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Abstract: Immune evasion is a key strategy adopted by tumor cells to escape the immune system
while promoting their survival and metastatic spreading. Indeed, several mechanisms have been
developed by tumors to inhibit immune responses. PD-1 is a cell surface inhibitory receptor, which
plays a major physiological role in the maintenance of peripheral tolerance. In pathological conditions,
activation of the PD-1/PD-Ls signaling pathway may block immune cell activation, a mechanism
exploited by tumor cells to evade the antitumor immune control. Targeting the PD-1/PD-L1 axis
has represented a major breakthrough in cancer treatment. Indeed, the success of PD-1 blockade
immunotherapies represents an unprecedented success in the treatment of different cancer types.
To improve the therapeutic efficacy, a deeper understanding of the mechanisms regulating PD-1
expression and signaling in the tumor context is required. We provide an overview of the current
knowledge of PD-1 expression on both tumor-infiltrating T and NK cells, summarizing the recent
evidence on the stimuli regulating its expression. We also highlight perspectives and limitations of
the role of PD-L1 expression as a predictive marker, discuss well-established and novel potential
approaches to improve patient selection and clinical outcome and summarize current indications for
anti-PD1/PD-L1 immunotherapy.

Keywords: NK cells; PD-1; PD-L1; glucocorticoids; immunotherapy; cancer

1. Introduction

Programmed cell death protein 1 (PD-1) was initially discovered as an apoptosis-
associated gene during T cell thymic selection. It was shown to be involved in the reg-
ulation of the immune response and is considered one of the most important inhibitory
checkpoints [1–4]. PD-1 belongs to the CD28/cytotoxic T-lymphocyte-associated protein 4
(CTLA-4) subfamily of the immunoglobulin (Ig) superfamily [5] and is expressed on T, B,
myeloid and Natural Killer (NK) cells [6,7]. PD-1 specifically interacts with programmed
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death ligand 1 (PD-L1) and programmed death ligand 2 (PD-L2). Of note, PD-L1 is ex-
pressed in both hematopoietic and non-hematopoietic cells and on antigen-presenting
cells (APC), while PD-L2 is found, upon cell activation, on macrophages and dendritic
cells [8–10]. The binding of PD-1 to its ligands impairs T cell receptor (TCR) signaling T
cell activation.

The level of PD-1 expression on T cells is related to the strength of TCR signaling.
Its physiological role is to counteract excessive T cell activation while it returns to basal
levels after the antigen has been cleared. However, the persistence of antigen stimulation,
occurring in both chronic viral infection and cancer, may determine a constitutive PD-1
cell surface expression leading to the inhibition of immune response and impaired T cell
function. In this context, due both to the tumor immunosuppressive environment and to
prolonged exposure to tumor antigens, high PD-1 expression may be detected on tumor-
infiltrating lymphocytes (TILs), which is associated with defects in immune cell function
and the expression of other inhibitory receptors [11,12]. Therefore, it is conceivable that
this mechanism has been “stolen” by tumor cells to favor peripheral tolerance and escape
the antitumor immune response. In this context, the expression of PD-1 ligands has been
frequently detected in different tumors, such as neuroblastoma (NB), melanoma, lung and
gastric cancers. It appears that the stimuli present in the tumor microenvironment (TME)
promote the expression of these PD-1 ligands [13–15]. In vivo studies revealed that the
inhibition of the PD-1/PD-Ls axis could restore immune cell function, thus providing a
promising strategy for immunotherapy [16]. Indeed, the use of anti-PD-1 and anti-PD-L1
monoclonal antibodies (mAbs), in view of particularly encouraging results in patients
with lung or melanoma, have been approved by the Food and Drug Administration
(FDA) [17,18] (see paragraph 5.0). In this review, we highlight the recent findings on
PD-1 expression on both NK and T cells in the tumor context. In addition, we provide
an overview of the different diagnostic approaches to improve patient selection and the
therapeutic strategies to target the PD-1/PD-L1 axis alone or in combination therapies in
several adult and pediatric cancers.

2. PD-1 Expression in Antitumor Effector T and NK Cells

Investigating PD-1 expression in TILs is essential in order to better identify mecha-
nisms adopted by tumor cells to evade the control by the immune system and to develop
more efficient therapies.

Of note, immune infiltrates may contain not only T but also NK cells. T cells, after
encountering tumor antigens in tumor-draining lymph nodes, acquire effector function and
migrate to the tumor site to promote tumor eradication [19]. However, once at the tumor
site, CD8+ effector T cells have to overcome the inhibitory signals present in the TME. A
number of studies demonstrated that CD8+ T cells lose their effector function during tumor
progression, an effect mainly related to inhibitory checkpoint expression [20–22]. Of note,
both CD4+ PD-1+ and CD8+ PD-1+ T cells have been detected in different tumors, including
head and neck, gastric, breast and lung cancers, melanoma and hepatocellular carcinoma
(Table 1) [11,12,23–26]. Kumagai and colleagues analyzed the CD8+ PD-1+ subpopulation
in non-small cell lung cancer (NSCLC), gastric cancer (GC) and malignant melanoma (MM)
treated with mAb therapy. They showed that higher PD-1 expression on CD8+ TILs reflects
the interaction with tumor antigens and can be considered a predictive biomarker for deliv-
ering therapeutic antibodies able to disrupt the PD-1/PD-L1 interaction [27]. These authors
also detected high numbers of PD-1+ CD8+ T cells in the TME of responders as compared
to non-responder patients. In particular, in both murine models and human samples, a
lower expression of PD-1 on regulatory T cells (Treg) and a higher PD-1 expression on
CD8+ T cells correlate with a favorable antitumor efficacy of mAb treatment. In NSCLC, the
frequency of PD-1 CD8+ TILs located in proximity to neoplastic cells is inversely correlated
with NSCLC clinical staging [28]. PD-1 expression has also been detected on CD4+ T cells
in the TME of Hodgkin lymphomas and follicular lymphomas, suggesting their role in the
PD-1-induced blockade of antitumor immunity [29,30]. Li et al. analyzed the expression of
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inhibitory checkpoints in peripheral blood (PB) T cells in comparison to TILs in a cohort
of primary and treatment-naïve patients with different tumors and found a higher PD-1+

cell frequency in TILs as compared to T cells from PB [31]. These results are in line with
previous studies in lung, liver, esophageal and breast cancers showing that the percentage
of PD-1+ CD8+ cells present in PB and at the tumor site may be considered as a prognostic
marker for response to mAb immunotherapy [32–35].

Of note, clear evidence of PD-1 expression on NK cells has recently emerged (Table 1).
Under physiological conditions, different from T cells, PD-1 expression in NK cells is re-
stricted to a subset of fully mature, circulating cells in cytomegalovirus (CMV)-seropositive,
otherwise healthy individuals and is maintained stable over time [7]. Several studies
revealed the presence of PD-1+ NK cells in the PB of patients with multiple myeloma and
digestive cancers [36,37]. The presence of PD-1+ NK cells was also detected in CD56dim

and CD56bright NK cell subsets in Kaposi sarcoma and Hodgkin lymphoma patients, re-
spectively [38,39]. Similarly, in the PB of renal cell carcinoma patients, PD-1 expression was
restricted to a mature, cytolytic CD56dim NK subset and correlated with the stage of the
disease [40]. Hsu et al. showed that in lymphoma mouse models, PD-1 is expressed on a
discrete fraction of NK cells represented by the most activated and functionally responsive
intratumoral NK population [41]. PD-1 engagement by PD-L1+ tumor cells suppresses NK
cell-mediated cytotoxicity, while targeting of the PD-1/PD-L1 axis allows the reactivation
of NK responses. The inhibition of NK cytotoxic function, mediated by PD-1, was also
detected in PD-1+ NK cells identified in the peritoneal fluid of ovarian carcinoma patients,
demonstrating a pivotal role of PD-1 in regulating the NK cell function [7]. The impaired
expression of CD107a and release of perforin and granzyme B together with a weaker
antitumor activity characterized the NK PD-1+ cells detected in the PB of lung cancer
patients [42]. In addition, a recent study on NSCLC patients showed that tumor-infiltrating
NK cells express PD-1, as well as other inhibitory checkpoints, and that their dysfunction
correlates with increasing levels of membrane PD-1 expression [43]. Of note, PD-1 is
expressed not only on NK cells but also on innate lymphoid cells (ILCs), a heterogeneous
group of cells belonging to the lymphoid lineage that is classified, according to both the
transcriptional factors required for development and their functions, in different groups
(ILC1, ILC2, ILC3 and LTi-like) that mirror T cell counterparts and play a pivotal role in
tissue repair and immune defense (Table 1). In particular, we demonstrated that ILC3 cells
from pleural effusions of patients with primary or metastatic pleural tumors expressed
functional PD-1 [44]. PD-1 expression has also been found on ILC2 and ILC3 in gastroin-
testinal tumors [45]. Despite the increasing information on PD-1, a better understanding of
the mechanisms regulating its expression and signaling in NK and helper ILC cells in the
tumor context is required in order to further improve the current therapeutic approaches
aimed to unleash PD-1-dependent immune cell blockade [46]. In this context, a recent study
shed some light on how the TME milieu could induce PD-1 expression on NK cells [47].

Table 1. Evidence reporting PD-1 expression on human T, NK and ILC cells in different cancers. For each data tumor
type, cell subset and reference have been reported. PB: peripheral blood; PE: Plural effusion; TILs: tumor-infiltrating
lymphocytes; DLBCL: diffuse large B-cell lymphoma; ADC: Adenocarcinoma; NSCLC: non small cell lung cancer; SCC:
squamous cell carcinoma.

Type of Tumors Cell Subsets References

Breast Cancer (BC)
Invasive ductal BC CD4+ TILs [26]

Primary BC CD8+ TILs [35]

Melanoma
Metastatic melanoma lesions CD4+, CD8+ TILs [12]

Metastatic melanoma CD8+ TILs [23]
Malignant melanoma (MM) CD8+ TILs [27]

Follicular lymphoma (FL) CD4+ TILs [30]
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Table 1. Cont.

Type of Tumors Cell Subsets References

Hodgkin Lymphoma (HL)
Primary classical HL CD4+ TILs [29]

HL and DLBCL NK PB and Intratumoural [39]

Ovarian carcinoma NK peritoneal fluid/ascites [7]

Karposi sarcoma NK PB [38]

Renal cell carcinoma (RCC) NK PB [40]

Lung cancers
Primary and metastatic ILC3 PE [44]
Lung cancer and ADC NK PE [47]

NK PB [42]
NSCLC (ADC and SCC) CD8+ TILs [28]

Advanced and primary NSCLC CD8+, CD4+ TILs [27,32]
NSCLC NK Intratumoural [43]

Digestive Cancers
Gastric cancer CD8+ TILs [27]

Gastrointestinal (oesophageal, gastric, colon, rectal tumors) ILC2, ILC3, NK intratumoral [45]
Hepatocellular carcinoma (HCC) CD8+ TILs [25]

CD4+, CD8+ TILs [33]
ESCC, HCC, colorectal cancer and biliary cancer NK Intratumoural and PB [37]

Oesophageal cancer CD4+ CD8+ PB and TILs [34]
Multiple Myeloma NK PB [36]

3. Mechanisms of PD-1 Expression

Since the interaction between PD-1 on T/NK effector cells and PD-L1 on tumor cells
represents a major pathway for immune evasion, many studies have been conducted to
identify the mechanisms responsible for the expression of this checkpoint. In a setting
different from the tumor, it was demonstrated that endogenous glucocorticoids (GCs) in
combination with the cytokines IL-15 and IL-18 induce PD-1 expression at the transcript
level on murine splenic NK cells upon viral infection [48]. The requirement of GCs for the de
novo PD-1 expression was also confirmed in human NK cells. Indeed, high levels of cortisol
were detected in the pleural effusions from patients with lung cancer, associated with
increased numbers of PD-1+ NK cells in the tumor microenvironment [44,47]. However,
GCs alone were not sufficient, but inflammatory cytokines were also needed for PD-1
expression. Interestingly, in humans, NK cell stimulation with IL-12 was also required
in addition to IL-15, IL18 and GCs. Moreover, in human NK cells, PD-1 expression was
not only induced by GCs at the transcriptional level, but also at the post-transcriptional
level [47]. Although in T cells GCs are not required for PD-1 expression, it was shown
that they can further enhance it on both mouse and human T cells [49]. Accordingly, GCs
potentiate the inhibitory effect of PD-1 on antigen-dependent T cell activation [50]. Of
note, GC treatment enhances not only PD-1 but also Tim3 and Lag3 expression in CD8+

T lymphocytes, both in mouse and human settings, through GC receptor (GR)-mediated
transactivation. The authors showed an increase in the expression of the gene encoding the
GR in terminally dysfunctional tumor-infiltrating T cells, and the existence of a correlation
between active GC signaling and failure to respond to the checkpoint blockade in both
preclinical tumor models and melanoma patients [51]. Therefore, PD-1 induction on effector
T and NK cells represents an additional mechanism of immune suppression exerted by
GCs, suggesting that corticosteroid therapy may be counterproductive in combination with
PD-1 immune checkpoint blockade in patients with cancer. Recently, in a retrospective
study, the impact of systemic corticosteroids in combination with immune checkpoint
inhibitors (ICIs) was investigated to address this issue. It was concluded that GC use for
an application other than immune-related adverse effects (irAE) has a negative impact on
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overall survival and response to ICIs, while GC therapy for irAE does not significantly
affect response to immunotherapy [52].

4. Applications of PD-L1 Immunohistochemistry

The selection of patients who may benefit the most from anti-PD-1/PD-L1 therapies
is a challenging issue, since a relevant percentage of patients do not respond to these
treatments [53–55]. For this reason, much effort has been made to develop biomarkers
with predictive potential. The best known and most used biomarker to date is PD-L1
expression, detected by immunohistochemistry, on tumor cells and/or immune cells.
Multiple assays designed to assess PD-L1 expression have been developed in parallel with
different antibodies targeting the PD1/PD-L1 axis. However, not all assays have the same
level of interchangeability, and analysis on the same samples can lead to different results,
with important implications for patient eligibility for treatment with anti-PD1/PD-L1
antibodies.

Three of the FDA-approved assays are classified as companion diagnostics, meaning
that they provide information that is essential for the safe and effective use of the corre-
sponding drug. Specifically, these assays are Ventana SP142 for atezolizumab (anti-PD-L1)
in patients with urothelial carcinoma, triple-negative breast cancer or NSCLC; Dako 28-
8 for nivolumab (anti-PD1) in combination with ipilimumab (anti-CTLA-4) in patients
with NSCLC and Dako 22C3 for pembrolizumab (anti-PD1) in different solid tumors [56].
The FDA has indicated Ventana SP263 and Dako 28-8 as complementary diagnostics for
nivolumab in advanced NSCLC and durvalumab (anti-PD-L1) for advanced urothelial car-
cinoma [57,58]. This means that such tests identify subsets of patients that might respond
well to the therapy, but are not prerequisites for receiving the drug.

Different commercially available assays may thus be used to make important clinical
decisions; however, in clinical practice, it is challenging to make all such testing available
to patients. In this regard, harmonization studies to analyze results obtained with different
antibodies have been conducted [59–61]. Taken together, these studies suggest that three
PD-L1 assays protocols (SP263, 22C3 and 28-8) have similar analytical performance and can
be used interchangeably. However, our group has demonstrated that although assays 22C3
and SP263 appear to be comparable in terms of overall agreement, they show important
discrepancies in identifying positive cases at clinically relevant cutoffs [62] (Figure 1). An-
other key issue is that each validated assay must be performed onto a dedicated autostainer
(e.g., 22C3 on AutostainerLink48). However, it is not possible for all laboratories to have
all platforms; therefore, in many cases, the PD-L1 IHC tests are performed on different
staining platforms as laboratory developed tests (LDT). In this regard, a meta-analysis on
the performance of different PD-L1 assays concluded that properly validated LDTs used
for the same purpose of a validated PD-L1 assay can perform better than another approved
assay that was developed for a different purpose [63]. On this point, we could demonstrate
that with an optimized protocol, the non-validated PD-L1 clone E1L3N shows high levels
of overall agreement with the SP263 assay in NSCLC [64].

In addition to the complexity related to the different staining performances of the
immunohistochemical assays, another issue is represented by the fact that different scoring
methods evaluating various cellular compartments within the tumors have been developed.
In fact, in clinical trials on pembrolizumab and nivolumab, the predictive potential of PD-L1
expression has been based on its evaluation on tumor cells only using the tumor proportion
score (TPS)/tumor cells (TCs), which is defined as the percentage of PD-L1-positive tumor
cells (partial or complete) relative to the total number of viable tumor cells [65,66]. On
the other hand, in trials assessing atezolizumab, PD-L1 expression has been evaluated
on immune cells (ICs) using SP142 as the percentage of tumor area infiltrated by PD-
L1-positive immune cells relative to the total tumor area [67,68]. TPS/TC scoring has
shown good interobserver agreement, while the IC algorithm is characterized by poor
reproducibility among pathologists [69,70]. In other trials evaluating pembrolizumab
in a variety of solid tumors, a combined score has been developed, called combined
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positive score (CPS) and is defined as the percentage of immune cells (lymphocytes and
macrophages) and tumor cells relative to the total number of viable tumor cells. For CPS,
only a few trials have evaluated the reproducibility of the algorithm, with contrasting
results [71,72]. Therefore, further studies assessing the reproducibility of CPS are needed.
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Intratumor heterogeneity is another known challenge that can hamper PD-L1 de-
termination and its predictive value. In clinical practice, tumor tissue can be obtained
from surgical specimens, core needle biopsies and fine needle aspiration. Moreover, for
most patients, only one lesion is sampled, even in the presence of multiple metastases. In
this regard, correlative biomarker studies related to immune checkpoint inhibitor trials
contain a heterogeneous mix of sample types and sites; therefore, the question on the
most appropriate sample for PD-L1 testing remains unanswered. We and others have
demonstrated striking topographical PD-L1 expression differences in NSCLC, especially in
adenocarcinomas, which is not attributable to morphology alone but likely underpins sub-
clonal evolution [73,74]. In this setting, we found that the best concordance between tissue
microarrays cores (used as surrogate of biopsies) and whole sections (used as the reference)
varies according to the PD-L1 expression cutoff used and found that three biopsies showed
high sensitivity and specificity [75].

Cytology samples often represent the only available diagnostic material for a con-
siderable proportion of metastatic patients but are generally not used in clinical trials for
PD-L1 determination. Cell blocks are accepted for PD-L1 TPS scoring since they present a
good correlation with histology [74]; on the other hand, in clinical practice, the possibility
of having cytologic smears as the only available diagnostic material on which to perform
predictive tests occurs in up to 16% of cases. In an exploratory analysis, we compared
PD-L1 staining between cytological smears and whole sections from NSCLC cases and
found an overall agreement of 90%. Specifically, we found absolute concordance between
smears with PD-L1 expressed in <10% and ≥50% of cells and whole sections with PD-L1
expressed in <50% and ≥50% of cells, respectively. Therefore, immunocytochemistry on
cytological smears can be considered a reliable method for the evaluation of PD-L1 expres-
sion at the 50% cutoff when positive cells are <10% or ≥50%. However, for cytological
smears showing PD-L1 expression in 10–49% of cells, additional tissue sampling may be
necessary [76].

Despite the standardization of technical procedures, a number of studies have demon-
strated substantial variations between pathologists in the interpretation of PD-L1 staining,
with disagreement in up to 25% of cases at a TPS cutoff of 1% [70,77]. Although the clinical
impact of such interobserver variations is unclear, they represent an intrinsic limit of hu-
man visual interpretation in providing a quantitative assessment of a biomarker located
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in a heterogeneous context [78]. To this end, more precise approaches to PD-L1 scoring,
irrespective of the cell compartment, might benefit from digital pathology and artificial
intelligence. Such approach could also allow a more comprehensive evaluation of the
immune contexture with the possibility to quantify tumor-infiltrating lymphocytes in light
of their possible inclusion in more powerful predictive models. Clearly, such approach
would require important infrastructure updates and validations before implementation in
clinical practice.

5. Additional and Novel Strategies to Improve Patient Selection: Beyond PD-L1

Although the predictive potential of PD-L1 immunohistochemistry can be significantly
ameliorated by reducing confounding variables regarding specimen features (biopsies vs.
surgical specimens; primary vs. metastasis), interassay variability, scoring system (TPS vs.
CPSvs.IC) and interpathologist reproducibility, a single biomarker is unlikely to predict
response to treatment with immune checkpoint inhibitors. Therefore, other variables are
being evaluated to improve the efficacy of the PD-1/PD-L1 axis blockade and to identify
predictive markers for immune checkpoint inhibitors.

5.1. Tumor Mutational Burden

Tumor mutational burden (TMB) is defined as the number of somatic mutations/Mb
of tumor genome. Tumors with a large number of somatic gene mutations develop a
higher neoantigen-specific T cell response, which results in an increased susceptibility to
immunotherapy. Consistent with this concept, a high TMB has been shown to predict
response to immune checkpoint inhibitors across a diverse range of cancer types, including
NSCLC, melanoma, and bladder cancers [79]. The TMB is a very promising biomarker,
but it is limited by cost and technological requirements correlated with the whole-exome
sequencing (WES) assay, not routinely available in most pathology laboratories. A large
panel of targeted next generation sequencing (NGS) has been implemented in clinical prac-
tice, and TMB estimations derived from the two methods are highly correlated supporting
the use of NGS as a surrogate for WES [80]. On June 2020, the FDA approved the use
of pembrolizumab for the treatment of adult and pediatric patients with unresectable or
metastatic tumors with a high TMB, defined as ≥ 10 mutations/Mb, that have progressed
following prior treatment [81]. However, many challenges remain before the implemen-
tation of NGS-based TMB as a predictive biomarker in clinical practice: since there are
numerous NGS platforms, this poses a major problem in terms of reproducibility and
globally accepted predictive TMB (cut-offs have not been determined). Moreover, TMB
may be heterogeneous within the tumor, and high TMB alone does not guarantee response
to immune checkpoint inhibitors. To this end, there are several examples of patients with
low TMB who responded to immune checkpoint inhibitors, as well as cases of patients
with high TMB who failed to respond [82].

5.2. Mismatch Repair Deficiency (dMMR)/Microsatellite Instability (MSI)

It has been demonstrated that tumors with mismatch repair (MMR) deficiency respond
better to PD-1/PD-L1 inhibitors, since they are more prone to express neoantigens [83]. The
DNA MMR system recognizes and corrects insertion, deletion and base pair mismatches
that occur during DNA replication. dMMR is primarily caused by the inactivation of one or
more of the 4 main proteins: MLH1, MSH2, PMS2 and MSH6. dMMR was first detected in
colorectal cancer but can occur in many other tumor types [84]. There are 2 main methods
of screening for dMMR: IHC for the 4 MMR proteins MLH1, MSH2, PMS2 and MSH6, and
molecular testing to detect MSI.

In May 2017, the FDA granted accelerated approval to pembrolizumab for the treat-
ment of unresectable or metastatic dMMR or MSI-high solid tumors that have progressed
following prior treatment, the first cancer site–agnostic approval granted from the FDA [85].
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5.3. Tumor-Infiltrating Lymphocytes (TILs)

TILs are lymphocytes migrated within tumor stroma or the tumor itself. TIL pres-
ence reflects the dynamic phase of the immune system attempt to contrast tumor growth.
Clinically, higher TIL numbers have been associated with improved survival in multiple
solid tumor types [86–88]. Within TILs, cytotoxic CD8+ T lymphocytes are the effector cells,
and their presence within the tumor may suggest checkpoint inhibitor efficacy. Several
studies have evaluated intratumoral CD8+ lymphocytes alone or in combination with
PD-L1 expression as a predictive biomarker of immunotherapy in different tumors [89,90],
showing that PD-L1-expressing tumors lacking an appropriate TIL infiltrate may explain
the failure of checkpoint inhibition in a subset of patients. Immunoscore (a standardized
immune-based assay that measures intra- and peritumoral T cell infiltration) and multiplex
immunohistochemistry, an antibody–protein labeling methodology that allows the simulta-
neous assessment of multiple proteins of interest on one slide, represent more advanced
ways to evaluate TILs [91,92].

6. Disruption of PD1/PD-L1 Axis in Cancer Therapy

The first drugs disrupting the PD1/PD-L1 axis approved by the FDA were nivolumab
and pembrolizumab for the treatment of advanced melanoma [93,94]. Since then, several
trials have been carried out, and several antibodies have been approved in different settings.
Indeed, several studies have demonstrated the efficacy of drugs blocking the PD-1/PD-L1
pathway, alone or in combination with other therapies, for the treatment of different adult
cancer patients (Table 2). On the contrary, there is a lack of knowledge on the use of anti-
PD-1/PD-Ls antibodies towards pediatric tumors, and deeper analyses are still required to
evaluate their efficacy in childhood cancer patients. We present studies describing PD-1
and PD-Ls expression in neuroblastoma (NB) as well as the ongoing clinical trials aimed
to determine the potential role of both anti-PD-1 and anti-PD-L1 mAbs treatments in the
context of hematological and solid pediatric cancers.

Table 2. Current indications for anti PD1/PD-L1 therapy in different advanced/metastatic tumor types: NSCLC: non-small
cell lung carcinoma; SCLC: small cell lung carcinoma; TNBC: triple negative breast carcinoma; CSCC: cutaneous squamous
cell carcinoma; RCC: renal cell carcinoma; UC: urothelial carcinoma; HCC: hepatocellular carcinoma; GEJ: gastro-esophageal
junction; MSI: microsatellite instability; dMMR: mismatch repair deficient; HNSCC: head and neck squamous cell carcinoma;
HL: Hodgkin lymphoma; PMLBCL: primary mediastinal large B cell lymphoma; wt: wild-type; TPS: tumor proportion
score; CPS: combined positive score; IC: tumor-infiltrating immune cell; pembrolizumab, nivolumab, cemiplimab: anti-PD-1;
atezolizumab, durvalumab, avelumab: anti-PD-L1.

Type Treatment Indications (Ref)

NSCLC Pembrolizumab I line (ALK and EGFR wt, TPS ≥ 1%) [95]
II line (TPS ≥ 1%) [96]

Pembrolizumab + chemotherapy I line [97,98]

Atezolizumab
I line (ALK and EGFR wt, TPS ≥ 50% and/or
IC ≥ 10%) [99]
II line [100]

Atezolizumab + chemotherapy I line in non-squamous histology, ALK and EGFR
wt [101]

Nivolumab II line [102]

Durvalumab After chemoradiation for unresectable stage III
NSCLC [103]

SCLC Atezolizumab + chemotherapy I line [104]

Durvalumab + chemotherapy I line [105]

Nivolumab II line [106]

TNBC Atezolizumab + chemotherapy I line (IC ≥ 1%) [107]
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Table 2. Cont.

Type Treatment Indications (Ref)

Melanoma Pembrolizumab, Nivolumab Adjuvant treatment after radical surgery [108,109];
I line [110,111]; II line [93,112]

Merkel cell carcinoma Pembrolizumab I line [113]

Avelumab II line [114]

CSCC Cemiplimab I line [115]

RCC Nivolumab + ipilimumab I-II line [116,117]

Pembrolizumab/avelumab + axitinib I line [118,119]

UC Pembrolizumab
I line in patients ineligible for cisplatin-containing
therapy (CPS ≥ 10%), or patients unfit for
platinum-containing chemotherapy [120]

Atezolizumab
I line in patients ineligible for cisplatin-containing
therapy (IC ≥ 5%), or patients unfit for
platinum-containing chemotherapy [121]

Atezolizumab, Nivolumab, Durvalumab,
Avelumab, Pembrolizumab

Disease progression during or after platinum-based
chemotherapy or within one year after adjuvant or
neoadjuvant chemotherapy [120,122–125]

Cervical cancer Pembrolizumab II line (CPS ≥ 1%) [126]

HCC Nivolumab/Pembrolizumab II line [127,128]

Esophageal cancer Pembrolizumab II line (CPS ≥ 10%) [129]

Gastric/GEJ adenocarcinoma Pembrolizumab II line (CPS ≥ 1%) [130]

MSI-H dMMR cancers Pembrolizumab II line irrespective of primary location [131]

HNSCC Pembrolizumab I line (CPS ≥ 1%) [132]

Pembrolizumab/Nivolumab II line [133,134]

HL Pembrolizumab II line [135]

PMLBCL Pembrolizumab II line [136]

Neuroblastoma and Other Pediatric Tumors

The development of drugs targeting immune checkpoint inhibitors has mainly fo-
cused on adult cancers. However, in recent years, there has been a push to evaluate
the application of these immunotherapeutic approaches to pediatric tumors. Indeed,
PD-L1 expression has been observed in several pediatric hematological tumors, such as
Hodgkin lymphoma, diffuse large B cell lymphoma (DLBCL), acute myeloid leukemia,
acute lymphoblastic leukemia and glioma [137–141]. Despite the high PD-L1 abundance
in hematological malignancies, its expression in pediatric solid tumors is relatively low
and variable in different histotypes. Thus, PD-L1 expression was detected in the 72% of
NB patients where it was found to correlate with a lower survival rate [142]. In addition,
Dondero and colleagues demonstrated that lymphocytes derived from bone marrow sam-
ples of metastatic NB patients expressed PD-1, and produced IFN-γ that could in turn
induce PD-L1 expression in tumor cells [13]. Considering the potential susceptibility of
NB to immunotherapy, different studies have been developed to evaluate the efficacy
of PD-1/PD-L1 axis disruption-based therapies. Thus, there are several ongoing clini-
cal trials aimed to determine the potential role of both anti-PD-1 and anti-PD-L1 mAbs
treatments. A phase I trial is also analyzing a combination therapy with anti-GD2, 131-l
Metaiodobenzylguanidine (mlBG) and Nivolumab in treating patients with relapsed and
refractory NB (NCT02914405) [143]. In addition, a recent multicentric, phase 1–2 trial was
performed using Nivolumab, with or without ipilimumab combination (NCT02304458) in
pediatric patients with different tumors, including rhabdomyosarcoma, Ewing sarcoma, os-
teosarcoma, neuroblastoma, Hodgkin lymphoma, non-Hodgkin lymphoma and melanoma
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diseases. The results indicated that Nivolumab was safe and well tolerated in children and
young adults and showed clinical benefits in lymphoma, while no significant single-agent
activity was observed in the other pediatric solid tumors. Importantly, however, this study
defines the recommended phase 2 dose and establishes a Nivolumab safety profile for
children, which can serve as the basis for its potential study in combination regimens
for childhood cancers [144,145]. In this context, an actively recruiting Phase II clinical
trial is evaluating the efficacy of Nivolumab in combination with ipilimumab in children
with high-grade primary central nervous system (CNS) malignancies (NCT03130959) [141].
The efficacy of Nivolumab in combination with lirilumab, a human monoclonal antibody
that binds the KIR2DL1/2L3 receptor, is under investigation in refractory and recurrent
malignancies (NCT02813135) [143]. Moreover, a trial that began in 2018 is evaluating the
role of Nivolumab in combination with chemotherapy for the treatment of solid tumors
and lymphoma (NCT03585465).

Pembrolizumab was approved by the FDA in 2017 for the treatment of children
with refractory Hodgkin lymphoma or patients with relapsed tumors [145]. An ongoing
clinical trial is investigating the use of Pembrolizumab in children with PD-L1-positive
advanced, relapsed or refractory solid tumors or lymphoma or with advanced melanoma
(NCT02332668).

7. Concluding Remarks

In recent years, immunotherapy with antibodies disrupting the PD-1/PD-L1 axis
revealed an unprecedented breakthrough in the treatment of different tumors. This re-
sulted in a true revolution in the cure of highly aggressive cancers. However, despite this
progress, a large fraction of patients do not benefit from the use of ICIs. As discussed in this
contribution, further improvements may be reached by a more accurate patient selection.
This may be based not only on the standardization of available reagents and methods, such
as PD-L1 expression and frequency of TILs, but also on the evaluation of other inhibitory
checkpoints which may impair antitumor immune responses, independent of PD-1/PD-L1
interactions. Along this line, other major mechanisms play an important role in dampening
immune responses. Thus, different cell types, present in the tumor microenvironment,
exploit an array of immunosuppressive mechanisms, which “freeze” effector cells, thus
hampering their antitumor activity. For example, myeloid-derived suppressor cells (MD-
SCs), a heterogeneous immature myeloid population, are able to interact with immune
cells, compromising their effector function. Of note, the PD1/PD-L1 axis is among the
know mechanisms adopted by MDSCs to suppress the immune effector function of T and
NK cells. In particular, the surface expression of PD-L1 correlates with the impairment of
tumor-infiltrating lymphocytes (TILs) and with tumor progression/prognosis. In TME,
tumor cells and their soluble mediators can induce PD-L1 expression on tumor-infiltrating
MDSCs [146,147]. Thus, PD-L1 expressed by MDSCs can suppress NK and T cell activity. In
different tumor types, increased PD-L1 + MDSC has been detected and, in some instances, a
correlation between the percentage of PD-L1 + MDSC and disease stages or clinical outcome
has been reported [148]. In addition, Nitric Oxide (NO) produced by MDSCs has a potent
inhibitory effect on NK cells by impairing the Fc receptor-mediated killing, the secretion
of IFN-γ, TNF-α and Granzyme B, as detected in MDSC-co-cultured NK cells [149,150].
Other important cells, which favor tumor growth and inhibit antitumor immune responses,
are the polarized M2 macrophages, which act both directly by secreting different inhibitory
factors and cytokines, and indirectly by inducing suppressive cells and favoring fibrotic
reactions [151]. Recognition of the prevalent mechanism(s) operating in given tumors
may allow the selective removal of the inhibitory effect, either by specifically targeting
suppressive cells (e.g., MDSCs or M2 macrophages) or their soluble products. Thus, the
use of combination therapies suitable for given tumors appear to be particularly promising.
Of note, novel cell-based adoptive therapies (e.g., CAR-T or CAR-NK cells), although very
promising, may encounter similar hurdles, including the PD-1 (or other checkpoint) expres-
sion on the engineered cells themselves and the suppressive TME which would render their
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antitumor activity inefficient. Thus, improvement/standardization of available and new
diagnostic approaches allowing the identification of the major suppressive mechanisms in
a given tumor may lead to more effective, patient-tailored, tumor therapies.
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