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Abstract

The testing procedure suggested in Canova and Sahneh (2018) is essentially the

same as the one proposed in Forni and Gambetti (2014), the only one difference

being the use of Geweke, Meese and Dent (1983) version of Sims (1972) test in

place of a standard Granger causality test. The two procedures produce similar

results, both for small and large samples, and perform remarkably well in detecting

non-fundamentalness. Neither methods have anything to do with the problem of

aggregation. A “structural aggregate model” does not exist.
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1 Introduction

Starting with the seminal contributions of Lippi and Reichlin (1993, 1994a, 1994b)

non-fundamentalness, or non-invertibility, of structural MA representations of macroe-

conomic variables has been widely discussed in both the business cycle and time series

literature. A partial list of recent contributions includes Giannone, Reichlin and Sala

(2006), Giannone and Reichlin (2006), Fernandez-Villaverde, Rubio-Ramirez, Sargent

and Watson (2007), Ravenna (2007), Yang (2008), Forni, Giannone, Lippi and Reichlin

(2009), Sims (2012), Leeper, Walker and Yang (2013), Giacomini (2013), Forni, Gam-

betti and Sala (2014, 2017), Forni and Gambetti (2014), Beaudry, Fève, Guay and

Portier (2015), Chen, Choi and Escanciano (2015), Forni, Gambetti, Lippi and Sala

(2017a, 2017b), Canova and Sahneh (2018).

The problem can be shortly summarized as follows. Structural VAR methods are

aimed at estimating the impulse-response functions and the shocks of a structural,

Moving Average representation of the macro economy. If such representation is non-

fundamental, then the variables in the VAR do not convey enough information to recover

the structural shocks and the related impulse-response functions, so that the empirical

results obtained from the VAR may be misleading. Non-fundamentalness is likely to

occur with small VARs, particularly in presence of news shocks, announcement effects

of policy and fiscal foresight, and is an intrinsic feature of models with noise shocks.

Fundamentalness has long been assumed without testing in applied macroeconomic

work, since fundamentalness tests were not available. Recently, a few papers have sug-

gested methods to test for fundamentalness (Forni and Gambetti, 2014, Chen, Choi and

Escanciano, 2017, Canova and Sahneh, 2018).

Forni and Gambetti (2014, FG henceforth) show that, if the macroeconomic variables

follow a factor structure, then, under appropriate conditions, the structural representa-

tion of the VAR variables is non-fundamental if and only if the factors Granger-cause the

VAR variables. The proposed testing procedure (also called FG from now on) is then to

take the principal components of a large data set of macroeconomic time series (which

are consistent estimators of the factors) and test whether such principal components

Granger-cause the VAR variables.

Canova and Sahneh (2018, CS henceforth) claim that FG reject fundamentalness too

often, particularly when there are problems related to aggregation of sectoral shocks

or omitted variables. Results from Monte Carlo exercises in CS show that the size
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distortion may be very large. As a consequence, by applying the FG method, small

VAR specifications might be rejected even if they are not informationally deficient. The

authors then suggest a procedure (also called CS from now on), which, according to the

reported Monte Carlo results, is not over-sized (indeed, it is under-sized).

In this paper, we argue that CS is asymptotically equivalent to FG, the only one

difference being the use of a version of Sims’ (1972) test proposed by Geweke, Meese

and Dent (1983) in place of a standard Granger causality test. It is therefore puzzling

that the two methods in CS behave so much differently even for large samples.

We then do by ourselves the Monte Carlo exercises of CS and find different results.

According to our results, FG and CS perform similarly (and fairly well) for both Data

Generating Processes considered in CS.

CS studies a DGP where there are three shocks: a technology shock and two sectoral

tax shocks. The econometrician however observes just two variables, i.e. capital and

an aggregate tax variable. The structural representation of the two variables, let us

say the “disaggregate” representation, is non-fundamental, since two variables cannot

provide enough information to recover three shocks. In fact, both testing procedures

reject fundamentalness with similar power.

The two variables have also representations with just two shocks, let us say “ag-

gregate” representations. Now, CS interprets the results of the two competing testing

procedures as if the null hypothesis were fundamentalness of what they call “aggregate

structural representation”. Here, we argue that this interpretation is untenable, for two

reasons.

First, structural moving average models do not aggregate, i.e. in general we do

not have any aggregate representation which can be regarded as “structural” (Forni

and Lippi, 1997, 1999). The case studied in CS is not an exception: we have both

fundamental and non-fundamental aggregate representations, but all of them are merely

statistical representations, devoid of any economic interpretation.

Second, when the Data Generating Process is the disaggregate one, all aggregate

representations are observationally equivalent, so that there is no way to discriminate

between them by using the data.
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2 Fundamentalness and Granger causality

Let us consider the impulse-response function representation

xt = A(L)ζt, (1)

where xt is an n-dimensional vector of macro variables, A(L) is an n × q matrix of

rational IRFs and ζt is a q-dimensional vector of structural shocks, which we assume

serially uncorrelated and mutually orthogonal at all leads and lags.

This representation is fundamental if ζt lies in the information space spanned by the

present and past of xt. In this case, the variables deliver exactly the same information

as the shocks. By contrast, the representation is non-fundamental if the history of the

x’s until time t does not provide enough information to recover ζt. In this case, the

variables contain less information than the shocks.

This simple and general definition of fundamentalness is valid for both “square” sys-

tems, i.e. representations with as many shocks as variables, and rectangular systems.

“Short” systems, i.e. models with n < q, are always non-fundamental, since n variables

cannot provide the same information as q > n shocks.1 For square systems, fundamen-

talness is characterized by a well-known condition on the roots of the determinant of the

IRF matrix: all such roots must be in modulus greater than 1, or equal to 1.2

Fundamentalness is important for structural VAR analysis, since if we can find the

structural shocks by using present and past values of the observables, standard structural

VAR techniques are valid. By contrast, if representation (1) is non-fundamental, a VAR

specification including only the x’s is informationally deficient and VAR analysis might

fail.

Fundamentalness is related to Granger causality (Forni and Reichlin, 1996, Giannone

and Reichlin, 2006, FG, 2014). FG considers a vector of variables yt = (y1,t · · · yN,t)′,
not included in the VAR, which are also driven by the structural shocks in ζt and,

possibly, the idiosyncratic measurement errors ξt = (ξ1,t · · · ξN,t)′:

yt = B(L)ζt + ξt. (2)

Clearly, by using the variables in yt we can get independent information on ζt. Such

information can be efficiently extracted by taking the principal components of the y’s;

1By contrast, “tall” systems are fundamental, except for very special cases (Forni et al., 2009).
2Invertibility requires that all roots are greater than 1. Hence invertibility implies fundamentalness.
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let us call such principal components ft = (f1,t · · · fs,t)′. Indeed, the above model

is a factor model; under suitable conditions, the principal components are consistent

estimators of the factors (Stock and Watson, 2002) and the factors deliver the same

information as the shocks (Forni, Giannone, Lippi and Reichlin, 2009).

Since ft provides information on the shocks, it can in principle help predicting xt.

But of course this may happen only in the non-fundamentalness case, since in the fun-

damentalness case the x’s already contain all the information provided by the shocks.

Hence, if ft Granger-causes xt, the structural representation (1) is non-fundamental.

The converse implication does not hold in general: it may be the case that the

shocks are more informative than the x’s, but the additional information provided by

the principal components does not help predicting the variables. FG shows that this

special case cannot occur when the system is square, i.e. when we have as many variables

as shocks (see FG, Proposition 3). For square systems, absence of Granger causation

implies fundamentalness, so that fundamentalness and Granger causation are equivalent.

3 The competing testing procedures

Based on the above analysis, FG proposes the following testing procedure.

FG.1. Compute the first s ordinary principal components of the auxiliary data set,

ft = (f1,t . . . fs,t)
′.

FG.2. Run the regression3

xt = µ+

p1∑
j=1

αjxt−j +

p2∑
j=1

βjft−j + vt

and test if the coefficients βj are equal to zero using an F-test.4

CS argues that FG does not have good properties, particularly for models like the

aggregation model below, and suggests to use instead the following method.

CS.1. Procede as in FG.1.

3Indeed, FG use the out-of-sample Granger causality test proposed by Gelper and Croux, 2007. This

detail however is not of special interest for the question we focus on in the present note, so that we

prefer to develop our arguments by using a standard Granger causality test.
4The asymptotic distribution of the quadratic form λW of the Wald test is χ2 with degrees of freedom

equal to the number of restrictions, N . In order to have a better small sample distribution, we use below

an F-test, where the statistic λF = λW /N is approximately distributed as F (N,#obs−#parameters),

see Lütkepohl, 2005.
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CS.2. Run a VAR on

xt = λ+
r∑
j=1

ρjxt−j + ut

and take the residual ut.

CS.3. Run the regression:

ft = ν +

p3∑
j=1

ϕjft−j +

p4∑
j=0

ηjut−j +

p5∑
j=1

ψjut+j + et (3)

and test if the coefficients ψj are equal to zero using an F-test.

Step CS.3 is presented in CS as something different from a Granger causality test.

However, regression (3) is essentially equivalent to a version of Sims (1972) test proposed

in Geweke, Meese and Dent (1983). The only one difference is that we have ut in place

of xt, i.e. the variables are pre-whitened before testing. This is not a major difference,

since of course ft Granger-causes ut if and only if it Granger-causes xt.

Hence the test proposed by CS is a Granger causality test and the proposed procedure

is essentially the same as FG. The two procedures should be asymptotically equivalent,

even if of course results may differ for small samples.

According to CS simulations, FG presents a disproportionately large size distortion

(it almost always rejects the null hypothesis even if it is correct). By contrast, CS does

not suffer from this problem (indeed, it is under-sized). This is true not only for a sample

size T equal to 200, but also for T = 2000. This is surprising, since as argued above,

the two methods should deliver similar results, at least for large samples.

4 The reference model

CS discuss their procedure and results using a simple DSGE model taken from Leeper,

Walker and Yang (2013). A representative agent maximizes an infinite stream of dis-

counted utilities over consumption:

U = E0

∞∑
t=0

βt log(Ct)

subject to

Ct + (1− τt,k)Kt + Tt = (1− τt,y)Yt
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where Yt = AtK
α
t−1 denotes production. The government sets tax rates over income

and capital and adjusts transfers to satisfy: Tt = τt,yYt + τt,kKt. There are three i.i.d

shocks hitting the economy: the first, ζt,a, is a technology shock affecting the production

function, the second, ζt,a, is a shock to the tax rate on capital and the third, ζt,y, affects

the tax rate on income.

In the log-linearized version of the model, Ât = ζt,a, τ̂t,k = ζt,k and τ̂t,y = ζt,y+bζt−1,y.

The log-linearized solution for capital is: K̂t = αK̂t−1 + ζt,a − κkζt,k − κybζt,y.5

The econometrician observes K̂t and an aggregate tax variable τ̂t = τ̂t,k + ωτ̂t,y =

ζt,k + ω(ζt,y + bζt−1,y).
6

The Data Generating Process is therefore:

[
(1− αL)K̂t

τ̂t

]
=

[
1 −κk −κyb
0 1 1 + bL

]ζt,aζt,k
ζt,y

 . (4)

This model is labeled by CS as the “aggregation” model, since the econometrician ob-

serves the aggregated tax variables in place of the two tax variables.

The data generating process for the auxiliary variables yi,t, i = 1, . . . , N is the factor

model

(1− δL)yi,t = ζt,a + γiζt,y + (1− γi)ζt,k + ξi,t, (5)

where the ξi,t’s are serially uncorrelated, mutually orthogonal and orthogonal to the

common factors at all leads and lags. The common factors are the structural shocks

ζt,a, ζt,k and ζt,y. Note that representation (4) is “short”. Hence, it is non-fundamental

irrespective of the parameter values, since we cannot recover three shocks with just two

variables.

CS considers also a simplified version of the model, named the “no aggregation” case.

In this version of the model, the tax rate on capital is set to zero and therefore we have

just two structural shocks, the technology shock and the shock affecting the tax rate on

income: [
(1− αL)K̂t

τ̂t

]
=

[
1 −κyb
0 1 + bL

][
ζt,a

ζt,y

]
, (6)

5Note that: κk = τk(1−θ)
1−τk , κy =

τy(1−θ)
1−τy where θ = αβ

1−τy
1−τk and τy and τk are respectively, the

steady-state income and capital taxes.
6As in CS, ω is set to 1 in the simulations.
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For this model, the auxiliary variables yi,t are assumed to follow the two-factor model

(1− δL)yi,t = ζt,a + γiζt,y + ξi,t,

where the idiosyncratic terms ξi,t are as above.

The square system (6) may be fundamental or not, depending on the parameter

values. As we have already seen, we have fundamentalness if and only if the determinant

of the MA matrix on the right-hand side has no roots smaller than 1 in modulus. Since

in the present case the determinant is 1 + bL, the root is L = −1/b and the condition is

fulfilled if and only if |b| ≤ 1.

5 Simulation results

For the simulation, we use the same parameters and distributions as in CS, i.e. ζt,a,

ζt,k and ζt,y i.i.d. N(0, 1); α = 0.36, β = 0.99, τy = 0.25, τk = 0.1. We let b take on

several values shown in the tables below. For the auxiliary variables, following CS we set

δ = 0.9, N = 30, ξi,t i.i.d. N(0, 1), γi Bernoulli taking value 1 with probability 0.5. As

in CS, we use two values for T , i.e. T = 200 and T = 2, 000. The number of replications

is 1,000.

Let us consider first the “no aggregation” model. The null hypothesis is fundamen-

talness, i.e. b ≤ 1. We report results for b = 0.6, 0.8, 0.9, 0.95, 1.05, 1.1. Since we have

values of b very close to 1, a large number of lags is needed in order to get a good approxi-

mation to the VAR(∞) representation of xt. Hence for FG we set p1 = 16, p2 = 2. As for

CS we try two dynamic specification: in the former one (specification [i]) we set r = 8,

p3 = 2, p4 = 8, p5 = 8; in the latter one (specification [ii]) we set r = 0, p3 = 2, p4 = 8,

p5 = 8. As for the number of principal components we set s = 2, i.e. the true number

of factors. Notice that with specification [ii] the CS test reduces to Geweke, Meese and

Dent’s version of Sims’ test, since with r = 0 we do not have pre-whitening. We do not

consider the orthogonality test, which is inappropriate to detect global fundamentalness.
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b 0.6 0.8 0.9 0.95 1.05 1.1

10% 0.146 0.163 0.147 0.186 0.802 0.993

CS [i] 5% 0.077 0.087 0.080 0.109 0.722 0.988

1% 0.019 0.030 0.020 0.039 0.547 0.968

10% 0.122 0.134 0.155 0.222 0.930 1.000

CS [ii] 5% 0.058 0.073 0.097 0.126 0.886 1.000

1% 0.021 0.021 0.029 0.047 0.757 1.000

10% 0.110 0.106 0.137 0.207 0.976 1.000

FG 5% 0.058 0.064 0.077 0.132 0.920 1.000

1% 0.016 0.018 0.024 0.040 0.679 0.994

Table 1: No aggregation model: number of rejections / number of replications. T = 2,000

number of replications = 1,000. Dynamic specification: for the FG test s = 2, p1 = 16, p2 = 2;

for the CS[i] test s = 2, r = 8, p3 = 2, p4 = 8, p5 = 8; for the CS[ii] test s = 2, r = 0, p3 = 2,

p4 = 8, p5 = 8.

Table 1 reports the results. For values smaller than 1 the null is true. FG does not

exhibits the large size distortions reported in CS for b = 0.6 and 0.8 (indeed, for these

values of b, the size distortion of FG is very small). With b = 0.9 and b = 0.95 there is

an upward size distortion similar for all procedures and dynamic specifications.

For b = 1.05 and b = 1.1 the null is false, so that the table reports the empirical

power of the tests. The power of CS, specification [i], is considerably less than CS, spec-

ification [ii] and FG. Overall, CS[ii] and FG perform similarly (and reasonably well) in

discriminating between the region of fundamentalness and that of non-fundamentalness.

Table 1 shows results for T = 2000. With T = 2, 000 we need an even richer dynamic

specification to discriminate correctly between fundamentalness and non-fundamentalness

around b = 1 (p1 = 40, p2 = 2, r = 0, p3 = 4, p4 = 20, p5 = 20). The performance of

both procedures is now almost perfect.
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b 0.6 0.8 0.9 0.95 1.05 1.1

10% 0.120 0.122 0.092 0.133 1.000 1.000

CS[ii] 5% 0.055 0.057 0.047 0.072 1.000 1.000

1% 0.015 0.012 0.014 0.011 1.000 1.000

10% 0.097 0.109 0.092 0.103 1.000 1.000

FG 5% 0.040 0.056 0.040 0.054 1.000 1.000

1% 0.008 0.012 0.011 0.011 1.000 1.000

Table 2: No aggregation model: number of rejections / number of replications. T = 2,000,

number of replications = 1,000. Dynamic specification: for the FG test s = 2, p1 = 40, p2 = 2;

for the CS test s = 2, r = 0, p3 = 4, p4 = 20, p5 = 20.

Coming to the “aggregation” case, we have non-fundamentalness irrespective of

the parameters values. However, as observed above, when the model is “short” non-

fundamentalness does not imply Granger causality. Hence in order to establish for

which values of the parameters the null is false we directly investigate Granger causality.

Let us consider first (1−αL)K̂t. Its theoretical projection onto the information space

spanned by the past of both variables and the past of the factors is zero, and the residual

is the variable itself, which is white noise and orthogonal to the projection space. Hence

the factors do not Granger-cause (1− αL)K̂t and therefore K̂t.

Coming to τ̂t, its projection onto the past of both variables and the past of the three

structural shocks is bζt−1,y.
7 Hence the factors Granger-cause τ̂t, whenever b 6= 0.

Summing up, the factors do not Granger-cause the first variable in xt, i.e. K̂t, but

Granger-cause the second variable τ̂t (so that they Granger-cause xt as a vector) if and

only if b 6= 0. It follows that, if b = 0, the null is true, whereas if b 6= 0 the null is false.

For this simulation, we set s = 3, which is the true number of factors in the present

case. As for the dynamic specification, we use two sets of values. In the former one (A)

we follow CS and set p1 = 4, p2 = 2 for the FG test; r = 4, p3 = 4, p4 = 0, p5 = 2 for

the CS test. In the latter one (B) we set p1 = 4, p2 = 1 for the FG test; r = 0, p3 = 1,

p4 = 3, p5 = 1 for the CS test. The rationale for dynamic specification B is that it is

the one maximizing the power of the two procedures for b = 0.4 over a wide range of

7This is easily seen if we consider that bζt−1,y belongs to the projection space, whereas the difference

τ̂t−bζt−1,y = ζt,k+ζt,y is orthogonal to the past of all variables and shocks. Uniqueness of the orthogonal

decomposition ensures the result.
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possible specifications.

b 0 0.2 0.4 0.6 0.8 1.5

10% 0.093 0.138 0.425 0.821 0.986 1.000

CS 5% 0.046 0.072 0.306 0.744 0.976 1.000

1% 0.013 0.019 0.131 0.543 0.917 1.000

10% 0.099 0.185 0.480 0.863 0.993 1.000

FG 5% 0.054 0.107 0.370 0.802 0.986 1.000

1% 0.014 0.033 0.174 0.603 0.938 1.000

Table 3: Aggregation model: number of rejections / number of replications. T = 200, number

of replications = 1,000. Dynamic specification A: for the FG test s = 3, p1 = 4, p2 = 2; for

the CS test s = 3, r = 4, p3 = 4, p4 = 0, p5 = 2.

Table 3 reports the results for the dynamic specification A and T = 200. Looking at

the results for b = 0 we see the empirical size of the test, since in this case the null is

true. The size distortions are negligible.

By looking at the remaining columns, wee see the empirical power of the test, since

in this case the null is false. Both procedures clearly reject the null for large values of b.

FG is slightly more powerful than CS for all values of b between 0.2 and 0.8.

With specification B, reported in Table 4, both procedures have enhanced power.

The empirical size of the test is close to the theoretical one for both procedures. The

power performance is also very similar.

b 0 0.2 0.4 0.6 0.8 1.5

10% 0.114 0.223 0.603 0.941 0.998 1.000

CS 5% 0.049 0.127 0.481 0.886 0.995 1.000

1% 0.013 0.045 0.249 0.725 0.972 1.000

10% 0.106 0.211 0.609 0.942 0.999 1.000

FG 5% 0.051 0.119 0.482 0.891 0.997 1.000

1% 0.010 0.041 0.256 0.736 0.974 1.000

Table 4: Aggregation model: number of rejections / number of replications. T = 200, number

of replications = 1,000. Dynamic specification B: for the FG test s = 3, p1 = 4, p2 = 1; for

the CS test s = 3, r = 0, p3 = 1, p4 = 3, p5 = 1.
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b 0 0.05 0.1 0.2 0.3 0.4

10% 0.103 0.163 0.430 0.957 1.000 1.000

CS 5% 0.048 0.091 0.318 0.923 1.000 1.000

1% 0.011 0.028 0.149 0.821 0.999 1.000

10% 0.103 0.168 0.431 0.958 1.000 1.000

FG 5% 0.049 0.090 0.314 0.923 1.000 1.000

1% 0.011 0.028 0.154 0.820 0.999 1.000

Table 5: Aggregation model: number of rejections / number of replications. T = 2000, number

of replications = 1000. Dynamic specification B: for the FG test s = 3, p1 = 4, p2 = 1; for the

CS test s = 3, r = 0, p3 = 1, p4 = 3, p5 = 1.

Table 5 shows the results for specification B, T = 2000. In this case, we do not need

a rich dynamic specification to get good results. Of course, for a large T both tests have

more power. For instance, with b = 0.2, the rejection rate of CS at the 5% level is 92.3%,

as against 12.7% for the sample size T = 200. Size distortions are not there. The power

performances of CS and FG are now almost identical, confirming that the methods are

asymptotically equivalent.

Fundamentalness is clearly rejected for b ≥ 0.2. For very small values of b non-

fundamentalness is still there, but the test is not able to detect it, since Granger causation

is too modest.

Summing up, according to our Monte Carlo exercises, the large differences reported

by CS are not there. The two procedures perform similarly both for small and for large

samples.

6 Aggregation

CS interpret the results of the two competing testing procedures as if the null hypothesis

was fundamentalness of what they call the “aggregate structural representation”.

In this subsection we argue that this interpretation is untenable. We show that for

model (4) we have both fundamental and non-fundamental aggregate representations.

None of them can be regarded as “structural”. All aggregate representations are ob-

servationally equivalent, so that there are no testing procedures which can discriminate

between them.
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An aggregate representation of the vector xt is simply a square representation, driven

by just two “aggregate” white noise shocks. Existence of at least one such representation

is guaranteed by the Wold theorem. An aggregate representation for model (4) can be

derived as follows. The auto- and cross-covariances implied by model (4) tell us that

the variables have a bivariate aggregate MA(1) representation. For convenience we

normalize such representation by imposing that: (a) the shocks are orthogonal; (b)

the second shock does not affect the first variable on impact; (c) the impact effects of

both shocks on the corresponding variable is equal to 1. The remaining parameters can

be found by matching the moments implied by the disaggregate model (4) with those

implied by the aggregate model itself.8

We have: [
(1− αL)K̂t

τ̂t

]
=

[
1 0

d+ gL 1 + cL

][
v1,t

v2,t

]
. (7)

In the first line we do not have lagged effects since the lagged covariance of (1− αL)K̂t

with both variables are zero.

Let σ2
1 and σ2

2 be the variances of v1,t and v2,t, respectively. By equating the variance

of (1 − αL)K̂t implied by the disaggregate and the aggregate systems —equations (4)

and (7)— we get

σ2
1 = 1 + κ2k + κ2yb

2.

By equating the contemporaneous covariance of (1− αL)K̂t and τ̂t we get

d = −(κk + κyb)/σ
2
1.

By equating cov(τ̂t, (1− αL)K̂t−1) we get

g = −κyb2/σ2
1.

By equating cov(τ̂t, τ̂t−1), if b = 0 we get c = 0; if b 6= 0 we get σ2
2 as a function of c:

σ2
2 = (b− dgσ2

1)/c.

Finally, by equating the variance of τ̂t, if b = 0 we get σ2
2 = (2 + κ2k)/(1 + κ2k); if b 6= 0,

using the above displayed equation we get

c2 +
(d2 + g2)σ2

1 − 2− b2

b− dgσ2
1

c+ 1 = 0.

8The aggregate representation derived in CS is incorrect, in that it does not match the covariance

of τ̂t with (1− αL)K̂t−1. The four parameters ρ, c, σ2
1 and σ2

2 cannot match the five nonzero moments

of xt.
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This equation has two real reciprocal solutions, say c̄, |c̄| < 1, and 1/c̄, implying two

alternative values for σ2
2 (and two different solutions for v2,t). For c = c̄ the aggregate

representation is fundamental, since the determinant 1+ cL vanishes only for L = −1/c̄,

which is greater than 1 in modulus. For c = 1/c̄ the representation is non-fundamental,

since the determinant vanishes within the open unit disc.

CS claim that, by varying the parameter b of the disaggregate model we can move

the parameter c from the fundamentalness to the non-fundamentalness region. But this

is not the case. By varying b we can change c̄ and 1/c̄, but for the same b we always

have two solutions for c, one in the fundamentalness region and the other one in the

non-fundamentalness region. Such representations are observationally equivalent, since

there is nothing in the data (either the x’s or the y’s) that depends on one or the other.

Neither FG, nor CS can discriminate between them.

The matrix in (7) can be inverted toward the past for c = c̄ or toward the future for

for c = 1/c̄ in order to express the aggregate shocks in terms of the variables and, using

(4), in terms of the structural shocks. Doing this, we get

[
v1,t

v2,t

]
=

[
1 −κk −κyb

−d+ gL
1 + cL

h− pL
1 + cL

q + wL
1 + cL

]ζt,aζt,k
ζt,y

 , (8)

where

h = (1 + κ2k − κkκyb)/σ2
1

p = κkκyb
2/σ2

1

q = (1 + κ2kb
2 − κkκyb)/σ2

1

w = b(1 + κ2k)/σ
2
1.

From (8) it is seen that both aggregate shocks are mixtures of the technology shocks

and the two tax shocks and there are no orthogonal transformations allowing us to

distinguish an aggregate technology shock, depending only on ζt,a from an aggregate tax

shock, depending only on ζt,k and ζt,y.

In conclusion, the shocks of the aggregate representation cannot be given a meaning-

ful economic interpretation. The aggregate representations (both the fundamental and

the non-fundamental ones) are merely statistical representations. This finding is just an

example of a general negative result about aggregation in structural VAR models which

13



is already known in the literature (Forni and Lippi 1997, 1999). The only one structural

representation here is the disaggregate representation (4). Unfortunately, a structural

aggregate representation does not exists.

7 Empirics

Beaudry and Portier (2006) use a bivariate VAR specification, including TFP and stock

prices, to assess the relevance of news technology shocks as a source of business cycle

fluctuations. Forni, Gambetti and Sala (2014) use FG to test for the adequacy of such

specification and find that it is severely deficient.9 When amending the information set

by including the principal components in the VAR, results change substantially and the

role of news shocks is reduced, in line with the findings of Barsky and Sims (2011).

CS argues that, when using the CS test, fundamentalness is no longer rejected, thus

validating the estimates by Beaudry and Portier (2006). We applied the CS procedure

to the data used in Forni, Gambetti and Sala (2014), and found the results reported in

Table 7. We used r = 4 lags in the VAR and the following six dynamic specifications:

Sims1 p3 = 0, p4 = 2, p5 = 2

Sims2 p3 = 0, p4 = 4, p5 = 4

Geweke1 p3 = 1, p4 = 2, p5 = 2

Geweke2 p3 = 1, p4 = 4, p5 = 4

Geweke3 p3 = 2, p4 = 2, p5 = 2

Geweke4 p3 = 2, p4 = 4, p5 = 4

Table 6: Dynamic specifications for the CS test.

9Indeed, Forni, Gambetti and Sala (2014) use the orthogonality test, which is a variant of FG

designed to detect partial fundamentalness, i.e. fundamentalness of a single shock, rather than global

fundamentalness. On the concept of partial fundamentalness, see Forni, Gambetti and Sala (2017).
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Dyn. spec. s = 3 s = 4 s = 5 s = 6 s = 7 s = 8 s = 9 s = 10

Sims1 0.094 0.022 0.036 0.024 0.014 0.018 0.039 0.022

Sims2 0.020 0.011 0.013 0.001 0.003 0.001 0.003 0.002

Geweke1 0.017 0.005 0.010 0.004 0.003 0.001 0.005 0.002

Geweke2 0.006 0.004 0.009 0.002 0.005 0.002 0.003 0.001

Geweke3 0.086 0.066 0.091 0.038 0.023 0.016 0.045 0.006

Geweke4 0.004 0.003 0.015 0.007 0.008 0.002 0.008 0.009

Table 7: Real data from Forni et al. (2014). p-values of the CS testing procedure.

Dynamic specifications: see Table 6.

Contrary to CS results, we find a strong rejection of the null of fundamentalness

for most parameter configurations, confirming the results in Forni, Gambetti and Sala

(2014).

8 Conclusions

Canova and Sahneh (2018) propose a fundamentalness testing procedure which is a

variant of the one proposed in Forni and Gambetti (2014), using a different Granger

causality test. According to our Monte Carlo exercises, the two procedures perform

similarly for both small and large samples.

When the underlying theoretical model includes disaggregate shocks, unfortunately,

the two procedures cannot be used to infer whether the “structural aggregate repre-

sentation” is fundamental or not. There are two reasons. First, there are no aggre-

gate representations that can be regarded as structural. Second, fundamental and non-

fundamental aggregate representations are observationally equivalent.

The bivariate news shock specification of Beaudry and Portier (2006) which was found

to be fundamental by Canova and Sahneh (2018) is on the contrary non-fundamental as

found in Forni, Gambetti and Sala (2014).
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