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Abstract: Atherosclerosis, a complex metabolic-immune disease characterized by chronic inflam-
mation driven by the buildup of lipid-rich plaques within arterial walls, has emerged as a pivotal
factor in the intricate interplay between cancer and cardiovascular disease. This bidirectional rela-
tionship, marked by shared risk factors and pathophysiological mechanisms, underscores the need
for a comprehensive understanding of how these two formidable health challenges intersect and
influence each other. Cancer and its treatments can contribute to the progression of atherosclerosis,
while atherosclerosis, with its inflammatory microenvironment, can exert profound effects on cancer
development and outcomes. Both cancer and cardiovascular disease involve intricate interactions
between general and personal exposomes. In this review, we aim to summarize the state of the
art of translational data and try to show how oncologic studies on cardiotoxicity can broaden our
knowledge of crucial pathways in cardiovascular biology and exert a positive impact on precision
cardiology and cardio-oncology.

Keywords: atherosclerosis; cardiovascular disease (CVD); cancer; inflammation; immune system;
endothelium; exposome

1. Introduction

Cardiovascular disease (CVD) and cancer are the leading causes of morbidity and
mortality worldwide [1]. CVD, the most common noncommunicable condition, is respon-
sible for almost one third of all deaths globally [2]. In Europe, CVD is the most common
cause of death, with more than 60 million potential years of life lost annually. Mortality is
higher in women compared to men, while age-standardized rates of morbidity and death
from CVD are higher in men than in women [3]. In 2020, it was estimated that 19.3 million
new cancer cases and almost 10.0 million cancer deaths occurred worldwide. Female
breast cancer (BC) was the most commonly diagnosed cancer in 2020, with an estimated
2.3 million new cases and lung cancer was the leading cause of cancer death, with an
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estimated 1.8 million deaths [4]. The global cancer burden is increasing and is expected
to be 28.4 million cases in 2040, a 47% rise from 2020. Recent epidemiological evidence
underscores that CVD and cancer are supported by shared risk factors and that 40% of can-
cer cases are indeed promoted by environmental factors, the most important of which are
well-known manageable cardiovascular risk factors (CVRFs) such as smoking, consuming
alcohol, and an unhealthy lifestyle linked to obesity [5]. Furthermore, a high-risk score
for atherosclerotic cardiovascular disease (ASCVD) predicts the future development of
neoplasms [6], as well as the presence of coronary calcifications in computed tomography
(CT) scans [7]. The sharing of the same risk factors between cancer and ASCVD suggests
the existence of common pathogenetic mechanisms in which chronic inflammation plays
a major role [8]. Among patients receiving contemporary statins therapy, inflammation
assessed by high-sensitivity C-reactive protein (hs-CRP), a marker of an activated innate
immune system, is a stronger predictor for risk of future cardiovascular events and death
than cholesterol assessed by low-density lipoprotein-Cholesterol (LDL-C) [9,10]. These
observations in a large number of patients support the results of clinical trials with anti-
inflammatory agents such as monoclonal antibodies against interleukin (IL)-1β, IL-6, and
colchicine in patients with ASCVD [11–15]. Unexpected data for canakinumab included
the lower incidence of lung cancer [16]. This preliminary observation is coupled with the
reduced incidence of cancer in gout patients treated with colchicine, indicating the impor-
tance of inflammation and innate immunity in the development of tumors [17]. In addition,
recent data indicate a potentially significant role of the inflammatory state in predicting
prognosis and response to immunotherapy in cancer patients [18,19]. Increasing real-world
evidence indicates that vascular damage and related ASCVD can pose a significant problem
for the outcome of current cancer treatments.

The aim of this review is to summarize translational and clinical data on ASCVD and
cancer and the impact of these data on precision cardiology and cardio-oncology, with a
focus on preventive strategies.

2. The Changing Paradigm of Atherosclerosis and Related Cardiovascular Disease

Atherosclerosis is a chronic vascular disease characterized by the presence of fibroin-
flammatory lipid plaques in large- and medium-sized arteries. Although clinical ASCVD
usually affects the elderly, it is well known that the process begins in utero and evolves
silently throughout life, depending on genetic predisposition and, to a greater extent, by
acquired factors due to certain behaviors and exposure to environmental factors. Over
decades, a lot of research in clinical medicine, pathology, epidemiology, and public health
has led to the identification and characterization of environmental factors, biological agents,
disease conditions, and genetic states that increase the likelihood of atherosclerosis, the
main cause of CVD. To encourage an inclusive treatment paradigm for promoting and
preserving cardiovascular health throughout life in populations and individuals, in 2010
the American Heart Association (AHA) defined “healthy diet, exercise, nicotine avoidance,
healthy weight, healthy values of blood pressure, blood lipids, blood glucose” as “Life’s sim-
ple 7”: seven parameters to maintain CV health [20]. In 2022, the AHA “Life’s Simple 7” was
upgraded to “Life’s Essential 8” adding “healthy sleep” as an essential component of CV
health and emphasizing the crucial role of psychological and sociological issues [21]. There
is indeed an increasing interest in the link between psychological health/well-being/social
determinants of health and CV health due to the favorable effect of factors such as opti-
mism, purpose in life, and resilient coping and the negative effect of psychosocial stress and
depression [22,23]. Moreover, some chronic stress-related pathways such as inflammatory
response, glucose and lipid homeostasis, and coagulation have been identified [24]. At
the same time, a growing interest in the concept of “exposome” is arising in the field
of preventive cardiology to underline the importance of non-traditional risk factors in
the development/progression of atherosclerosis [25,26] and in connected clinical chronic
conditions (e.g., diabetes) [27]. The term “exposome” was coined in 2005 by Wild [28] to
weigh the impact of exposure to environmental agents on molecular pathways (genetic
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configuration) that, by changing internal homeostasis, lead to chronic diseases. The expo-
some is an aggregation of the general environmental exposome (air, soil, light, radiation,
chemical and noise pollution) and the personal exposome related to individual/lifestyle
factors (exercise, diet, infection, drug, stress, sleep deprivation, intestinal flora) [29]. The
reasons for such interest are certified by 2021 Global Disease Burden data where unhealthy
“dietary risk” and air pollution have passed cigarette smoking in the ranking of CV risk
factors [30] and by the newest evidence of the clinical impact of microplastic and nano-
plastic contaminants in atherosclerotic plaques [31,32]. Almost all the components of the
exposome raise the endocrine-sympathetic response to stress, alter the metabolic state in
the obesogenic sense, and increase oxidative stress and inflammation [33–35]. Furthermore,
they affect hematopoiesis, the circulating leukocytes, and the recruitment of monocytes
in the atherosclerotic plaque [36]. In the final analysis, the trajectory of CVD is increas-
ingly recognized as being shaped by intricate interactions between polygenic factors and
environmental influences. However, unlike blood pressure, blood sugar, or blood lipid
levels, practical and universally recognized tools are currently lacking to incorporate the
impacts of environmental (such as pollution), socio-economic (including social deprivation,
limited access to a healthy diet, opportunities for regular physical activity, and suboptimal
healthcare), and psychological factors (such as stress, anxiety, and depression) into individ-
ual patient management [21,37]. As precision biomedicine advances and genomic science
expands our understanding of biological systems and molecular networks underlying
CVD, it is likely that we will develop tools to address these complexities. Novel methods,
such as immune phenotyping and “multi-omic” characterization of the epigenome, tran-
scriptome, metabolome, and microbiome hold promise for accelerating the discovery of
biomarkers and identifying individuals at higher risk. Currently, we can only consider their
presence as “modifiers” of the risk ascertained by the classic parameters and modulate
accordingly, if possible, the treatment plan for the individual patient. What we observe
clinically, indeed, is that over time, the landscape of atherosclerosis has changed [38]. A
key factor is the considerable increase in obesity, usually associated with hypertension,
and related metabolic changes such as insulin resistance, metabolic syndrome, type 2
diabetes, and changes in lipid patterns characterized by low high-density lipoprotein
(HDL) cholesterol and elevated triglyceride-rich lipoprotein [39–44]. Nowadays, traditional
CVRFs may fail to predict CVD in the individual patient. In the PESA (Progression of
Early Subclinical Atherosclerosis) study, an ongoing longitudinal cohort study “integrating
serial imaging, biological and behavioral parameters associated with the progression of
subclinical atherosclerosis, 63% of the 4184 enrolled asymptomatic subjects (average age
46 years) had, in the basal examination, atherosclerosis in one or more vascular districts
(iliofemoral, carotid, coronary), and a third of them had a low risk according to traditional
risk estimates (Framingham Heart Score < 10%) [45]. In addition to confirming the concept
that “lower is better” for cholesterol, the PESA study highlighted the role of triglycerides
(TG) in atherosclerosis and vascular inflammation in low- and moderate-risk patients [46],
and this result was recently confirmed in other registries [47,48]. In clinical practice, one of
the most frequent causes of hypertriglyceridemia is associated with insulin resistance in
type 2 diabetes mellitus. High levels of TG are a component of metabolic syndrome and
are associated with the development of atherosclerosis in non-alcoholic fatty liver disease
(NAFLD), where TG and remnants play a significant role. The growth of atherosclerotic
plaque is a chronic dynamic inflammatory process with many different factors. Early in
atherogenesis, high levels of oxidized low-density lipoproteins (ox-LDL) and remnants
of triglyceride-rich lipoproteins gain access to the subendothelial space, eliciting a dan-
ger signal that activates the NOD [nucleotide oligomerization domain]-containing, LRR
[leucine-rich repeat]-containing, and PYD [pyrin domain]-containing protein3 (NLRP3)
inflammasome [49,50] in innate immune cells. The activated inflammasome starts a cascade
of inflammatory cytokines (IL-1β, IL-6) and upregulates high-sensitivity C-reactive protein
(hs-CRP) in the liver; this eventually leads to atherosclerotic lesions. These processes dis-
rupt the integrity of endothelial cells (ECs) and their atheroprotective role, which includes
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secretion of many vasoactive substances affecting vasodilatation, platelet function, and
monocyte infiltration. As a consequence, the activated “inflamed” ECs steer the recruited
immune cells towards the adoption of their proinflammatory phenotypes, expanding the
process of tissue inflammation [51,52]. Prolonged stimulation of ECs may also contribute
to the endothelial-to-mesenchymal transition that leads to fibrosis [53]. The recruitment of
immune cells has a pivotal role in atherosclerosis and seems to be the target to treat residual
CV risk (beyond the lipid lowering therapies). For this reason, monocytes, macrophages,
dendritic cells, neutrophils, T cells, and B cells are all deeply involved in the inflammatory
scenario [54]. Their behavior (how they move and change shape) comes from genetic
and signaling networks [55]. In recent decades, a growing interest in microbial stimuli-
induced and endogenous ligand-induced upgrading of innate immune cells that allows an
increased response against a secondary stimulation (the so-called “trained immunity”) has
been widely documented. Unfortunately, “trained immunity” may also have a negative
effect. When activated in an inappropriate way, it can lead to inflammatory and autoim-
mune diseases; trained immunity, for example, confers a proatherogenic phenotype to
monocytes and macrophages [56–58]. In conclusion, there has been a paradigm shift in
atherogenesis: the historical view of a single culprit agent inducing atherosclerosis (either
lipoproteins [59] or inflammation [60]) has been upgraded to a complex metabolic-immune
process in which a metabolic switch of ECs starts the inflammatory process that involves
many immune and vascular cells. Moreover, the complexity of the challenges to ECs
has also expanded in recent decades, and noxious substances or abnormal hemodynamic
stresses are assembled in the exposome concept [25]. The intriguing chameleonic activity
of vascular cells (ECs [51,52,58,61], pericytes [62–65], smooth muscle cells [66–69]) and im-
mune cells (dendritic cells [70], monocytes [71,72], macrophages [73–77], T cells [78–80], B
cells [81–83], polymorphonuclear neutrophils (PMNs) [84–86]) that adapt their phenotypes
to the multifaceted scenario of atherosclerosis is summarized in Table 1.

The remarkable inflammatory features of atherosclerosis explain the beneficial effect
of drugs that target the inflammasome pathway, but a “focused” cytokine inhibition is
necessary, as Ridker states, to yield an effective atheroprotective effect [87,88]. Some of
the trials on the atheroprotective effects of anti-inflammatory agents are summarized in
Table 2.

In the conundrum of atherosclerosis, there are risk-enhancing factors such as Lipopro-
tein(a) [Lp(a)] [89,90] and the microbiome [91,92]. Lp(a) seems to be the strongest indepen-
dent genetic risk factor for myocardial infarction and aortic stenosis [93] and is associated
with increased mortality [94]. There are also somatic mutations in hematopoietic stem cells,
with subsequent clonal expansion of hematopoietic cells. Clonal hematopoiesis of indeter-
minate potential (CHIP) is associated with an expected 0.5–1.0% risk per year of leukemia
but with an unexpected two-fold increase in cardiovascular risk independent of traditional
risk factors. CHIP has to be considered a new CVRF [95–97] and plays an important role in
increasing CV complication in cancer patients [98]. In recent years, there has been a growing
interest in CHIP due to TET-2 loss of function variants because preclinical studies have
suggested that Tet2 loss of function in myeloid cells, and the subsequent increase in IL-1
β-related signaling, act as accelerators of atherosclerosis [99]. These observations promoted
the hypothesis that IL-1β neutralization would lead to a greater reduction in MACEs, and
this was indeed the case in a subgroup analysis of the CANTOS trial that included patients
with a history of myocardial infarction, elevated high-sensitivity C-reactive protein, and
CHIP variant TET2 clones [100].
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Table 1. The chameleonic vascular and immune players of atherosclerosis with their “good”, “bad”, or “ugly” behaviors.

Players Phenotypes “Good” Behavior “Bad” Behavior “Ugly” Behavior

Endothelial cells (EC) secrete
vasoactive substances (e.g.,
endothelin-1, nitric oxide, etc.)
affecting vascular smooth muscle
cells, platelets, and white blood cells.
In atherosclerosis ECs are activated
by trapped lipoproteins.
Refs. [51,52,58,61]

Heterogeneous ECs to suit
heterogeneous endothelium,
capable of angiogenic and metabolic
switch.
EC may exhibit trained immunity.

Healthy ECs are excellent sensors of
the hemodynamic forces of blood
flow. ECs have a pivotal role in
endothelial resilience, the ability to
cope with many stressors or
challenges (exposomes).

In the early stages of atherosclerosis,
high levels of ox-LDL and remnants
of tryglyceride-rich lipoproteins
gain access to the subendothelial
space, eliciting a danger signal that
activates the NLRP3-inflammasome
in innate immune cells and the
inflammatory pathways, leading to
endothelial dysfunction.

Inflammation begets inflammation,
and this vicious circle leads to
advanced stages of atherosclerosis.

Pericytes: perivascular cells derived
from human pluripotent stem cells
(HPSCs) and located around ECs.
Refs. [62–65]

Due to their common origin from
HPSCs, pericytes can differentiate
into other cells of the mesenchymal
lineage such as monocytes.

Support vascular stability by
preventing matrix degradation; play
a relevant role in differentiation,
angiogenesis, regeneration,
immunomodulation, and blood flow
regulation.

Dysmetabolic-driven alteration of
pericytes in diabetes contributes to
plaque formation.

In advanced atherosclerosis,
pericytes are involved in plaque
neovascularization, inflammation,
and vascular calcification processes.

Vascular smooth muscle cells exhibit
a contractile phenotype in the
healthy arterial wall. If stimulated
by ECs through PDGF-BB and
TNF-α, they can switch to a
synthetic phenotype that increases
the production of ECM, exosome,
and proinflammatory cytokines.
Refs. [66–69]

Various phenotypes with beneficial
and detrimental role in
atherogenesis.

VSMC stabilize fibrous cap in
advanced atherosclerosis and
produce ECM (fibroblast-like
features).

Lipid-induced transformation in macrophage-like and foam cell-like
phenotypes, exhibiting proinflammatory behavior and increasing
vulnerability to plaque (macrophage-like features).

Dendritic cells (DCs) bridge the
innate and adaptive immune
response involved in the scenario of
evolving plaque.
Refs. [66,70]

Preclinical studies: proatherogenic
and anti-atherogenic function.

In Ldlr−/− mice fed with high-fat
diet, autophagy disruption in DCs
limits atherogenesis.

In humans, dendritic cell numbers are connected to vulnerability of
atherosclerotic plaque.
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Table 1. Cont.

Players Phenotypes “Good” Behavior “Bad” Behavior “Ugly” Behavior

Monocytes in a homeostatic state
populate blood, bone marrow, and
spleen.
Refs. [71,72]

Classical vs. non-classical
monocytes.
Monocytes may be rewired by
metabolic stimuli (e.g., ox-LDL) to
become a “trained” immune cell.

Non-classical monocytes are “on
patrol” to maintain vascular
endothelium. Recruited monocytes
also have an impact on
atherosclerosis regression.

Classical monocytes (CD14+ CD16−
in humans, Ly6Chigh in mice)
recruited to atherosclerotic plaque
exhibit phenotypic heterogeneity,
differentiating into dendritic cells
and macrophages.

In preclinical studies in mice,
splenic classical monocytes
(Ly6Chigh) increase plaque and its
instability. In humans and mice,
monocytosis is associated with
increased severity of atherosclerosis.

Macrophages
Refs. [73–77]

M1 macrophages, M2 macrophages.
Macrophages may be upgraded in
“trained” immune cells.

M2 macrophages clear lipids and
secrete anti-inflammatory factors
(e.g., Il-10 and collagen). Recruited
monocyte-derived macrophages
remove apoptotic cells
(efferocytosis), eliciting the secretion
of anti-inflammatory cytokines and
hampering the progression of
atherosclerotic plaque.

M1 macrophages favor the
accumulation of intracellular lipids
and increase the secretion of
proinflammatory factors (e.g.,
TNF-α IL-1 β and IL-6).
Macrophages may appear as foamy
cells.

M1: when reprogrammed
macrophages lose their efferocytic
ability, apoptotic cells undergo
post-apoptotic necrosis, releasing
proinflammatory mediators and
providing a boost to the progression
of plaque.

T cells have a role in all stages of
atherosclerosis. CD4+T cells are
prevalent in mouse atherosclerotic
plaque and exhibit a
proinflammatory atherogenic
phenotype.
Refs. [78–80]

Atheroprotective phenotype (T reg)
and proatherogenic phenotype (T
helper 1).

T reg can silence inflammation
through the elaboration of the
immunomodulatory cytokine
transforming growth factor beta and
by secreting IL-10 (preclinical
studies).

Proinflammatory phenotype (T helper 1 cells): activated T cells have a direct
role in the arterial wall or help B cells in antibody production.

B cells are classified into B1 cells
(subdivided into B1a and B1b cells),
mainly produced in the fetal liver,
and B2 cells (subdivided in T1 and
T2 marginal zone progenitor).
Refs. [81–83]

B1 cells are atheroprotective in mice.
When challenged by a
high-fat/high-cholesterol diet,
marginal zone B cells switch to an
atheroprotective programme
mediated by Atf3, Nr4a1, and Pdl1.

B1 cells exhibit atheroprotective
behavior in mice due to the
production of IgM antibodies that
block the uptake of oxLDL by
macrophages in atherosclerotic
lesions.

B2 cells exhibit proatherogenic behavior through antibody responses that
stimulate adaptive immunity.
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Table 1. Cont.

Players Phenotypes “Good” Behavior “Bad” Behavior “Ugly” Behavior

Neutrophils have a role in all stages
of atherosclerosis
Refs. [84–86]

Proatherogenic phenotype.
Reparative phenotype.

Reparative phenotype exhibited
during thrombotic events when
neutrophils promote endothelial
repair and angiogenesis (arterial
healing).

Neutrophils secrete ROS, increasing
the permeability of ECs and
inducing NLRP3 inflammasome.
Neutrophils attract monocytes and
can activate macrophages via
extrusion of their NETs.

NET formation that stimulates the
NLRP3 inflammasome and
produces IL-1β (preclinical study).
In this scenario, NLRP3
inflammasome requires a second hit
to be fully activated.
Defective efferocytosis that leads to
accumulation of DAMPs.

Legend: DAMPs, danger-associated molecular patterns; ECM, extracellular matrix; NET, neutrophil extracellular trap; NLRP3, nucleotide oligomerization domain-containing,
leucine-rich repeat-containing protein3, and pyrin domain-containing protein 3; PDGF, platelet-derived growth factor; TNF-α, tumor necrosis factor-α; Atf3, activating transcription
factor-3; Nr4a1, nuclear receptor subfamily 4 group a1; Pdl1, programmed death ligand-1.

Table 2. Anti-inflammatory agents and CVD.

Study Anti-Inflammatory
Agent Target Population Effect on Inflammation

Biomarker Clinical Effects References

CANTOS
(main study)
subgroup analysis of
CANTOS

3 doses of canakinumab
(50 mg, 150 mg, and 300
mg) subcutaneously (s.c.)
every 3 months vs.
placebo

IL-1β

10,061 patients with
previous myocardial
infarction and hsCRP ≥
2 mg/L
Subgroup of 338 patients
with clonal
haematopoiesis and
variants in TET2 more
common than DNMT3A

Reduction in hsCRP (for
all the doses)

The dose of 150 mg s.c.
every 3 months was
associated with a
significant reduction in
recurrent CV events
Patients with CHIP due
to somatic variants in
TET2 had reduced risk
for MACE

Ref. [11]
NEJM 2017;377:1119
Ref. [100]
JAMA Cardiol 2022;7:521

CIRT Low-dose methotrexate
(15–20 mg weekly) No specific target

4786 patients with
known atherosclerosis
and either DM orMS

No reduction in IL-1β or
IL-6

No reduction in CV
event rates

Ref. [87]
NEJM 2019;380:752

RESCUE
Ziltivekimab (7·5 mg, 15
mg, or 30 mg every 4
weeks up to 24 weeks)

IL-6

264 patients with high
CV risk> (age ≥ 18 years,
moderate to severe CKD,
hsCRP ≥ 2 mg/L)

Reduction in biomarkers
of inflammation (hsCRP)
and thrombosis (e.g.,
fibrinogen)

Reduction in biomarkers
of inflammation (hsCRP)
and thrombosis (e.g.,
fibrinogen)

Ref. [12]
Lancet 2021;397:2060
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Table 2. Cont.

Study Anti-Inflammatory
Agent Target Population Effect on Inflammation

Biomarker Clinical Effects References

COLCOT Low-dose colchicine (0.5
mg daily)

Inhibition of tubulin
polymerization and
alteration in leukocyte
responsiveness

Patients with recent
myocardial infarction:
2366 patients assigned to
colchicine and 2379 to
placebo

Significant reduction in
ischemic CV events

Ref. [13]
NEJM 2019;381:2497

Lo-Do-Co2 Low-dose colchicine (0.5
mg daily)

Inhibition of tubulin
polymerization and
alteration in leukocyte
responsiveness

Patients with chronic
coronary artery disease
in stable condition: 2762
patients assigned to
colchicine and 2760 to
placebo.

31% lower relative risk
of CV death,
spontaneous myocardial
infarction, ischemic
stroke, or coronary
revascularization in
patients treated with
colchicine compared to
placebo

Ref. [14]
NEJM 2020;383:1838

CANTOS, Canakinumab Anti-Inflammatory Thrombosis Outcomes Study; CIRT, Cardiovascular Inflammation Reduction Trial; COLCOT, Colchicine Cardiovascular Outcomes Trial; CV,
cardiovascular; hsCRP, high-sensitivity C-reactive protein.
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Another interesting component of atherosclerotic cardiometabolic derangements is
epicardial adipose tissue (EAT), which can be both useful for the myocardium (offering
a thermogenic function) and dangerous (through its paracrine or vasocrine secretion of
proinflammatory and profibrotic cytokines). EAT changes with age and in pathologic
conditions and is considered proatherogenic for coronary arteries [101,102].

The complexity of the inflammation/immunity process in acute myocardial infarction
(AMI) has been recently translated into a play on words of the well-known Western film
as “Good”, “Bad”, and “Ugly” characters. The “Good” players are T cells, natural killer
cells (NKs), and macrophages that protect and heal the myocardium along with the good
cytokines (IL-10 and IL-2) that decrease proinflammatory signals [tumor necrosis factor α
(TNFα), monocyte chemoattractant protein-1 (MCP-1), IL-8], reduce extracellular matrix
remodeling, and promote the activation of regulatory T cells (T reg), type 2 helper T cells
(Th2), and NKs, promoting the protective M2 phenotype of macrophages. The “Bad”
players are the M1 macrophages, the foam cells, and PMNs; together, they maintain a low-
grade inflammation status in the late phase after AMI, inducing the NLRP3 inflammasome
and increasing the production of the bad IL-1α, IL-1β. The “Ugly” players are the activated
PMNs, the recruited monocytes, IL-1, and IL-6; they act in the early phase after AMI soon
after plaque rupture and thrombosis. This process may be amplified by NET formation [103].
Some of these characters may also be involved in the process of atherosclerosis, as shown
in Table 1 and in the central illustration.

3. Atherosclerosis and Cancer: The Unexpected Link

Over the years, community studies have documented that adherence to the seven
ideal health metrics defined in the AHA goals [20] is associated with lower cancer inci-
dence [6,104–107]. Cancer and CVD are intertwined [108–111] by the sharing of the same
risk factors (see Koene [112] for more details) and of the fundamental physio-pathological
mechanism that is represented by chronic inflammation.

4. Atherosclerosis and Cardio-Oncology: The Bidirectional Relationship Has
Highlighted the Novel Issues That Need to Be Addressed
4.1. The Shared Risk Factors

Obesity, hypertension, diabetes, smoking, dyslipidemia, physical inactivity and seden-
tary behavior, unhealthy diets, alcohol abuse, impaired immune response, metabolic re-
modeling, and CHIP are risk factors for both CVD and cancer and represent the different
epiphenomena of the common characteristics that underline the two most frequent non-
communicable diseases [113].

4.2. The Shared Pathways

The hallmarks of cancer (sustained proliferation, resistance to cell death, neurohor-
monal stress, genomic instability, and inflammation) [114] also have a pivotal role in CVD.
The following biological processes shared by cancer and CVD and the candidate biomark-
ers that represent these shared biological processes are illustrated according to a seminal
review by Narayan et coll [115].

- Inflammation, an epiphenomenon of immune dysregulation and cell senescence, is
associated with increased levels of hsCRP and IL-6 and suppression of tumorigenicity
2 (ST2). These biomarkers are linked to tissue invasion and metastasis associated with
cancer but also with tissue damage that underlies the atherosclerotic process [116,117].

- Cellular proliferation, a mitogenic function, whose marker is Galectin-3, can stimu-
late not only proliferation (through paracrine interactions) but also cardiovascular
remodeling and cardiac fibrosis [118,119].

- Resistance to cell death is linked to cellular stress response and apoptosis; its biomarker,
growth differentiation factor (GDF-15), has a prognostic role in cancer mortality and in
CVD (myocardial infarction, thromboembolic stroke, heart failure, and stroke) [120,121];
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cardiac Troponin T (cTnT), a well-known marker of myocardial cell death, is also a
useful marker in light chain amyloidosis [122,123].

- Neurohormonal stress leads to increased levels of cardiovascular neurohormones
such as N-terminal pro-B-type natriuretic peptide, mid-regional pro-atrial natriuretic
peptide and other neurohormones, and diuretic hormones. These cardiovascular
neurohormones have a relevant role in patients with acute or chronic heart failure
(HF), but they might also play a role in cancer, since they may be produced by some
malignant cells in the vascular bed of tumors [124,125].

- Angiogenesis, with a role in EC survival and in tumorigenesis, invasion, and metas-
tasis, may be measured by angiogenic biomarkers such as soluble fms-like tyrosine
kinase 1, a variant of Flt-1 known also as vascular endothelial growth factor (VEGF)
receptor, and placental growth factor (PlGF). VEGF biology has a relevant impact on
tumorigenesis and on normal cardiovascular function [126,127].

- Genomic instability, such as CHIP, has an impact on both CVD and cancer. CHIP [128]
is a risk factor for CVD [95], but it may be caused by atherosclerosis due to the con-
tinuous stimulation of stem cell proliferation [129]. This reverse CHIP effect has
uncovered an unexpected link between oncogenesis and atherogenesis [38]. The
biological explanation of the impact of a potentially precancerous lesion on CVD
involves an interaction between clonally derived monocytes and macrophages and
the vascular endothelium that leads to vascular inflammation and accelerated athero-
genesis [95,128].

The shared pathways are illustrated in the central illustration (Figure 1).
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4.3. The Atherogenic Effect of Some Oncologic Treatments

- Radiotherapy-induced endothelial dysfunction. Radiation-associated damage induces
the secretion of proinflammatory cytokines; increases the release of reactive oxygen
species (ROS); causes a dysregulation of glycolysis, lipid metabolic pathways, and
angiogenesis; and may have a negative impact on telomere function and immunity
homeostasis. The final effect is EC death (either acutely via apoptosis or chronically
via EC senescence) and a disrupted EC environment [130]. Clinical phenotypes of
radiation-associated vascular damage are accelerated CAD, cerebral events due to
carotid artery disease, calcification of the ascending aorta and aortic arch, and lesions
of other vascular segments in the radiation field [131]. The recent BACCARAT study
evaluated the association between cardiac exposure and the risk of developing calcified
and non-calcified atheromatous plaques within 2 years of RT. As both calcified and
non-calcified plaques were found, it may be hypothesized that cardiac radiation
exposure accelerates the process of atherosclerosis in already existing plaques with
an increase in their calcium content (calcified plaques) and starts new non-calcified
plaques [132].

- Cancer therapy-induced vasculotoxicity is associated with traditional chemotherapies
(alkylating agents, microtubule inhibitors, and antimetabolites), with targeted thera-
pies such as VEGF inhibitors, with breakpoint cluster region–Abelson oncogene locus
tyrosine kinase inhibitors, and with multiple myeloma drugs. The majority of these
drugs induce hypertension that may eventually drive atherosclerosis. They may also
produce CV injury due to damage-associated molecular patterns (DAMPs) that sustain
inflammation. There are many clinical phenotypes of vasculotoxicity, including CAD,
stroke, systemic and pulmonary hypertension, vasospasm, and thrombosis [133,134].

- Accelerated atherosclerosis is induced by immune checkpoint inhibitor (ICI) treat-
ment. Oncologic studies of ICI-induced cardiotoxicity have indeed shed light on the
complex relationship between the immune system, inflammation, and atherosclerosis.
Preclinical studies have shown that the targets of ICIs [PD-1 (programmed cell death
protein 1), PD-L1 (programmed death ligand 1), CTLA-4 (cytotoxic T-lymphocyte–
associated protein4)] are proteins with a negative regulatory role in atherosclero-
sis [135]. Blockage of the checkpoints may predictably lead to accelerated atheroscle-
rosis through enhanced T cell responses, limited Treg function, and infiltration of the
vascular endothelium [136–139]. Preclinical studies have also shown that short-term
ICI treatment promotes DAMPs and proinflammatory cytokine production [140]. In
a clinical setting, in a seminal study of 2842 patients and 2842 controls matched by
age, a history of cardiovascular events and cancer type showed a 3-fold increase in
atherosclerotic cardiovascular events (myocardial infarction, coronary revasculariza-
tion, and ischemic stroke) after starting ICI treatment. Moreover, in a case-crossover
analysis performed by the same authors and comparing an at-risk period (defined
as the 2-year period after ICIs) and a control period (defined as the 2-year period
before ICIs), atherosclerotic cardiovascular events significantly increased from 1.37
to 6.55 per 100 person-years at 2 years; in a subgroup of 40 patients, a 3-fold-higher
rate of aortic plaque progression was also documented [141]. In a more recent retro-
spective cohort study on 1458 patients diagnosed with stage III or IV non-small-cell
lung cancer (NSCLC) treated with (487 patients) and without (971 patients) ICI ther-
apy and followed-up for a median time of 23.1 months, ICI therapy was associated
with a 3.6-fold increase in the total risk of ASCVD events before propensity score
matching [142].

- Hormone therapy-associated risk of dyslipidemia, atherosclerosis, and heart fail-
ure. This effect has been proven in BC women treated with aromatase inhibitors
that increase the risk of atherosclerosis, HF, and dyslipidemia [143] and in prostate
cancer patients treated with androgen deprivation therapy (ADT) in which the in-
creased risk of CV events is linked to indirect modifications of CVRFs. More specifi-
cally, Gonadotropin-releasing hormone (GnRH) agonists increase LDL-cholesterol and
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triglyceride levels, visceral fat, and insulin resistance and decrease lean body mass and
glucose tolerance, leading to accelerated atherosclerosis and coronary artery disease
(CAD) events, HF, and arrhythmias [144,145]. In preclinical studies, orchiectomy and
GnRH agonists, but not GnRH antagonists, induced long- or short-term follicular
stimulating hormone elevation that, acting synergistically with TNF-α, induced an am-
plified endothelial inflammation through elevation of vascular cell adhesion protein-1
expression, thus accelerating atherosclerosis [146].

5. How Do We Measure and Quantify Atherosclerosis?

ASCVD can be imagined as a kind of continuum that originates from the earliest onset
of vascular atherosclerosis at the cellular level, passes through a lasting, clinically silent,
histological evolution, and eventually ends with overt clinical complications. The time
frame within which these processes are included can reach some decades, with long phases
of quiescence alternating with more or less prolonged phases of instability. The ability
to intercept, in the individual patient, the evolution of atherosclerosis before it becomes
clinically manifest and, thus, given the wide time frame, to ultimately prevent its most
dreaded complications, has always been and still is, one of the holy grails of CV medicine.
This long path, which started from the epidemiological studies that since the 1950s have
enabled the identification of the best-known CVRFs [147–149], has recently been enriched
with more refined tools capable of identifying the factors that, at the pathophysiological
level, initiate the atherosclerotic process and promote the transition from stable phases to
acute events; and with increasingly sensitive and specific biomarkers of atherosclerosis.
These tools, at the individual level, help identify the patients who are at higher risk of acute
clinical events. This goal is achieved thanks to diagnostic methods capable of investigating
plaque composition and atherosclerotic lesions at higher risk of acute complications.

5.1. Risk Scores and Mendelian Randomization

Randomized controlled trials (RCTs) are considered the gold standard design to infer
causality, and this is true even for CVRF’s role in atherosclerosis development. However,
RCTs are expensive, time-consuming, and often difficult to conduct, particularly if, as is the
case for CVRF identification, a long follow-up is needed. Other limits are represented by
possible poor long-term compliance and ethical issues about random treatment allocation.
Therefore, the relationship of modifiable CVRFs with CV events has mostly been investi-
gated using an observational study design, e.g., through case-control studies and cohort
studies. The limitations of this type of approach are the presence of confounding factors
and the so-called reverse causation bias; these make any causal relationship that may be
demonstrated less reliable, given that confounding factors and reverse causation bias can
distort the findings. Observational and cohort studies conducted over the past 75 years,
starting with the Framingham study, have enabled the construction of a number of risk
scores that can be applied in different populations [150,151].

The most recent European guidelines on cardiovascular prevention in clinical prac-
tice [37] recommend the use of the Systematic Coronary Risk Evaluation (SCORE2) and
Systematic Coronary Risk Evaluation-Older Persons (SCORE2-OP) systems. The risk cards
in this system allow estimation of the 10-year risk of CVD in four European geographical
risk regions. In Europe, maps have been developed for low-, moderate-, high-, and very
high-risk regions. This rating system takes into account risk factors such as non-HDL
cholesterol, systolic blood pressure, smoking, sex, and age, thus defining different risk
categories (low, moderate, high, and very high) according to possibly associated additional
CVRFs [152]. In recent years, in addition to the traditional CVRFs identified since the
1950s, several new risk factors for atherosclerosis have been identified, including many
diseases that increase systemic inflammation (such as gout, inflammatory bowel disease,
autoimmune collagen vascular diseases, and psoriasis), some factors that occur during
maternity (pre-eclampsia, delivering a child of low birth weight, preterm delivery) or
child-bearing age (premature or surgical menopause) in females; factors that occur in early
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childhood (early-life trauma in young and middle-aged individuals with a history of AMI)
and some lifestyle, such as low socioeconomic status and air pollution.

Since 2003, with the pioneering works of Iacobellis et al., the presence of epicardial
fat has also been increasingly proposed and better defined as a risk factor, not only for
coronary atherosclerosis but also for atrial fibrillation and HF, in relation to its localization
at the atrial or pericoronary level, respectively [153,154]. Adipocyte aggregates between
the myocardium and the visceral layer of the epicardium have unique anatomic and
functional characteristics, given their close proximity and interactions with the heart owing
to shared circulation and the absence of muscle fascia separating the two organs. EAT can
be clinically measured with cardiac imaging techniques that can help to predict and stratify
cardiovascular risk [102].

Finally, to overcome the limitations of observational and cohort studies, genetics was
used to better define the cause-and-effect relationships between CVRFs and CV events.
Large-scale genome-wide association studies (GWASs) conducted over recent decades have
identified numerous genetic variants associated with various cardiometabolic profiles and
risk factors. From these discoveries came the so-called Mendelian randomization studies
that use the genetic differences present in the study population as a “natural experiment”
to improve inferences about the cause-and-effect relationship between hypothetical CVRFs
and CV events derived from prior observational studies. Mendelian randomization studies
have several advantages over RCTs, given that they are usually cheaper and faster to create,
since they are derived from the existing, large-scale GWAS database.

5.2. Biomarkers

An ideal clinical biomarker should contain the following characteristics [155]: (1) clini-
cal relevance, (2) sensitivity and specificity to treatment effects, (3) reliability, (4) practicality,
and (5) simplicity. Based on these general principles, it is possible to profile the ideal
biomarker for the atherosclerotic process (Table 3).

Table 3. Ideal atherosclerosis biomarker.

Safe and easy to measure;
Reliable;
Sensitive and specific;
Capable of discriminating healthy patients from unhealthy patients;
Able to predict future cardiovascular events;
Should express early in the disease progression;
Can be applied to diagnosis, staging, and prognosis;
Cost efficient for follow-up;
Modifiable with treatment.

The atherosclerotic process involves multiple pathophysiological mechanisms. In-
flammation of the vessel wall has long been recognized as central to the initiation of the
atherosclerotic process, as well as to its progression and transition to stages of clinical insta-
bility. Not surprisingly, many biomarkers directly or indirectly related to the inflammatory
process (Table 4) have been proposed as useful in monitoring atherosclerotic pathology,
first in experimental models and then clinically. The endothelium can be considered the
target organ of the pathophysiological processes that initiate atherosclerosis. A recent
review pointed out the differences between an activated endothelium and a dysfunctional
endothelium, the former being a very early stage of dysfunction [156]. Biomarkers of
endothelial activation are endothelial adhesion molecules, cytokines, C-reactive protein,
CD62E+/E-selectin activated endothelial microparticles, oxidation of LDL, asymmetric
dimethylarginine, and endocan. Biomarkers of endothelial dysfunction are matrix met-
alloproteinases such as MMP-7, MMP-9, ANGPTL2, endoglin, annexin V, endothelial
apoptotic microparticles, and serum homocysteine. The recent discovery of exosomes,
both as diagnostic and therapeutic tools, has boosted research on their use. Exosomes that
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derive from ECs may be responsible for the changing phenotype of vascular smooth muscle
cells [157,158].

Table 4. Pro- and anti-inflammatory cells and mediators in atherosclerosis.

Experimental

Biomarker Atherosclerosis

IL-1 β
Anti IL-1 β-L:
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5.3. Imaging Techniques

Since coronary angiography, in particular, is invasive, expensive, not widely available,
and not a risk-free procedure, clinicians and researchers have focused on two alternative
strategies: the first has been the aforementioned study of biomarkers and genetic variants
that can predict future atherosclerosis-related clinical events, while the second has been the
study of atherosclerosis in more accessible vascular districts, such as the carotid and lower
extremity arteries, using noninvasive methods, mainly ultrasound.

A unique feature of imaging is the ability to study calcifications in the coronary arteries.

(i) Coronary artery calcium (CAC) has become a useful tool to detect and quantify cal-
cified subclinical atherosclerotic burden. The most widely used method to quantify
CAC is the Agatston method, which uses the product of the total calcium area and a
quantized peak calcium density weighting factor defined by the calcification attenu-
ation in Hounsfied units on non-contrast computed tomography [159]; in addition,
CAC may be identified on scans scheduled for other reasons [160]. In the ITALUNG
trial, CAC was assessed in baseline, low-dose computed tomography performed on
1364 participants aged 59–69 years and with a smoking history ≥ 20 pack-years in a
lung cancer screening program with a follow-up of 22 years. CAC score was graded
as absent, mild, moderate, and severe. In the study, moderate or severe CAC was sig-
nificantly associated with CV mortality after adjustment for traditional CVRFs [161].
CAC progression may also be a marker of accelerated atherosclerosis, as shown in a
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recent study regarding ICI therapy in cancer [142]. CAC score is unreliable with statin
or PCSK9 inhibitor treatment [162,163].

(ii) Computed Tomography Angiography. The “actionable lump” concept underscores
the importance of early detection and proactive monitoring of sublinical atheroscle-
rosis when preventive interventions, such as conversion to a healthy lifestyle and
early treatment of CVRFs, may limit the progression of the atherosclerotic process,
underscoring the importance of a proactive monitoring of silent atherosclerosis [164].

There is indeed a large body of publications in the literature examining the promise of
imaging markers for early detection of subclinical CVD to ameliorate a primary prevention
approach. Available data are in favor of CAC as a strong marker of ASCVD risk. On
the other hand, the absence of CAC or zero CAC has an even greater value as a negative
predictive tool, with a remarkably favorable prognosis in older adults with guideline
recommendations to consider deferral of lipid-lowering therapies in subjects with zero
CAC [165,166]. Another intriguing finding is breast arterial calcification (BAC), a form
of medial artery calcification that can be detected in routine mammography, which has
been proposed in recent years as a sex-specific imaging marker for the early detection
of subclinical CVD. However, the pathophysiology of CAC, BAC, and calcium deposits
at other cardiovascular sites (valve and aorta calcification) differs, as do their prognostic
implications. For example, BAC is a form of medial artery calcification whose formation
is regulated by the expression of osteogenic genes in a manner similar to bone tissue.
Unlike the intimal calcifications expressed by CAC, BAC is formed independently of lipid
deposition and macrophage activation, processes typical of classic atherosclerosis. However,
these intimal calcifications are thought to contribute to endothelial dysfunction and reduced
vascular compliance. Similarly, valvular calcifications are likely to result from mechanisms
that combine classic atherosclerotic and more strictly osteogenic processes. Even if BAC,
CAC, aortic calcification, and valvular calcification are correlated with each other, and
all have been associated with CVD, we have to take into account the aforementioned
heterogenous pathophysiologic processes involved in their origin, which could make a
difference in their clinical utility as an early marker of atherosclerosis. In conclusion, we
can state that BAC, as well as other areas of extracoronary calcifications, can be useful as
a general cardiovascular risk marker, and in this sense, its identification should lead to a
vigorous implementation of Life Simple 7, having a positive impact on both CV risk and
oncology risk. However, at present, the absence of BAC (zero BAC) does not have the same
negative predictive value as zero CAC and is not equivalent to low CV risk [167].

In a paper published in 2024, Parveen Grag et al. [168] reported that carotid plaque
burden, CAC, and low anklebrachial pressure index were the only three tests that robustly
predicted future atherosclerotic events in people of middle age or older. The authors
conducted a critical review of measurements used to infer the presence of subclinical
atherosclerosis in the major conduit vessels and focused on the predictive capability of
these tests for future CV events (defined as stroke, myocardial infarction, and chronic
ischemic limb disease) independent of the presence of conventional CVRFs. The authors
preferred studies with >10,000 person-years of follow-up limited to carotid, coronary, aorta,
and lower limb arteries and performed a meta-analysis of the results, reporting adjusted
hazard ratios (HRs) with 95% confidence intervals. In the carotid artery (eight studies),
the presence of plaques was independently associated with future strokes (HR 1.89, 95%
CI 1.04–3.44) and cardiac events (seven studies, HR 1.77, 95% CI 1.19–2.62). Coronary
calcifications (five studies) were found to be associated with acute coronary events (HR
1.54, 95% CI 1.07–2.07), while an increase in their severity, as expressed by the Agatston
score, was associated with a significant increase in risk in thirteen studies. Seven studies
showed that an ankle–brachial index (ABI) < 0.9 was associated with an increased risk of
cardiovascular death (HR 2.01, 95% CI 1.43–2.81).
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6. What Is New on the Horizon for Early Atherosclerosis Imaging?
6.1. Magnetic Resonance Imaging (MRI)

The ability of MRI to accurately detect the presence of lipid deposits, the sine qua
non of atherosclerosis, in various vascular territories, has been known for more than
20 years [169]. Technological advances that will soon make more “portable” MRIs available
suggest that this method may also be used in large epidemiologic studies [170]. More re-
cently, the combination of MRI and positron emission tomography (MRI-PET) has proven to
be a promising imaging modality for studying the inflammation that underlies the various
stages of the atherosclerotic process, with the possibility of whole-body studies [171].

The use of near-infrared spectroscopy, which chemically characterizes plaque, in
conjunction with various intravascular imaging techniques (most commonly, intravascular
ultrasound or optical coherence tomography) allows accurate study of the composition
and characteristics of atherosclerotic plaques, although this method requires an invasive
approach [172].

6.2. Computed Tomography Angiography (CTA)

In addition to aspects more closely related to anatomy, coronary CTA (CCTA) tech-
niques can and will provide increasingly sophisticated information about plaque charac-
teristics and the degree of associated inflammation [173]. All this is very useful because
coronary risk assessment is a multiparametric process that includes clinical factors, such
as conventional and non-conventional CVRFs, and anatomical factors, such as degree of
stenosis and global plaque burden, but also biological characteristics of plaque, among
which cellular composition and degree of associated inflammation seem to be very relevant.

Beyond the capacity of identifying the extent, distribution, and characteristics of high-
risk coronary plaques (low attenuation, napkin ring sign, positive remodeling, and patchy
plaque calcification), CCTA has been shown to be able to explore the biological mechanisms
underlying CAD progression and clinical events through the visualization of coronary
perivascular adipose tissue (PVAT), a very promising technique that examines PVAT as
a “telltale” sign of the presence and degree of inflammation at the level of the coronary
wall [174]. The parameter that expresses the degree of vascular inflammation is the Fat
Attenuation Index (FAI) score, which can be obtained from routine CCTAs and can provide
an assessment of inflammation for each individual coronary segment, integrating these
data with clinical and anatomical data in the construction of an increasingly personalized
risk profile [175].

7. Limitations and Unresolved Questions

However, it should be recalled that there is currently no solid evidence to support spe-
cific therapeutic interventions in the presence of subclinical atherosclerosis. It is certainly
very suggestive to think that aggressive interventions on CVRFs such as dyslipidemia or
high inflammatory burden may be able to alter the natural history of preclinical atheroscle-
rosis, but this needs to be demonstrated with ad hoc-designed clinical trials, which will
not be easy to conduct because they require adequate sample sizes and long follow-ups. In
addition, to date, studies of subclinical atherosclerosis have typically focused on middle-
aged or older populations (range of 40 to 70 years). It is possible that the identification of
subclinical atherosclerosis may be of even greater value in younger individuals, in whom
it is likely that currently used tests may not be sensitive enough to identify the earliest
atherosclerotic lesions. This, of course, also underscores the need to develop new diagnostic
methods capable of identifying the earliest stages of the disease.

Author Contributions: Conceptualization, G.G., F.M.T. and L.T.; methodology, G.G., L.T. and F.M.T.;
validation, G.G., F.M.T., A.I., M.L.C., N.S. and L.T.; writing—original draft preparation, G.G., F.M.T.,
A.I. and L.T.; writing—review and editing, M.L.C., N.S., R.F., A.N. and C.P.; supervision, L.T.; funding
acquisition, L.T. All authors have read and agreed to the published version of the manuscript.



Int. J. Mol. Sci. 2024, 25, 4232 17 of 25

Funding: This study was partially funded by Italian Ministry of Health—Ricerca Corrente Annual
Program 2025.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

ABI ankle–brachial index
ADT androgen deprivation therapy
AHA American Heart Association
AMI acute myocardial infarction
ASCVD atherosclerotic cardiovascular disease
BAC breast arterial calcification
BC breast cancer
CAC coronary artery calcium
CAD coronary artery disease
CHIP clonal hematopoiesis of indeterminate potential
CT computed tomography
CCTA coronary computed tomography angiography
CTA computed tomography angiography
cTnT cardiac troponin T
CV cardiovascular
CVD cardiovascular disease
CVRFs cardiovascular risk factors
DAMPs danger-associated molecular patterns
EAT epicardial adipose tissue
EC endothelial cell
FAI Fat Attenuation Index
GDF-15 growth differentiation factor-15
GnRH gonadotropin releasing hormone
GWAS genome wide association studies
HDL high-density lipoprotein
HF heart failure
HR hazard ratio
hs-CRP high-sensitivity C-reactive protein
GOF gain of function
ICI immune checkpoint inhibitor
IL interleukin
LDL-C low-density lipoprotein
LOF loss of function
Lp(a) lipoprotein(a)
MACE major adverse CV event
MCP-1 monocyte chemoattractant protein-1
M1 M1 macrophage
M2 M2 macrophage
MRI magnetic resonance imaging
NAFLD non-alcoholic fatty liver disease
NET neutrophil extracellular trap
NK natural killer

NLRP3
nucleotide oligomerization domain-containing, leucine-rich repeat-containing, and pyrin
domain-containing protein3

NSCLC non-small-cell lung cancer
PESA Progression of Early Subclinical Atherosclerosis
PET positron emission tomography
PlGF placental growth factor
PMNs polymorphonuclear neutrophils
PVAT perivascular adipose tissue
RCT randomized controlled trial
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ROS reactive oxygen species
ST2 suppression of tumorigenicity 2
Th2 type 2 helper T cells
TG triglycerides
T reg regulatory T cells
TNF-α tumor necrosis factor-α
VEGF vascular endothelial growth factor
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