviours. Factor 2, 
which is a more PM10 focused factor (PM2.5/PM10 = 0.06 and 0.19 for F2 
and F4 respectively), has sharper peaks and faster decay times compared 
to the Factor 4, as well as time periods and areas with no presence at all. 
Factor 4 has a more constant presence with less intense peaks. This 
probably explains the greater and more focused peaks found on the map 
for Factor 2 and indicate its more hyperlocal nature compared to the 
Factor 4. This is consistent with (Frederickson et al., 2022) who dis
cussed the correlation between the fluctuation of the presence and effect 
of a source and its regionality.

The third factor provides a contribution to all the PM sizes. Its effect 
seems to be more significant for PM2.5, for which it is the greatest 
contributor in the study area. Its variation with the wind is minimal, 
with the sole exception for SW winds for which its contribution is almost 
doubled. Looking at the PNSD profile for this factor, two peaks appear in 
the sizes around 750 nm and 2 μm. This particle profile is similar to the 
ones consistently found in previous source apportionment studies in the 
UK, presented similar characteristics and was associated with the 
dominant effect of marine sources, due to the ocean surrounding the 
British islands (Bousiotis et al., 2023b, 2022). As expected, this factor 
had higher average contribution for the days with strong SW winds, 
while smaller variations were found between day of the week or hour of 
the day. This factor is assigned as the marine factor.

The fifth factor is of great interest, as for the first time to the authors’ 
knowledge, a source apportionment study using LCS clearly identifies 
the effect of traffic. While the variation of the contribution of this factor 
with the wind seems to be minimal, a small increase is observed with 
northerly winds, emphasised by the great difference in its contribution 
between days with NE winds against those with SW (Table S1). This is 
expected, as the traffic flux is much greater for the two main roads 
(Bristol and Raddlebarn roads) and especially the Bristol Road located at 
the northern end of the study area (about 800 vehicles/hour during the 

Table 1 
Average conditions on each walk (16/6, 18/6, 19-6 (a) and 22/6 being morning walks, 15/6, 25/6 and 26/6 being afternoon walks and 19/6 (b), 20/6 and 25/6 being 
evening walks) measured by the LCS.

Day PM1 

(μg m− 3)
PM2.5 

(μg m− 3)
PM10 

(μg m− 3)
BC 
(ng/m− 3)

PN 
(N cm− 3)

LDSA 
(μm2 cm− 3)

WD (deg) WS 
(m/s)

Thursday 15/6 3.07 7.07 29.5 2733 15,812 25.4 NE 1.68
Friday 16/6 2.50 5.59 26.3 2424 18,592 26.4 E 1.72
Sunday 18/6 6.68 9.87 22.6 2450 14,935 24.3 E 1.56
Monday 19/6 (a) 3.91 8.77 20.0 1938 15,346 13.8 SW 2.46
Monday 19/6 (b) 2.60 6.42 20.7 1615 16,877 18.6 SW 1.89
Tuesday 20/6 2.23 4.55 15.1 1953 16,513 18.7 SW 0.92
Thursday 22/6 4.49 8.05 22.6 2688 22,195 27.4 Mixed 1.04
Sunday 25/6 3.17 5.88 21.8 2173 13,211 24.2 SW 2.76
Sunday 25/6 1.75 5.03 20.3 1047 10,108 13.3 SW 1.53
Monday 26/6 1.28 3.97 16.6 1309 16,143 11.7 SW 1.91

Table 2 
Average PM1, PM2.5, PM10, BC, PN and LDSA of the five factors.

PM1 

(μg 
m− 3)

PM2.5 

(μg 
m− 3)

PM10 

(μg 
m− 3)

BC 
(ng/m− 3)

PN 
(N cm− 3)

LDSA 
(μm2 

cm− 3)

F1 (Urban 
background)

1.58 2.21 1.24 614 Negligible 3.29

F2 (Local) 0.02 0.13 2.32 Negligible Negligible 0.10
F3 (Marine) 0.79 3.22 3.90 Negligible 2460 Negligible
F4 (Local) 0.08 1.01 5.36 20 Negligible 0.80
F5 (Traffic) 0.07 0.17 0.76 676 11,388 13.5
Unexplained 0.16 0.43 3.36 696 2124 2.34
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measuring campaign hours). This factor has a rather small effect on all 
the PM size ranges, but a strong association was found with the BC 
concentrations, the PN and the LDSA. The combination of the strong 
effect on the PN but limited on the PM1 further establishes its traffic 
nature, as the vehicle emissions from the tailpipe are mostly below the 
measuring capabilities of the OPC (Beddows et al., 2023; Kittelson et al., 
2003). It is also notable that the association of this factor with the LDSA 
and the PN is better established compared to that with the BC. This is in 
agreement with the findings of Chang et al., (2022), who reported that 
the relationship of these two variables with the traffic flux is greater than 
that of the BC. In our study, BC was almost equally attributed to the 
urban background and the traffic factors, while only a small portion was 
associated with other sources. The relationship of this factor with traffic 
is also visible in Fig. 4, in which we can see the high contributions at the 
Bristol Road (a very busy road on the northern part of the study area) as 
well as to a lesser extent at the Raddlebarn Road (the horizontal road on 
the southern end of the study area). This factor is assigned as the local 
traffic factor.

3.3. Spatial source separation

The separation of the sources that contribute to local air quality can 
provide focus to the actions required to control them. In the previous 
section, five distinct sources of pollution have been identified. Factors 1 
and 3 represent regional sources that are clearly associated with specific 
wind directions and are less affected by diurnal variations. Factors 2, 4 
and 5 were found to have more local characteristics. Factor 5 is easily 
assigned as a local traffic source. Factors 2 and 4 appear to be associated 
with sources specifically within the study area. Assigning the factors 
identified to the local (F2, F4 and F5) and regional sources (F1 and F3) 
allows for the assessment of air quality actions required (Table 3). 
Starting with PM1, only a small fraction of the total concentrations is 
associated with local sources (6.6 %), showing their largely regional 
character. However, PM1 is very different to the total PN, as they were 
mostly assigned to the traffic factor (F5 = 82 %). This is in agreement 
with Rivas et al., (2020) who found similar traffic contributions to the 
ultrafine particles in London’s urban environment. Similar are the re
sults for the association of the sources with the LDSA, with the local 
sources having the greatest contribution, largely due to traffic factor 

(F5), which according to our analysis was responsible for about 67 % of 
the total LDSA contributions.

It is highlighted that this study has insufficient data to provide an 
assessment of the air quality within the study area either at the annual or 
daily timescales. The walk data are not continuous and hence cannot be 
used for daily averages and miss the night-time completely. The total 
campaign was significantly less than a year and hence cannot be used for 
annual averages. Thus, the comparisons presented hereafter are not to 
be used for general air quality assessment, but rather to provide a scale 
to understand the effect of different factors.

With respect to PM2.5, the regional sources of PM2.5 alone are greater 
than the annual WHO recommendations (World Health Organisation, 
2021) during the measurement hours, though significantly lower than 
the daily limits (the annual and daily PM2.5 recommendation by WHO 
are 5 and 15 μg m− 3 respectively). The contribution of the regional 
sources was more than 80 % of the total PM2.5 concentrations explained 
by the model, making them the most important contributor for the PM2.5 
pollution.

The results are different for the PM10 though. While the average 
PM10 concentrations are greater than the annual WHO guideline as well, 
these values are largely driven by the local sources of particles rather 
than the regional, with a contribution of more than 60 %. Finally, BC is 
associated with both the urban background and traffic results with an 
almost equal contribution of local and regional sources to the total BC 
concentrations.

It is noted that about 20 % of the PM10 concentrations and 30 % of 
the BC concentrations were not explained by the model. This means that 
these percentages of the PM10 and BC were not assigned to any of the 
factors and thus their sources cannot be pinpointed. This along with the 
very low contribution of the Urban Background (F1) on the coarse 
particle (PM2.5-10) concentrations may be the reason of the regional (as 
well as that of the F1) PM10 contribution erroneously appearing lower 
than that of the PM2.5 on the present analysis. Solutions with a greater 
number of factors were attempted but did not improve the performance 
of the model for these two variables. As the PMF does not comprehend 
the inherent relations between the variables inputted, such discrep
ancies may occur. Furthermore, the possibility that the high un
certainties due to the nature of the low-cost sensors may also be 
responsible for these discrepancies cannot be ruled out. These points 

Fig. 3. Polar plots of the contribution of the factors. The position of each spot in the plot resembles the wind direction and speed (the further from the centre, the 
greater the wind speed) for which the measurements are averaged. The concentrations are calculated using the mean concentration of the observations for the 
different wind conditions and time of the day. Thus, the number of observations for each segment may differ.
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should be considered for future studies.
Looking at the effect of the regional factors compared to the local 

ones, we see the effect of the urban background to be greater in the 
perimeter of the Selly Oak residential area (Table S2). Almost all roads in 
the perimeter present average contributions of the first factor that are 
greater than 1, which means that the effect of that factor is greater than 
average for these roads. On average, the effect of the urban background 
is about 20 % greater at the perimeter of the block compared to the inner 
parts of the block. This is probably the result of the lower density urban 
landscape surrounding the Selly Oak residential area, compared to the 
densely built space within it, which may reduce the relative effect of the 
more regional sources. The only exception to this is the Raddlebarn Road 
for which, while the effect is greater than most of the inner roads, is 

Fig. 4. Average G contribution (normalized to 1) per block for each factor (factor 1 to 5 is shown in figures (a) to (e) respectively) (each block is 0.001 x 0.001 
longitude x latitude points, about 111 m x 111 m = 12321 m2).

Table 3 
Average contribution of local and regional sources on the PM (μg m− 3), BC (ng/ 
m− 3), PN (N cm− 3) and LDSA (μm2 cm− 3) concentrations.

Local sources 
contribution

Regional sources 
contribution

Local 
sources %

Regional 
sources %

PM1 0.2 2.4 6.6 93.4
PM2.5 1.3 5.4 19.4 80.6
PM10 8.4 5.2 62.2 37.8
BC 696 614 53.1 46.9
PN 11,388 2460 82.2 17.8
LDSA 14.4 3.3 81.4 18.6
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smaller than the average. A possible explanation for this is the Selly 
Park, located south of that road, which may have a reducing effect of the 
incoming urban background emissions due to the presence of trees. In 
contrast, the local factors present greater contributions within the block 
compared to the perimeter. By averaging the contribution of the factors 
per grid point included on each road in the study area, we were able to 
compare the effect of the local sources between them. The more PM10- 
focused F2 and F4 were found to be about 12–14 % greater on the roads 
within the block compared to those at the perimeter. Finally, the effect 
of the traffic factor is about 60 % greater for the perimeter of the block 

compared to the inner part (Table S2). As explained earlier, while the 
inner roads have some traffic activity, this is a lot less than that of the 
outer roads and especially Bristol Road, which presents the greatest 
contribution for this factor. Additionally, looking at the standard devi
ation of the different factors among the roads, we can see that the 
variation is a lot greater for the local factors compared to the regional 
ones. This is an expected result as the variability of the regional sources 
is a lot lower and its effect is expected to be more balanced throughout 
the block due to their nature.

Fig. 5. Average (a) PM2.5 and (b) PM10 mass concentrations, (c) LDSA and (d) Black carbon concentrations during the walks of the campaign. The position of the 
points is the average position of the measurements per each block.
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3.4. Mapping an area

Mobile campaigns can be very useful for air quality studies as they 
provide data at a hyperlocal resolution. We now show that source 
apportionment methodologies can be used to generate hyperlocal source 
apportionment. Maps of the average concentrations for the different 
spots within the study area during our campaign are found in Fig. 5.

From Fig. 5, great variability in the different pollutants can be 
observed. For the regulatory important PM2.5 and PM10, higher mass 
concentrations are found mostly within the Selly Oak block. According 
to the analysis presented in the previous section, the sources associated 
with such emissions have a more local character and appear to have a 
greater effect especially on the PM10 within the block compared to the 
perimeter areas. This though provides only a limited image of the health 

risk that exists for the different areas of the block. The LDSA, a metric 
that provides valuable information for health effect studies but is not 
regulated, shows the greater risk found on the perimeter of the block and 
mainly the northern side where the Bristol Road is, as well as on the busy 
junctions at the NW and SE of the study area. As highlighted earlier in 
the source apportionment analysis, the emissions in that road are mainly 
of traffic nature which, due to their size and chemical composition, may 
be associated with the most adverse health effects.

Furthermore, the combination of the mobile measurements and the 
source apportionment analysis can provide information about the evo
lution of the different sources, and the range of their effect. An example 
of such an analysis is found in Fig. 6, in which the 10 points traversing 
Dawlish Road, the North − South of the block, can be assessed both for 
the average concentrations of the PM2.5, PM10 and LDSA, as well as the 

Fig. 6. Map of the road (a) and variation of the sources of PM2.5 (b), PM10 (c) and LDSA (d) for a transect down Dawlish Road. The location of construction sites are 
highlighted on the PM10 figure.
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partial effect of each factor on them. For the PM2.5 we can see that the 
most important sources are the regional ones, with an (as expected) 
almost equal effect across the whole road. This changes for the PM10, for 
which local sources appear to be more influential in its variation, with 
the highest contribution being that of F4. It is notable that two of the 
peaks of the contribution of F4 on that road appear close to the points 
where construction work is undertaken and the PM10 concentrations are 
expected to be increased (Hong et al., 2020; Sekhavati and Yengejeh, 
2023). Finally, for the LDSA, the profile is completely different. While 
there is almost a consistent value within the block, we can see an in
crease on the edges, where the road meets the two main traffic roads in 
the block. For this edge effect, it is the variation of the traffic factor (F5) 
that contributes the most significantly.

A similar analysis was done for the Bristol Road, which is the main 

traffic road within the study area. The profile of the PM2.5, PM10 and 
LDSA are found in Fig. 7. The most interesting variation for this road is 
within the LDSA, which is directly associated to traffic emissions. The 
LDSA average values are almost double to those observed at Dawlish 
Road (Fig. 6). The peaks found coincide either with the traffic lights in 
the area, or near the junction at the western end of the road which has no 
traffic light there. For these specific points, the LDSA values associated 
with the traffic factor are almost 150 % greater than those for the whole 
Bristol Road and more than 200 % greater than the peak points found in 
Dawlish Road.

The same analysis was done for the rest of the roads as well, mapping 
the different sources and their effect within the study area. The results of 
this analysis are presented in Fig. S4a, b. Looking at the detailed analysis 
of each one of the roads, the effect of several point or area sources, such 

Fig. 7. Map of the road (a) and variation of the sources of PM2.5 (b), PM10 (c) and LDSA (d) for a transect across Bristol Road. Major (on a junction) and minor (no 
junction) traffic light points are marked by symbols on the LDSA figure.
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as the train station at Heeley Road (H3 to H6), the restaurants at Rad
dlebarn Road (R3), the junctions at both ends of Bournbrook Road (O1 
and O10), or the local PM10 hotspots, mainly attributed to variations of 
F2 and F4 and once again coinciding in some cases at points where 
construction activities were undertaken (e.g. around T8 in Tiverton 
Road or S4 and S6 in Harrow Road).

The results from the source apportionment analysis of mobile 
monitoring data show the great potential of the methodology in 
providing not only a detailed map of pollution hotspots, but also the 
attribution of different sources to the hot spots.

4. Discussion

In this paper, we show that LCS mobile monitoring and source 
apportionment can be used to generate a wealth of air quality data that 
can pinpoint air pollution sources without the need of extensive or 
expensive campaigns. This level of detail is not possible with static 
networks. Hence, mobile LCS provide the opportunity to dramatically 
extend the existing regulatory network due to their low cost and 
portability. Through a relatively small number of citizen science enabled 
mobile monitoring walks we have been able to map and highlight air 
pollution hotspots and sources relevant to thousands of people living 
within a highly urbanized area.

Previous studies using static monitoring locations have successfully 
identified the importance of regional sources of PM pollution. This study 
highlights that mobile measurements can identify hyperlocal pollution 
hot spots in addition to regional sources with a significantly reduced 
cost. Hyperlocal sources such as construction sites or road junctions 
typically only influence local air quality over a short range, but their 
impact can be significant since the study area is densely populated.

The mobile source apportionment approach allows for the relative 
importance of the different sources on the local environment to be 
assessed. Through this information, better urban planning and gover
nance is possible, as the method provides the information needed to 
assess the relative importance of different sources. It is noted that some 
sources identified are not important from a regulatory PM perspective 
which currently only considers PM2.5 and PM10 mass concentrations. 
However, PM1, PN and LDSA have consistently been shown to be 
important for public health. For example, the traffic factor (Factor 5) 
from our analysis is not “visible” if one just looks at PM2.5 and PM10 mass 
concentrations, but it is significant from a PN and LDSA perspective 
which are indicative of smaller particles that contribute little to PM2.5 
and PM10 mass concentrations. The traffic factor which appears to have 
hot spots within the study area, even though it is present almost 
throughout the study area, plays a decisive role on the variation of the 
pollutants associated with smaller particles. The negative effect of 
smaller particles upon public health are well documented (Chang et al., 
2022; Schmid and Stoeger, 2016). Several studies have suggested that in 
many cases the mass concentration of particles can be of lesser impor
tance in comparison to the number of particles or their surface area 
(Schmid and Stoeger, 2016).

Our study shows that mobile LCS monitoring with citizen scientists 
provides an affordable and versatile approach to providing air pollution 
information services. Going forward, the mobile monitoring can be 
combined with readily available public information on socio-economic 
data (population density, traffic flow, etc.) and meteorological vari
ables to generate a digital twin of the causes and effects of local air 
pollution. This will provide information at a local scale that can influ
ence both governance and public understanding of air pollution and 
provide information on how to reduce and avoid air pollution exposure.

The method presented comes with certain limitations. The citizen 
science walks provide only a snapshot of the pollution profile at the 
given times and locations of each walk. In many cases, significant 
sources of pollution were not identified in walks made at different times 
of the day. For example, the effect of construction works is greatly 
reduced when presenting the average of all the walks, as construction 

typically only occurs during the working day. A solution to this would be 
to engage more citizen scientists to take more walks at different times of 
the day, but this would have implications upon OpEx costs.

In our study, we achieved the mapping of sources and their relative 
importance with only 10 citizen science walks. The approach can be 
translated and expanded to other locations. Future studies should be 
tailored according to the specific needs in each case. For example, our 
analysis does not cover possible sources during night hours since no 
walks were taken during this period. The approach could be used to 
provide addition information to regulatory networks. Crowd collected 
measurements reduce OpEx costs, and LCS reduce CapEx costs. The 
Internet of Things (IoT) methodologies needed for such work are already 
available (Kortoçi et al., 2022; Robinson et al., 2018). The outputs from 
fast and flexible campaigns, combined with the results from the existing 
network can greatly improve and extend the capabilities for pollution 
monitoring and control and increase our understanding of local air 
pollution, actively engaging the public and help in the improvement of 
the air quality for everyone.

5. Conclusions

In the present study, a novel methodology is presented using only a 
handful of mobile measurements collected by low-cost sensors, 
measuring PM, BC, total particle number and LDSA, to identify and 
quantify the effect of the sources influencing these in a residential area 
of Selly Oak, Birmingham, UK. The methodology successfully identified 
the mix of regional and local sources affecting the air quality in the area 
with multiple proportions depending on the area, time of the day, 
weekday and synoptic conditions. In most cases, the PM concentrations 
found were higher than the hourly averages suggested by the WHO, 
though significantly lower than the annual suggested averages. For these 
averages it should be considered that all measurements were done 
during daytime, which points that the daily averages are expected to be 
significantly lower. Five distinct sources of pollution were identified 
using the PMF, three of which had a more local character while the other 
two were associated with sources further outside from the block. 
Regional sources had a greater effect on the smaller PM1 and PM2.5 
concentrations, while PM10 concentrations were mainly driven by local 
sources (more than 60 %). Among the sources found the traffic factor 
was identified for the first time in a study using low-cost sensors. Its 
effect was not significant on the PM, but greatly increased the total 
particle number as well as the LDSA, a metric that measures the effect of 
small particles on the respiratory system and is barely captured by the 
currently regulated metrics. Due to this discrepancy, the shortcomings of 
using just the PM2.5 and PM10 concentrations for regulatory studies 
especially in urban areas is illustrated. Our study showed that some parts 
of the study area did not have significant concentrations of the regulated 
PM, but were directly affected by the traffic emissions, and could falsely 
be considered as within safe limits. In a similar manner, our study 
pointed the limitations that come with the existing measuring network 
to capture the significant variations of the larger particles from hyper
local sources that extend only to a limited area. Even though the con
centrations of PM2.5 and PM10 are considered to barely vary in such 
small areas, our results showed that the effect of these hyperlocal 
sources only extend to a couple of hundred meters, still affecting the air 
quality for hundreds of people in such a densely populated area. While 
studies like this can provide crucial information in dealing with hyper
local air quality problems, extra care should be taken on their design to 
provide a realistic and non-biased result. Thus, more similar studies in 
different scenarios should be done to improve their capabilities and 
extend their usage.

Code availability

The data analysis in the present study was carried out using both 
open source and proprietary software. While the proprietary software is 
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source software is available from D.B. (d.bousiotis@bham.ac.uk) upon 
reasonable request.
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