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Abstract. Trajectory forecasting is crucial for video surveillance analyt-
ics, as it enables the anticipation of future movements for a set of agents,
e.g., basketball players engaged in intricate interactions with long-term
intentions. Deep generative models offer a natural learning approach for
trajectory forecasting, yet they encounter difficulties in achieving an op-
timal balance between sampling fidelity and diversity. We address this
challenge by leveraging Vector Quantized Variational Autoencoders (VQ-
VAEs), which utilize a discrete latent space to tackle the issue of poste-
rior collapse. Specifically, we introduce an instance-based codebook that
allows tailored latent representations for each example. In a nutshell,
the rows of the codebook are dynamically adjusted to reflect contextual
information (i.e., past motion patterns extracted from the observed tra-
jectories). In this way, the discretization process gains flexibility, leading
to improved reconstructions. Notably, instance-level dynamics are in-
jected into the codebook through low-rank updates, which restrict the
customization of the codebook to a lower dimension space. The resulting
discrete space serves as the basis of the subsequent step, which regards
the training of a diffusion-based predictive model. We show that such a
two-fold framework, augmented with instance-level discretization, leads
to accurate and diverse forecasts, yielding state-of-the-art performance
on three established benchmarks.

Keywords: Trajectory forecasting · Vector Quantization.

1 Introduction

Trajectory forecasting finds applications in video surveillance [19], multi-object
tracking [22, 6], behavioural analysis [29], and intrusion detection [34]. The goal
is to predict the future paths of a set of agents from a few observations of their
motion. The prediction can incorporate the interactions between pedestrians [15,
33, 24], or visual attributes of the environment they move within [5].

As multiple plausible paths can be forecast, trajectory prediction reveals
an uncertain and multi-modal nature. To achieve this, recent data-driven ap-
proaches [23, 12, 16] lean toward a stochastic formulation that places a distribu-
tion over the future trajectory, rather than a single estimated path with 100%
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certainty (i.e., deterministic approaches [24]). In doing so, recent stochastic
methods take advantage of the latest breakthroughs in deep generative modeling
for image generation. For example, [12, 30] resorted to Generative Adversarial
Networks, while [45, 16, 36] borrowed ideas from the class of variational methods.

One of the hindrances toward the application of variational approaches is
the posterior collapse issue: i.e., when the latent variables collapse to the prior
becoming uninformative; as a consequence, the decoder learns to ignore them.
This translates into a model with undermined generative capabilities, wherein
its predictions are distributed on a single path (e.g., , the most trivial one) with
low uncertainty. A similar tendency (mode collapse) has been observed in adver-
sarial networks, and has been addressed through burdensome learning objectives
promoting variety [12, 30], or by devising multiple generator networks [5].

In the field of image generation, Vector Quantized Variational Autoen-
coders [40] (VQ-VAEs) have proven to mitigate posterior collapse. VQ-VAEs
models avoid the hand-crafted Gaussian prior distribution; differently, they build
upon a learnable categorical prior, thereby yielding a discrete latent space. The
symbols of this space are the keys of a fixed-size dictionary (codebook), whose
values are learnable latent codes. Thanks to the resulting increased flexibility,
VQ-VAEs embody a promising paradigm for trajectory forecasting.

In this respect, our main contribution regards the content of the VQ-VAE
codebook. In particular, while the original formulation devises a single codebook
shared across all examples, we propose to dynamically adjust its values based on
the context of each example, leading to an instance-based codebook. We refer
as context to the set of historical information related to each agent, namely the
past steps of its trajectory as well as its interactions with nearby agents. In this
way, we aim to encourage even more flexibility during the discretization process,
as distinct motion patterns can be discretized with varying granularity.

Moreover, we envision the customization of the codebook as an adaptation
of the shared original VQ-VAE codebook. By doing so, our goal is to strike a
balance between per-instance customization and the emergence of cross-instance
concepts that are relevant across multiple examples. In practice, we draw inspira-
tion from recent advances in Parameter Efficient Fine Tuning and represent the
dynamic adjustments to the codebook as low-rank updates of its values (see
Fig. 1). We show that such a modeling constraint improves the representation
capabilities of the learned latent space, thereby encoding additional informa-
tion and facilitating the reconstruction task. The traditional subsequent stage
in VQ-VAEs involves fitting the distribution on the discrete latent codes. In this
respect, we make use of a vector-quantized diffusion model [10] to learn the im-
plicit prior, departing from existing approaches [40, 7] that rely on autoregressive
priors, which are more susceptible to issues related to error accumulation.

The contributions are i) to the best of our knowledge, we are the first leverag-
ing VQ-VAEs in a trajectory generation task; ii) we introduce a novel instance-
based codebook based on low-rank modeling; iii) we achieve SOTA performance
on three established benchmarks (Stanford Drone [28], NBA [20] and NFL [41]).
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2 Related Work

The traditional approach to trajectory prediction considers solely the past move-
ments of the agent [3]. However, its motion is likely to be influenced by the mo-
tions of other agents (e.g., to avoid collisions or to perform coordinate actions).
The first approaches took into account social behaviors through hand-crafted re-
lations, energy-based features, or rule-based models [2, 26]. In recent years, the
focus has shifted towards data-driven approaches [1, 12], leveraging deep mod-
els to extract social information [15, 33]. Others, instead, rely on the attention
mechanism, which has proven highly effective at capturing interactions within
tokenized data [24]. For example, [15] employs a graph-based attention mecha-
nism to model human interactions, while [24] utilizes a social-temporal attention
module to capture temporal relationships between consecutive time steps and
interpersonal interactions occurring among agents.

Given the inherent uncertainty and multi-modal characteristics of future tra-
jectories, recent approaches embrace a deep probabilistic framework to model
their distribution. S-GAN [12] leverages a conditional Generative Adversarial
Network (GAN) [8], while the authors of SoPhie [30] extend GANs to incorpo-
rates visual and social interaction components. Other works utilize conditional
Variational Autoencoders (VAE) [17] for multimodal pedestrian trajectory pre-
diction, including [45, 16, 36, 31, 46]. Trajectron++ [31] employs a VAE and rep-
resents agents’ trajectories in a graph-structured recurrent neural network, while
PECNet [23] integrates VAEs and goal conditioning. However, both GAN and
VAE-based methods grapple with collapsing issues in trajectory generation, ne-
cessitating burdensome countermeasures [38]. Ultimately, the work by [11] pi-
oneers the utilization of denoising diffusion models [13] within the trajectory
prediction framework, marking a significant advancement in this domain.

Vector Quantization Models. Vector Quantized Variational Autoencoders [40]
address posterior collapse by replacing the continuous latent space of VAEs with
a discrete set of codewords. Starting from pioneering works, which showed the
potential of these models in image generation [40, 27], recent studies focused on
improving the two fundamental stages: the codebook learning and the discrete
prior learning [18]. In this respect, SQ-VAE [35] replaces deterministic quanti-
zation with a pair of stochastic dequantization and quantization processes. To
create a more comprehensive codebook, [7] supplements the original training
losses of VQ-VAE with adversarial training. Additionally, [47] adopts a mask-
ing strategy during training and introduces prior distribution regularization to
mitigate issues related to low-codebook utilization.

The advances regarding discrete prior learning involve architectural modifi-
cations [7] and a critical reevaluation of autoregression. [37] employs a discrete
diffusion architecture to model code prediction, while MaskGIT [4] utilizes a
bidirectional transformer decoder. This decoder generates all tokens of an image
simultaneously and iteratively refines the image based on the preceding gen-
eration. In this paper, we condition the codebook on historical instance-level
information while preserving the discrete nature of the latent space.
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3 Preliminaries

We denote the future trajectory as y ∈ RT×d, where T is the number of future
time steps and d is the input channel dimension. When dealing with pedestri-
ans, their trajectories are projected into the 2D bird’s-eye view (so d = 2). The
predicted trajectory ŷ is generated by a learnable model, fed with a set of condi-
tioning information: i) the observed trajectory x ∈ RTp×d of the agent, i.e., the
coordinates observed at previous Tp steps, and ii) a set of neighboring trajec-
tories denoted as X = {x1, x2, . . . , xN}. We define neighbors of an agent as all
agents within the same scene, without imposing any distance threshold.
Vector Quantization. Standard VAEs [17] employ i) an encoder E ≡ E(y|θE)
that, given input y, outputs a parametric posterior distribution q(z|y) over latent
variable z; ii) a decoder G ≡ G(z|θG) that provides the reconstruction of the in-
put data as pθG(y|z). The posterior q(z|y) is encouraged to conform to a standard
Gaussian prior distribution p(z), which could lead to over-regularized represen-
tations (posterior collapse). VQ-VAEs [40] extend VAEs by employing discrete
latent variables and Vector Quantization (VQ) [9]. In particular, both posterior
and prior distributions are categorical, and their samples provide indices for a
learned embedding table e ∈ RC×D, which consists of C static D-dimensional
latent vectors. As outlined in the following paragraphs, the training of VQ-VAEs
is divided into learning the codebook and fitting the categorical prior.
First Stage. Given the input y ∈ RT×d, the encoder provides a continuous rep-
resentation z ∈ RT×D, where zt ∈ RD with t ∈ {1, 2, . . . , T} and D indicates the
dimension of the latent space. Then, the VQ-VAE characterizes the posterior as
a joint distribution over T independent categorical variables q(c1, c2, . . . , cT |y)
(one for each latent). Each marginal q(ct|y) is determined by matching each
element of the encoding sequence zt with the nearest vector in the codebook e:

q(ct|y) = C(p1, p2, . . . , pC)︸ ︷︷ ︸
[0,...,0,1,0,...,0]

s.t. pc =
{

1 if c = argminc′∈{1,2,...,C} ∥zt − ec′∥2
2

0 otherwise.

(1)
Notably, the posterior distribution is deterministic and not stochastic as for
VAEs: hence, we can draw a sample zq ≡ zq(y) from the posterior distribution
by selecting the corresponding rows of the codebook, as follows:

zq = [ec1 , ec2 , . . . , ecT
]

ct ∼ q(ct|y) =⇒ ct = argmax q(ct|y).
(2)

The subsequent step regards the decoder G, which reconstructs ŷ from the sam-
pled latent vector. During training, the first stage optimizes the following loss:

LFS = log pθG(y|zq)︸ ︷︷ ︸
rec. error e.g., MSE

+
∑

t
∥sg[zt]− ect

∥2︸ ︷︷ ︸
embedding loss

+
∑

t
∥zt − sg[ect

])∥2︸ ︷︷ ︸
commitment loss

, (3)

where sg is a shortcut for the stopgradient operator, which stops backpropaga-
tion from that computational node backward. The second term encourages the
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Fig. 1. Overview of our approach to trajectory prediction, based on Vector Quantiza-
tion and Low-Rank adaptation of the codebook (highlighted in the purple box).

quantized latent vectors to be as close as possible to the nearest codeword, while
the third one encourages the encoder to be committed to the chosen codeword.
Second Stage. The goal here is to learn a parametric model pθp

(c1, c2, . . . , cT )
– termed categorical prior – which allows to draw new samples from the latent
space. During this phase, the modules of the VQ-VAE are no longer subject to
learning. Given the trained encoder, each training example y is embedded into
a sequence of indices, built by relating each latent vector to the nearest row of
the codebook (as in Eq. 2). On top of that, the generative model targets the
generating process p(c1, c2, . . . , cT ) of the discrete latent codes, and optimizes
the following Maximum Likelihood Estimation (MLE) training objective:

LSS = E c1,...,cT

ct∼q(ct|y)
[− log pθp(c1, c2, . . . , cT )]. (4)

4 Low-rank Adaptation for VQ-VAE

We herein present our approach to trajectory prediction, which we name LRVQ,
depicted in Fig. 1. Briefly, we exploit VQ-VAEs to encode the future trajectory
y of a given agent. On top of that, the following main novelties are introduced:

– We extend VQ-VAE to predict a trajectory coherent with the observed his-
torical trend. To do so, we feed additional contextual information to the
VQ-VAE, conditioning both the prior and the posterior distributions. The
contextual information consists of the past observed trajectory x, and a sum-
mary of the interactions between the agent and its neighbours. The structure
of the resulting quantization model is presented in Sec. 4.1.

– To encourage further flexibility, the codebook itself is conditioned on the
additional contextual information (see Sec. 4.2). As discussed later, the con-
text is introduced by devising a low-rank adjustment to the codebook.
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– To avoid the error accumulation and the unidirectional bias problem, typical
of auto-regressive methods [10], we make use of a discrete diffusion model
for the generation of the sequence of indices (see Sec. 4.3). We also introduce
a new sampling technique, based on the k-means clustering algorithm,
to produce better and more consistent generations (see Sec. 4.4).

4.1 Trajectory Forecasting with VQ-VAEs

Formally, our VQ-VAE can be summarized as:

hctx = Ectx([x,X ]) (context encoding) (5a)
zq = E(y, [Y, hctx]) (encoding) (5b)
ŷ = G(zq,Zq), (decoding) (5c)

where X , Y and Zq represent respectively the past, the future, and the latent
quantized representation of the nearby agents’ trajectories (see Sec. 3). The
modules Ectx(·), E(·), G(·) are three neural networks, each of which exploits
social-temporal transformer [24] to account for social-temporal relations.

In particular, a contextual encoder Ectx(·) computes hidden features hctx ∈
RTp×D that summarize both the past trend x ∈ RTp×2 of the trajectory and
spatial interactions (Eq. 5a). The function E(·) plays the role of the VQ-VAE
encoder, transforming the future trajectory y into a discrete representation zq ∈
RT×D (see Eq. 5b). To condition the model on historical information, the encoder
is fed also with the hidden contextual information hctx; in detail, a tailored cross-
attention layer is devised to mix future and past information. Finally, in step (5c)
we achieve the estimated future trajectory ŷ ∈ RT×2 through the decoder G(·).

As well as traditional VQ-VAEs, we employ Mean Squared Error (MSE) as
our reconstruction term between the ground truth and predicted trajectory.

4.2 Instance-based Codebook

The codebook plays a crucial role in VQ-VAEs and can cause instabilities during
optimization. For instance, the uneven utilization of the vectors of the codebook
is a factor that may lead to inefficiencies in representation learning. This imbal-
ance often results in certain elements of the codebook being underutilized, while
others never match with real-valued embeddings. To mitigate these issues, the
authors of [44] resort to reducing the latent-space dimensionality, showing that
it leads to a condensed but richer codebook. In practice, before quantization,
each vector z is projected from RD to a lower-dimension space Dr ≪ D. In the
following, we will refer to this strategy as static codebook, to distinguish it
from our proposal that instead leverages dynamic cues.

Our idea is to modify the content of the codebook, such that it reflects the
motion observed in the past trajectory. The intuition is that different motion
styles (e.g., straight vs. curvilinear) could prefer distinct latent codes and dis-
cretization strategies. On this basis, we exploit again the contextual features hctx
to generate an instance-based codebook ξ = fξ(·, hctx), computed through
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a tailored learnable module fξ. The latter shares the same design of the above-
described encoding networks and hence builds upon social-temporal transform-
ers [24]. Afterwards, we combine static and instance-based codebooks by means
of summation, thus obtaining a conditioned codebook ec:

ec = l2_norm(e) + λξl2_norm(ξ) (6)

where l2_norm indicates the row-wise l2-normalization v/∥v∥2 and λξ is an hyper-
parameter that weighs the sum. We leverage normalizing layers to ensure that
the two components contribute almost equally to the final embedding table.

Moreover, the way we define the codebook draws inspiration from the suc-
cesses of low-rank adaptation [14] for fine-tuning Large Language Models (LLMs).
Namely, we opt for a low-rank characterization of fξ, which means that the
instance-driven modifications to the static codebook lie on a lower-dimensional
manifold of the parameter space. We hence define the instance-based codebook
ξ as a matrix product of two low-rank matrices Bctx and A, as follow:

Bctx = fξ(B, hctx) where B,Bctx ∈ RD×r

ξ = BctxA where A ∈ Rr×C .
(7)

Considering B as a set of learnable tokens, fξ adopts cross attention between
the conditioning information hctx and B to create an instance-based Bctx.

4.3 Diffusion-based Categorical Prior

As previously mentioned, the second main stage regards the training of the
parametric categorical prior pθp

(c|x,X ) (note that the pθp
is also conditioned

on historical information), where c = {c1, c2, . . . , cT }. Notably, the learned prior
serves to forecast the future trajectory y at inference time, when the posterior
distribution of y is not available. Sec. 4.4 provides a detailed description of the
sampling procedure, while the rest of this section describes the architectural and
training aspects of the categorical prior.

We borrow the design of the categorical prior from the framework of Denois-
ing Diffusion Probabilistic Models (DDPMs). In particular, we employ vector-
quantized diffusion models [10], as they naturally handle discrete distributions.
Notably, the application of DDPMs allows one to learn the categorical prior
without the need for autoregressive modeling, as commonly employed in many
existing approaches [39, 7]. In the context of trajectory prediction, we view the
adoption of a non-autoregressive model as an additional strength. On the one
hand, auto-regressive methods can leverage the inherent inductive bias of time-
series data, where consecutive time steps relate to each other. However, this often
results in error accumulation issues and in the so-called unidirectional bias [10],
which blurs contextual information that flows in a direction not coherent with
the chosen auto-regressive order. In the task under consideration, this means
that auto-regressive approaches may struggle to leverage cues emerging in later
moments of the trajectory, as the goal or the long-range intention of the agent.
These crucial aspects of trajectory prediction [23] could be better addressed by
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the approach proposed in this work, which is order-free and capable of captur-
ing multiple plausible trends.

Formally, we define qdiff as the diffusion process that injects incremental
noise to the token sequence c for Ψ diffusion steps. Instead, pdiff

θ is the denoising
process that gradually reduces the noise of the noised sequence. The parameters
θ of the denoising module are trained with the variational lower bound [32]:

Lvlb = L0 + L1 + · · ·+ LΨ−1 + LΨ , (8a)

Lψ = DKL(qdiff (cψ|cψ−1) ∥ pdiff
θ (cψ|cψ+1, Ĉψ, x,X )), (8b)

Lc
0

= − log pdiff
θ (c0|cψ, Ĉψ, x,X ), (8c)

where we use x, X and Ĉψ – the token sequence of neighboring agents at diffu-
sion step ψ – as conditioning information during denoising. (8c) is an auxiliary
objective encouraging the prediction of a noiseless token s0. The loss function:

L ←

{
L0, if ψ = 1
Lψ−1 + λLc0 otherwise.

(9)

We refer to [10] for more exhaustive details on the diffusion steps and the prior.
Generation. At inference time, the past and social information is encoded
using Ectx and then passed to the diffusion process pdiff

θ . The latter, after Ψ
denoising steps, provides a (denoised) sequence of T indices ĉ ∈ RT . These indices
represent the encoding of the future unobserved trajectory; therefore, we used
them to select the proper elements of the codebook ec, thus allowing us to create
a quantized sequence representation zq. Then zq undergoes decoding through the
VQ-VAE decoder G, which finally yields the generation of trajectories ŷ.

4.4 Enforcing Effective Multi-modal Forecasting
The sampling approach described above represents the common way to draw
new samples from the learned prior of a VQ-VAE. However, we build upon it
to create a stronger and richer selection strategy that furthers the multi-modal
capabilities of DDPMs. The standard evaluation process involves sampling K
distinct trajectories from the model and assessing the top-performing one (as
described in Sec. 5). Therefore, each methodology must find the right balance
between accuracy in its prediction and potential for exploration. The proposed
procedure goes in this direction: we generate numerous raw future paths, called
guesses, and then condense them into the most representative ones. In formal
terms, we sample N guesses and then perform the k-means clustering algorithm,
with a number of clusters equal to K < N (in our experiments, we set N = 200
and K = 20). We view the resulting centroids as the principal modes of the
predictive distribution learned by the DDPM and thus use them for prediction
in place of the original samples. This strategy guarantees a twofold advantage
compared to naive prediction: firstly, out-of-distribution samples typically form
independent clusters, thus enhancing exploration; secondly, the use of centroids
reduces the quantization noise, as in-distribution samples are grouped into large
clusters and averaged element-wise (see Fig. 2).
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UNIFORM SAMPLING k-MEANS CENTROIDS STRATEGY

ADE: 12.88
FDE: 25.84

ADE: 11.34
FDE: 9.16

Uniform sampled guess
Centroids

Single guess
Best guess/centroid

Trajectory past
Trajectory future

Fig. 2. Comparison between the K = 5 samples obtained from a uniform sampling
strategy (on the left) and the ones given as output from the proposed k-means centroids
sampling strategy (on the right), starting from the same N = 20 initial guesses.

5 Experiments

We assess our proposal on the following three trajectory prediction benchmarks.
Stanford Drone Dataset (SDD). The dataset [28] gathers trajectories of
pedestrians within the Stanford University campus in a bird’s eye view. Given 8
time steps (≈ 3.2 seconds), methods have to forecast the subsequent 12 frames
(4.8 seconds). We employ the established train-test split [23].
NBA SportVU Dataset (NBA). Collected by the NBA’s SportVU automatic
tracking system, this dataset [20] provides the trajectories of 10 players and the
ball in real basketball games. Given 10 previous time-steps (≈ 2.0 seconds), the
models predict the subsequent 20 steps (4.0 seconds).
NFL Football Dataset (NFL). The NFL Football Dataset [41] records the
movements of every player throughout each play of the 2017 season. The goal is
to predict the trajectories of the 22 players (11 per team) and the ball for the
ensuing 3.2 seconds (16 steps), given the preceding 1.6 seconds (8 steps).

Metrics. We use two established metrics [26, 1] i.e., the Average/Final Dis-
placement Errors (ADE/FDE). Given predicted and ground-truth trajectories,
ADE computes the average error on all points, while the FDE restricts the er-
ror committed in the final step. Following other works dealing with stochastic
models [16, 23], we adhere to the best-of-20 protocol [43, 42], selecting for eval-
uation the best trajectory from a pool of K = 20 generations. We denote the
corresponding metrics as ADEK and FDEK ; these are in meters for NBA and
NFL, and in pixels for SDD. For sports datasets, we compute these metrics at
different delta times to provide a more comprehensive assessment.
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Table 1. Impact of distinct VQ-VAE codebooks on performance (ADE20/FDE20).

Dataset Static Full-Rank Low-Rank
SDD 8.29/13.44 8.07/12.89 7.86/12.68
NBA 0.895/1.279 0.894/1.275 0.893/1.267
NFL 0.993/1.702 0.993/1.702 0.982/1.679

Implementation Details3. We set the number of codewords C to 16 for all
datasets, while we take the best rank r for each dataset (e.g., 8 for SDD and
NBA, 4 for NFL). For the first stage, we use AdamW [21] as optimizer with
lr = 5 × 10−4, β1 = 0.5 and β2 = 0.9. We train on SDD for 7000 epochs with
batch size equal to 256. For NBA and NFL, we instead optimize for 700 epochs
(the batch size equals 64). We use a cosine schedule for λξ from an initial value of
0 to a final value of 1. In this way, we can introduce the instance-level codebook
gradually during training.

For the second stage, we re-use the same optimizer/batch-size setup, while
training for 3000 epochs for SDD, 1000 epochs for NBA, and 700 for NFL. As an
augmentation technique, we rotate the trajectories by a random angle, ranging
between 0 and θmax. We set θmax to 180◦ for the first stage, while we find it
beneficial to adopt a lower value (5◦) for the second stage.

5.1 On the Impact of the Instance-based Codebook

To assess the merits of our low-rank instance-based codebook, we herein empir-
ically compare it with two alternative strategies. On the one hand, we devise
a comparison with a static codebook (→ standard VQ-VAEs, lacking instance-
level conditioning). Secondly, we contrast it with a full-rank codebook (which
includes instance-level conditioning but lacks low-rank design constraints). To
be more precise, the full-rank codebook is a baseline approach herein provided,
which computes the values of the codebook through a learnable module fed
with historical information as input. Unlike the proposed low-rank counterpart,
the full-rank codebook does not adapt a shared static codebook but directly
outputs its values. Through such a comparison, we can evaluate the efficacy of
constraining the updates to the dictionary within a low-dimensional manifold.

Tab. 1 presents the related results: as can be observed, the low-rank model
outperforms both the static and full-rank variants. In particular, the improve-
ments are remarkable for SDD and NFL and more modest for NBA. Moreover,
the presence of instance-level conditioning, common to full- and low- approaches,
proves particularly beneficial for the SDD dataset, as demonstrated by the gap
w.r.t. the static codebook (similar evidence emerges for the NBA dataset).

In the second place, we aim to investigate the impact of the rank r, which
controls the dimension of the matrix Bctx (i.e., the degree of instance-level cues
3 The code is available at https://github.com/aimagelab/LRVQ.
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Table 2. Impact of varying the rank of B on the behavior of the model. Optimal
performance (ADE20) is achieved by identifying a sweet spot characterized by a low
reconstruction error (ADErec) and a high accuracy in code prediction (Acc).

Dataset Rank ADErec ↓ Acc(%) ↑ ADE20 ↓

SDD 4 3.41 26.38 7.96
16 2.97 22.20 8.06

NBA 4 0.207 15.92 0.898
16 0.164 13.27 0.892

NFL 4 0.227 15.30 0.982
16 0.177 11.95 0.996

introduced into the codebook). In particular, we want to measure how the rank r
affects: i) the reconstruction capabilities of the VQ-VAE decoder (learned during
the first stage); ii) the generative capabilities of the diffusion model (learned
during the second stage). For point i), we exploit the Average Displacement Error
(ADErec) to assess the reconstruction performance. Instead, to characterize the
generative capabilities, we resort to the mean accuracy achieved by the diffusion
model in predicting codebook indexes, as well as the already mentioned ADE20.

Tab. 2 presents the results for different ranks r. We observe that a higher
reconstruction capability during the initial training stage is associated with in-
creased difficulty in the diffusion task, resulting in lower accuracy. This indicates
a correlation between the two phases: achieving optimal results in the first phase
does not necessarily yield the best final generation metrics, as it complicates the
joint task of trajectory generation (i.e., sampling from the prior and recon-
structing through the decoder). Tab. 2 demonstrates that the most favorable
final metrics are achieved by striking a balance between low reconstruction error
and good diffusion accuracy.

5.2 Comparison with SOTA Methods

In this section, we compare our model to the following existing approaches:

– Social-GAN [12] relies on a Conditioned GAN, with a module to handle
social interactions between agents.

– Trajectron++ [31] exploits VAEs and graph-structured recurrent networks.
– PECNet [23] augments a VAE with goal-oriented reasoning.
– LB-EBM [25] targets the prediction of long-range trajectories through a

belief vector, which encapsulates the energy distribution in the environment.
– GroupNet [42] is a multiscale hypergraph network that captures both pair-

and group-wise interactions at different scales.
– Memo-Net [43] mimics retrospective memory in neuropsychology and pre-

dicts intentions by retrieving similar instances from a memory bank.
– MID [11] leverages a diffusion model to progressively reduce indeterminacy

within potential future paths.
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Table 3. SDD results (ADE20/FDE20). ∗ represents the reproduced results from open
source. Best results in bold, second-best underlined.

Time S-GAN Trajectron++ PECNet MemoNet GroupNet MID∗ LRVQ
4.8s 27.23/41.44 19.30/32.70 9.96/15.88 8.56/12.66 9.31/16.11 9.73/15.32 7.86/12.68

Table 4. NBA results (ADE20/FDE20). Best results in bold, second-best underlined.

Time S-GAN PECNet Trajectron++ MemoNet GroupNet MID LRVQ

1.0s 0.41/0.62 0.40/0.71 0.30/0.38 0.38/0.56 0.26/0.34 0.28/0.37 0.19/0.29
2.0s 0.81/1.32 0.83/1.61 0.59/0.82 0.71/1.14 0.49/0.70 0.51/0.72 0.41/0.63
3.0s 1.19/1.94 1.27/2.44 0.85/1.24 1.00/1.57 0.73/1.02 0.71/0.98 0.64/0.96
4.0s 1.59/2.41 1.69/2.95 1.15/1.57 1.25/1.47 0.96/1.30 0.96/1.27 0.89/1.27

Table 5. NFL results (ADE20/FDE20). Best results in bold, second-best underlined.

Time S-GAN PECNet Trajectron++ LB-EBM GroupNet MID LRVQ

1.0s 0.37/0.68 0.52/0.97 0.41/0.65 0.75/1.05 0.32/0.57 0.30/0.58 0.23/0.35
2.0s 0.83/1.53 1.19/2.47 0.93/1.65 1.26/2.28 0.73/1.39 0.71/1.31 0.53/0.92
3.2s 1.44/2.51 1.99/3.84 1.54/2.58 1.90/3.25 1.21/2.15 1.14/1.92 0.98/1.68

We report the comparison in Tab. 3, Tab. 4, and Tab. 5. To sum up, our LRVQ
demonstrates superior performance across all the considered benchmarks.

On the SDD dataset (Tab. 3), we attain superior ADE results, matching
closely MemoNet in FDE. While PECNet and GroupNet, among C-VAE meth-
ods, demonstrate noteworthy performance compared to the older S-GAN and
Trajectron++, they struggle in FDE, especially when compared to MemoNet.
This could be ascribed to the effective sampling strategy of MemoNet, which
integrates a tailored clustering phase to generate multiple overall intentions.

Additionally, our approach showcases robust performance across all exam-
ined partial timestamps for both the NBA (Tab. 4) and NFL datasets (Tab. 5).
The two most competing methods are GroupNet – based on the C-VAE frame-
work – and more importantly MID, which akin to our approach utilizes a diffu-
sion process. However, we highlight an important distinction with MID, which
we consider as a motivation for our improvements: while MID adopts diffusion
modeling directly in output space, we instead apply it to the discrete variables
extracted by the VQ-VAE encoder. We believe that our latent-based formulation
further promotes the emergence of multi-modal generative capabilities.

5.3 Qualitative Results

Figure 3 provides a qualitative comparison on 20 generations (with sub-sampling)
produced by a VQ-VAE trained with a static codebook, a dynamic codebook,
and the low-rank conditioned codebook (see Sec. 5.1). Each row illustrates a
different scene from the SDD dataset, showcasing different agent behaviors: in
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STATIC FULL RANK LOW RANK

Generated trajectories Best generation Trajectory past Trajectory future

Fig. 3. Qualitative comparison for three SDD scenes (one for each row of the figure)
between the trajectories obtained from a VQ-VAE with a static codebook, a full rank
codebook the proposed low-rank codebook (from left to right).

the first one, the agent remains stationary, while in the others, it either turns left
or proceeds straight ahead. Compared to the other two methods, low-rank con-
ditioning appears to be more accurate, particularly in complex scenarios where
the agent stays still or changes its direction of movement.

6 Discussion and Conclusions

Limitations. The complexity of our model is linked to two factors:

– Two-step training procedure: although VQ-VAE offers benefits such as a
learned prior, the training must be divided into two distinct stages, which
increases the total time required to train the model.

– Inference time: the inference procedure described in Sec. 4.4 takes longer as
the number N of starting guesses increases. To obtain a trade-off between
the accuracy of the ensemble of K final generations and the computational
time, the parameter N has to be carefully adjusted.

Conclusion. We propose a stochastic approach for trajectory prediction. It
builds upon Vector Quantization to yield a predictive distribution that preserves
both sampling fidelity and diversity. Our main contribution lies in a dynamic,
instance-related codebook encompassing past trajectory information. Notably,
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contextual information is incorporated into the codebook through a low-rank
update. We conduct several empirical studies to validate our approach, demon-
strating its superior generative capabilities compared to both standard VQ-VAEs
and existing methods. This leads to state-of-the-art results on three established
benchmarks.
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