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Due to the continued success of machine learning and deep learning in particular, supervised 
classification problems are ubiquitous in numerous scientific fields. Training these models 
typically involves the minimization of the empirical risk over large data sets along with a possibly 
non-differentiable regularization. In this paper, we introduce a stochastic gradient method for the 
considered classification problem. To control the variance of the objective’s gradients, we use 
an automatic sample size selection along with a variable metric to precondition the stochastic 
gradient directions. Further, we utilize a non-monotone line search to automatize step size 
selection. Convergence results are provided for both convex and non-convex objective functions. 
Extensive numerical experiments verify that the suggested approach performs on par with state-

of-the-art methods for training both statistical models for binary classification and artificial 
neural networks for multi-class image classification. The code is publicly available at https://

github .com /koblererich /lisavm.

1. Introduction

Supervised classification problems arise in many real-life applications such as image recognition [1], web content filtering [2], 
medical diagnostics [3], analysis of genetic sequences [4] and biological systems [5,6], making them a challenging area of investiga-

tion. Both binary and multi-class classification problems involve the minimization of an objective function which can be formalized 
as the sum of cost functions whose number depends on the number of samples of given training set. Particularly, in this paper, we 
are interested in the following optimization problem

min
𝑥∈ℝ𝑑

𝑃 (𝑥) ∶= min
𝑥∈ℝ𝑑

𝐹 (𝑥) +𝑅(𝑥) = min
𝑥∈ℝ𝑑

1
𝑁

𝑁∑
𝑖=1

𝑓𝑖(𝑥) +𝑅(𝑥), (1)

where 𝐹 ∶ ℝ𝑑 → ℝ is the so-called loss function and it computes the difference between the actual ground-truth and predicted 
values, 𝑅∶ ℝ𝑑 →ℝ is a regularization term adding a priori information, 𝑁 represents the number of training samples and 𝑑 is the 
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number of parameters. Each 𝑓𝑖 ∶ ℝ𝑑 → ℝ denotes the loss function related to the 𝑖-th instance of the training set. We suppose that 
𝐹 is continuously differentiable but possibly non-convex, while 𝑅 is convex but possibly non-differentiable. The class of proximal 
gradient algorithms [7,8] has been designed to solve optimization problems of this kind since, in their definition, they exploit the 
differentiability of 𝐹 and the convexity of 𝑅. However, in general, 𝑁 is very large making the computation of 𝐹 and its gradient 
prohibitively expensive. For this reason, proximal stochastic gradient schemes are typically exploited for optimization problems in 
classification applications. In more detail, the general iteration of the Proximal Stochastic Gradient (Prox-SG) method is

𝑥(𝑘+1) = prox𝛼𝑘𝑅(𝑥
(𝑘) − 𝛼𝑘𝑔𝑘

(𝑥(𝑘))), (2)

where, given a sample 𝑘 of size 𝑁𝑘 ≪𝑁 randomly and uniformly chosen from {1, … , 𝑁},

𝑔𝑘
(𝑥) ∶= 1

𝑁𝑘

∑
𝑖∈𝑘

∇𝑓𝑖(𝑥)

is an unbiased estimator of the gradient of 𝐹 and 𝛼𝑘 is a positive parameter typically called learning rate or step size. It is well known 
in the literature that determining proper values for both 𝛼𝑘 and 𝑁𝑘 is a nontrivial task and it affects both the convergence properties 
and the numerical performance of the method itself. In particular, it is a common practice to decrease the step size 𝛼𝑘 to train 
a neural network but it has been extensively proved that adaptively increasing sample size 𝑁𝑘 can achieve similar performances 
[9,10]. Moreover, the relationship between 𝛼𝑘 and 𝑁𝑘 to guarantee an optimal trade-off between the parallelization benefits on 
bigger sample sizes and the generalization performances were studied in several works [11,12]. Other very popular approaches to 
face (1) are variance-reduced methods such as Proximal SVRG (Prox-SVRG) [13], Proximal SARAH (Prox-SARAH) [14]. Since these 
schemes need to periodically compute the full gradient of 𝐹 along the iterations, they are not employed in practical deep learning 
applications. For standard stochastic gradient methods to solve the non-regularized version of (1), variance reduction can be also 
achieved by either dynamic sampling strategies [15–18] or momentum-based techniques [19].

In [20], the authors suggested a proximal stochastic gradient method, called Prox-LISA, which is practically based on a monotone 
line search procedure to select the learning rate and exploits a dynamic increase of the sample size to compute the stochastic gradient. 
Despite promising properties, Prox-LISA suffers from some drawbacks: (i) the convergence behavior is typically not faster than that 
of Prox-SG; (ii) the learning rate could be reduced too fast along the iterations through the monotone line search; (iii) the theoretical 
properties on the objective function can be practically guaranteed in the convex case only; (iv) extensive numerical experiments on 
deep learning framework have not been performed.

Contributions. The main aim of this paper is to develop an improved version of Prox-LISA able to overcome the difficulties 
previously recalled. Below, we list the main ingredients that characterize this new version.

• A proper sequence of scaling matrices multiplying the stochastic directions will be considered in the updating step. The goal is 
to accelerate the performance of Prox-LISA by emulating a well-known behavior of deterministic proximal gradient methods. 
Indeed it is widely recognized that these schemes benefit from the presence of a variable metric underlying the iterates in terms 
of convergence speed [21–24]. We will specify which properties the sequence of scaling matrices must satisfy to guarantee 
convergence results and we will suggest how to practically define this sequence. It is worth mentioning that to practically define 
a proper sequence of scaling matrices is far from a straightforward task. Indeed, also in the deterministic framework, a predefined 
recipe to select suitable scaling matrices possibly does not exist or is strictly related to the application to be considered [21,22].

• The Prox-LISA scheme is based on a progressive increase of the sample size along the iterations to ensure a sufficient reduction 
of the variance of the stochastic directions. A refined dynamical technique to fix the sample size will be proposed. In contrast 
to the original criterion, the newly proposed scheme for updating the sample size allows also a decrease along the iterations. 
Moreover, the new strategy takes into account not only the current stochastic gradient but also the previous ones. The objective 
is to prevent an excessive amount of confidence from being placed on the current stochastic direction, especially in the early 
phase of the iterative process. We remark that the dynamical strategy for increasing the sample size followed in this work is 
different from those proposed in [15,17,18]. Indeed in these papers, the authors exploit the so-called norm test and its variants 
to monitor the variance reduction. These approaches can lead to a more significant increase in the sample size [25].

• Inspired by [26], a non-monotone line search to practically select the learning rate will be introduced. The non-monotonicity 
will be provided by a summable sequence which depends on the approximate width of the confidence interval built on the values 
of the sampled objective function. Hence, its definition automatically attempts to fit the features of the problem to be solved.

From the theoretical point of view, under proper assumptions on the variance of the current stochastic gradient, the decrease of 
the objective function in expectation, and the scaling matrices, the stationarity of the limit points of the sequence generated by the 
proposed scheme can be proven almost surely. If moreover, the objective function is convex, the whole sequence of the iterates 
converges to a solution almost surely. Finally, we show that if the learning rate is properly bounded then the condition on the 
decrease of the objective function in expectation is ensured even in the non-convex setting.

So far, the Prox-LISA method has been proven to be effective in training neural networks with just a few hidden layers [25]. In 
this paper, extensive numerical experiments show that the developed algorithm outperforms Prox-LISA and it is competitive with 
popular state-of-the-art methods for training both statistical models for binary classification and deep neural networks for multi-class 
2

image classification, even with large data sets. Notably, the proposed approach does not need manual tuning of the hyperparameters.
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Notations

• Given 𝜇 ≥ 1, we denote by 𝜇 the set of all symmetric positive definite matrices with all eigenvalues contained in the interval [
1
𝜇
,𝜇

]
. For any 𝐷 ∈𝜇 , we have that 𝐷−1 belongs to 𝜇 and for any 𝑥 ∈ℝ𝑑

1
𝜇
‖𝑥‖2 ≤ ‖𝑥‖2

𝐷
≤ 𝜇‖𝑥‖2. (3)

• Let 𝐷1, 𝐷2 ∈ℝ𝑑×𝑑 be symmetric and positive definite matrices. The notation 𝐷1 ⪰𝐷2 indicates that 𝐷1 −𝐷2 is a symmetric and 
positive semidefinite matrix or, equivalently, 𝑥𝑇𝐷1𝑥 ≥ 𝑥𝑇𝐷2𝑥 for any 𝑥 ∈ℝ𝑑 .

• Let 𝑓 ∶ℝ𝑑 →ℝ ∪ {+∞} be a closed, convex, proper (CCP) function, and let 𝜆 be a positive scalar. Given 𝑥 ∈ℝ𝑛, the proximal 
operator associated to the function 𝜆𝑓 in the metric induced by a symmetric and positive definite matrix 𝐷 is defined as

prox𝐷
𝜆𝑓
(𝑥) = argmin

𝑦∈ℝ𝑛
𝑓 (𝑦) + 1

2𝜆
‖𝑦− 𝑥‖2

𝐷
.

2. The method and its convergence analysis

To solve the minimization problem (1), we consider the following class of variable metric stochastic gradient methods

𝑥(𝑘+1) = prox𝐷𝑘

𝛼𝑘𝑅

(
𝑥(𝑘) − 𝛼𝑘𝐷

−1
𝑘

𝑔𝑘
(𝑥(𝑘))

)
, (4)

where the learning rate 𝛼𝑘 is a positive parameter, and 𝐷𝑘 is a symmetric and positive definite matrix. Hereafter, we denote by 𝑒(𝑥)
the residual between the gradient of 𝐹 and its stochastic approximation, namely

𝑒(𝑥) ∶= 𝑔𝑘
(𝑥) − ∇𝐹 (𝑥).

Let 𝑘 be the 𝜎-algebra generated by 𝑥(0), 𝑥(1), … , 𝑥(𝑘), we suppose that the gradient estimator 𝑔𝑘
is unbiased, namely

𝔼(𝑒(𝑥(𝑘)) | 𝑘) = 0.

The following convergence analysis generalizes the one proposed in [20] to the presence of the variable metric induced by the 
sequence of the scaling matrices {𝐷𝑘}. We highlight the assumptions which have to be imposed on {𝐷𝑘} and how they contribute 
to the convergence analysis. We have omitted the proofs of Theorems 1 and 2 that can be readily derived from the analysis in 
the non-scaled framework [20]. Instead, we provide a comprehensive explanation for all the arguments of the proofs that are not 
straightforward in the variable metric setting.

Firstly, we observe that, given the function

ℎ(𝑘)(𝑧) ∶= ∇𝐹 (𝑥(𝑘))𝑇 (𝑧− 𝑥(𝑘)) + 1
2𝛼𝑘

‖𝑧− 𝑥(𝑘)‖2
𝐷𝑘

+𝑅(𝑧) −𝑅(𝑥(𝑘)), (5)

it holds that from the convexity of 𝑅(𝑧)

𝑝(𝑥) ∶= prox𝐷𝑘

𝛼𝑘𝑅

(
𝑥(𝑘) − 𝛼𝑘𝐷

−1
𝑘
∇𝐹 (𝑥(𝑘))

)
= argmin𝑧∈ℝ𝑑

1
2𝛼𝑘

‖𝑧− 𝑥(𝑘) + 𝛼𝑘𝐷
−1
𝑘
∇𝐹 (𝑥(𝑘))‖2

𝐷𝑘
+𝑅(𝑧) =

= argmin𝑧∈ℝ𝑑 ℎ(𝑘)(𝑧),
(6)

while the (𝑘 + 1)-th iterate of (4) can be written as

𝑥(𝑘+1) = argmin𝑧∈ℝ𝑑 ℎ(𝑘)(𝑧) + 𝑒(𝑥(𝑘))𝑇 (𝑧− 𝑥(𝑘)). (7)

As a consequence, ∀ 𝑧 ∈ℝ𝑑 ,

ℎ(𝑘)(𝑥(𝑘+1)) + 𝑒(𝑥(𝑘))𝑇 (𝑥(𝑘+1) − 𝑥(𝑘)) ≤ ℎ(𝑘)(𝑧) + 𝑒(𝑥(𝑘))𝑇 (𝑧− 𝑥(𝑘)),

and hence, by setting 𝑧 = 𝑥(𝑘), (5) yields

ℎ(𝑘)(𝑥(𝑘+1)) + 𝑒(𝑥(𝑘))𝑇 (𝑥(𝑘+1) − 𝑥(𝑘)) ≤ 0. (8)

Before introducing the convergence results, we detail the assumptions on the objective function and some useful Lemmas. In partic-

ular, we assume that the functions involved in the problem (1) have the following properties.

(i) 𝑅∶ ℝ𝑑 →ℝ ∪ {∞} is a proper, convex, and lower semicontinuous function, with a non-empty and closed domain.

(ii) 𝐹 ∶ ℝ𝑑 →ℝ ∪ {∞} is a continuously differentiable function on an open subset 𝑌 of ℝ𝑑 containing 𝑑𝑜𝑚(𝑅).
(iii) 𝑃 is bounded from below on 𝑑𝑜𝑚(𝑅) ∩ 𝑑𝑜𝑚(𝐹 ) and 𝑥∗∈𝑋∗ ∶= argmin𝑥 𝑃 (𝑥) ≠ ∅.
3

(iv) All the 𝑓𝑖 have Lipschitz-continuous gradients with Lipschitz constant 𝐿.
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As a consequence of assumption (iv), the gradient estimate 𝑔𝑘
(𝑥) and ∇𝐹 are both Lipschitz continuous with Lipschitz parameter 

𝐿.

Lemma 1 states a standard result from stochastic analysis on supermartingale convergence. Lemma 2 recollects some useful results 
on both the proximal operator defined with respect to a variable metric and the function ℎ(𝑘) defined in (5).

Lemma 1. [27, Lemma 11] Let 𝜈𝑘, 𝑢𝑘, 𝛾𝑘, 𝛽𝑘 be non-negative random variables and let

𝔼(𝜈𝑘+1 | 𝑘) ≤ (1 + 𝛾𝑘)𝜈𝑘 − 𝑢𝑘 + 𝛽𝑘 a.s.

∞∑
𝑘=0

𝛾𝑘 <∞ a.s.,

∞∑
𝑘=0

𝛽𝑘 <∞ a.s.,

where 𝔼(𝜈𝑘+1 | 𝑘) denotes the conditional expectation for the given 𝜈0, … , 𝜈𝑘, 𝑢0, … , 𝑢𝑘, 𝛾0, … , 𝛾𝑘, 𝛽0, … , 𝛽𝑘. Then

𝜈𝑘 ⟶ 𝜈 a.s,

∞∑
𝑘=0

𝑢𝑘 <∞ a.s,

where 𝜈 ≥ 0 is some random variable.

Lemma 2. Let 𝛼𝑘 ∈ [𝛼, 𝛼], 𝛼 > 0 and 𝐷𝑘 ∈𝜇 , 𝑥(𝑘) ∈ 𝑑𝑜𝑚(𝑃 ). The following statements hold true.

a. �̂� = prox𝐷𝑘

𝛼𝑘𝑅
(𝑥(𝑘) − 𝛼𝑘𝐷

−1
𝑘

𝑢) if and only if 1
𝛼𝑘

𝐷𝑘(𝑥(𝑘) − �̂�) − 𝑢 =𝑤, 𝑤 ∈ 𝜕𝑅(�̂�).

b. The function ℎ(𝑘) is strongly convex with modulus of convexity 1
𝛼𝜇

.

c. ℎ(𝑘)(𝑥(𝑘)) = 0.

d. ℎ(𝑘)(𝑝(𝑥(𝑘))) ≤ 0 and ℎ(𝑘)(𝑝(𝑥(𝑘))) = 0 if and only if 𝑝(𝑥(𝑘)) = 𝑥(𝑘).
e. 𝑥(𝑘) is a stationary point for problem (1) if and only if 𝑥(𝑘) = 𝑝(𝑥(𝑘)).
f. 𝑥(𝑘) is a stationary point for problem (1) if and only if ℎ(𝑘)(𝑝(𝑥(𝑘))) = 0.

Proof. For the proof of item a., c., d., e. and f. we refer the reader to [21,28]. As for item b., just observe that(
1
𝛼𝑘

𝐷𝑘(𝑧− 𝑥(𝑘)) − 1
𝛼𝑘

𝐷𝑘(𝑦− 𝑥(𝑘))
)𝑇

(𝑧− 𝑦) = 1
𝛼𝑘

‖𝑧− 𝑦‖2
𝐷𝑘

≥
1
𝛼
‖𝑧− 𝑦‖2

𝐷𝑘
≥

1
𝛼𝜇

‖𝑧− 𝑦‖2. □

Lemma 3 generalizes [20, Lemma 2] to the variable metric framework. Additionally, the overall arguments of the proof of 
Lemma 3 are somewhat simplified compared to those of the proof of [20, Lemma 2].

Lemma 3. Let us consider the sequence {𝑥(𝑘)} generated by the iteration (4). If 𝛼𝑘 > 0 and 𝐷𝑘 is a symmetric and positive definite matrix 
∀𝑘, the following inequality holds:

ℎ(𝑘)(𝑥(𝑘+1)) − ℎ(𝑝(𝑥(𝑘))) ≤
𝛼𝑘

2
‖𝑒(𝑥(𝑘))‖2

𝐷−1
𝑘

. (9)

Proof.

ℎ(𝑘)(𝑥(𝑘+1)) − ℎ(𝑘)(𝑝(𝑥(𝑘))) = 1
2𝛼𝑘

‖𝑥(𝑘+1) − 𝑥(𝑘)‖2
𝐷𝑘

+∇𝐹 (𝑥(𝑘))𝑇 (𝑥(𝑘+1) − 𝑥(𝑘)) +𝑅(𝑥(𝑘+1)) −𝑅(𝑥(𝑘))+

− 1
2𝛼𝑘

‖𝑝(𝑥(𝑘)) − 𝑥(𝑘)‖2
𝐷𝑘

−∇𝐹 (𝑥(𝑘))𝑇 (𝑝(𝑥(𝑘)) − 𝑥(𝑘)) −𝑅(𝑝(𝑥(𝑘))) +𝑅(𝑥(𝑘)) =

= 1
2𝛼𝑘

‖𝑥(𝑘+1) − 𝑥(𝑘)‖2
𝐷𝑘

+∇𝐹 (𝑥(𝑘))𝑇 (𝑥(𝑘+1) − 𝑝(𝑥(𝑘))) − 1
2𝛼𝑘

‖𝑝(𝑥(𝑘)) − 𝑥(𝑘)‖2
𝐷𝑘

+

+𝑅(𝑥(𝑘+1)) −𝑅(𝑝(𝑥(𝑘)))

≤
1
2𝛼𝑘

‖𝑥(𝑘+1) − 𝑥(𝑘)‖2
𝐷𝑘

+∇𝐹 (𝑥(𝑘))𝑇 (𝑥(𝑘+1) − 𝑝(𝑥(𝑘))) − 1
2𝛼𝑘

‖𝑝(𝑥(𝑘)) − 𝑥(𝑘)‖2
𝐷𝑘

+

+ 1
𝛼𝑘

(𝑥(𝑘) − 𝑥(𝑘+1))𝑇𝐷𝑘(𝑥(𝑘+1) − 𝑝(𝑥(𝑘))) − (∇𝐹 (𝑥(𝑘)) + 𝑒(𝑥(𝑘)))𝑇 (𝑥(𝑘+1) − 𝑝(𝑥(𝑘))) =

= 1
2𝛼𝑘

‖𝑥(𝑘+1) − 𝑥(𝑘)+𝑝(𝑥(𝑘)) − 𝑝(𝑥(𝑘))‖2
𝐷𝑘

− 1
2𝛼𝑘

‖𝑝(𝑥(𝑘)) − 𝑥(𝑘)‖2
𝐷𝑘

+

+ 1
𝛼𝑘

(𝑥(𝑘) − 𝑥(𝑘+1))𝑇𝐷𝑘(𝑥(𝑘+1) − 𝑝(𝑥(𝑘))) − 𝑒(𝑥(𝑘))𝑇 (𝑥(𝑘+1) − 𝑝(𝑥(𝑘))) =

1 (𝑘+1) (𝑘) 2 1 (𝑘+1) (𝑘) 𝑇 (𝑘) (𝑘)
4

=
2𝛼𝑘

‖𝑥 − 𝑝(𝑥 )‖
𝐷𝑘

+
𝛼𝑘

(𝑥 − 𝑝(𝑥 )) 𝐷𝑘(𝑝(𝑥 ) − 𝑥 )+
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+ 1
𝛼𝑘

(𝑥(𝑘) − 𝑥(𝑘+1))𝑇𝐷𝑘(𝑥(𝑘+1) − 𝑝(𝑥(𝑘))) + 𝑒(𝑥(𝑘))𝑇 (𝑥(𝑘+1) − 𝑝(𝑥(𝑘))) =

= − 1
2𝛼𝑘

‖𝑥(𝑘+1) − 𝑝(𝑥(𝑘))‖2
𝐷𝑘

+ 𝑒(𝑥(𝑘))𝑇 (𝑥(𝑘+1) − 𝑝(𝑥(𝑘))) =

= − 1
2𝛼𝑘

‖𝑥(𝑘+1) − 𝑝(𝑥(𝑘)) − 𝛼𝑘𝐷
−1
𝑘

𝑒(𝑥(𝑘))‖2
𝐷𝑘

+ 1
2𝛼𝑘

‖𝛼𝑘𝐷
−1
𝑘

𝑒(𝑥(𝑘))‖2
𝐷𝑘

≤
1
2𝛼𝑘

‖𝛼𝑘𝐷
−1
𝑘

𝑒(𝑥(𝑘))‖2
𝐷𝑘

=
𝛼𝑘

2
‖𝐷−1

𝑘
𝑒(𝑥(𝑘))‖2

𝐷𝑘
=

𝛼𝑘

2
‖𝑒(𝑘)‖2

𝐷−1
𝑘

.

The first inequality follows from the convexity of 𝑅 and the fact that 1
𝛼𝑘

𝐷𝑘(𝑥(𝑘) −𝑥(𝑘+1)) −(∇𝐹 (𝑥(𝑘)) +𝑒(𝑥(𝑘))) ∈ 𝜕𝑅(𝑥(𝑘+1)) (Lemma 2, 
part a.). The second and third equality can be derived through fundamental vector calculations. Finally, the last inequality follows 
from the non-positivity of the first term. □

Theorem 1 introduces a crucial condition on the decrease of the objective function in expectation needed for the convergence 
results. The feasibility of this condition in the practice will be discussed in Remark 1.

Theorem 1. Let {𝑥(𝑘)} be the sequence generated by the method (4) where 𝛼𝑘 ∈ [𝛼, 𝛼], 𝛼 > 0 and 𝐷𝑘 is symmetric and positive definite 
matrices ∀𝑘. Let 0 < 𝛾 ≤ 1 and {𝜂𝑘}𝑘∈ℕ be a sequence of non-negative random variables such that 

∑∞
𝑘=0 𝜂𝑘 < ∞ a.s. If, for any 𝑥(0) ∈

𝑑𝑜𝑚(𝑃 ),

𝔼(𝑃 (𝑥(𝑘+1)) | 𝑘) ≤ 𝔼(𝑃 (𝑥(𝑘)) | 𝑘) + 𝛾𝔼(ℎ(𝑘)(𝑥(𝑘+1)) + 𝑒(𝑥(𝑘))𝑇 (𝑥(𝑘+1) − 𝑥(𝑘)) | 𝑘) + 𝜂𝑘, (10)

then, 𝑃 (𝑥(𝑘)) − 𝑃 ∗ ⟶ 𝑃 a.s., where 𝑃 ≥ 0 is some random variable and 𝑃 ∗ is such that 𝑃 (𝑥) ≥ 𝑃 ∗, for 𝑥 ∈ 𝑑𝑜𝑚(𝑃 ). Furthermore, the 
following assertions hold:

i)
∑∞

𝑘=0 𝔼 
(
−ℎ(𝑘)(𝑥(𝑘+1)) − 𝑒(𝑥(𝑘))𝑇 (𝑥(𝑘+1) − 𝑥(𝑘)) | 𝑘

)
<∞ a.s.,

ii) ℎ(𝑘)(𝑥(𝑘+1)) + 𝑒(𝑥(𝑘))𝑇 (𝑥(𝑘+1) − 𝑥(𝑘)) → 0 a.s.

Proof. The proof of this theorem follows the one of [20, Theorem 1]. □

Remark 1. It is worth to detail when condition (10) can practically be met. In their work [20], the authors show that condition (10)

can be satisfied provided that the objective function is convex. Here we take a step further and we clarify how to guarantee condition 
(10) in the non convex setting. Indeed, since ∇𝐹 is 𝐿-Lipschitz continuous and 𝐷𝑘 ∈𝜇 , we have

𝐹 (𝑥(𝑘+1)) +𝑅(𝑥(𝑘+1)) ≤ 𝐹 (𝑥(𝑘)) +𝑅(𝑥(𝑘)) + ∇𝐹 (𝑥(𝑘))𝑇 (𝑥(𝑘+1) − 𝑥(𝑘)) + 𝐿

2
‖𝑥(𝑘+1) − 𝑥(𝑘)‖2 +𝑅(𝑥(𝑘+1)) −𝑅(𝑥(𝑘))

+ 1
2𝛼𝑘

‖𝑥(𝑘+1) − 𝑥(𝑘)‖2
𝐷𝑘

− 1
2𝛼𝑘

‖𝑥(𝑘+1) − 𝑥(𝑘)‖2
𝐷𝑘

≤ 𝐹 (𝑥(𝑘)) +𝑅(𝑥(𝑘)) + ∇𝐹 (𝑥(𝑘))𝑇 (𝑥(𝑘+1) − 𝑥(𝑘)) + 𝐿𝜇

2
‖𝑥(𝑘+1) − 𝑥(𝑘)‖2

𝐷𝑘
+𝑅(𝑥(𝑘+1)) −𝑅(𝑥(𝑘))

+ 1
2𝛼𝑘

‖𝑥(𝑘+1) − 𝑥(𝑘)‖2
𝐷𝑘

− 1
2𝛼𝑘

‖𝑥(𝑘+1) − 𝑥(𝑘)‖2
𝐷𝑘

(11)

where the first inequality follows from the Lipschitz-continuity of ∇𝐹 and the second is a consequence of 𝐷𝑘 ∈𝜇 . Consequently, 
given the definition (5) we can write

𝑃 (𝑥(𝑘+1)) ≤ 𝑃 (𝑥(𝑘)) + ℎ(𝑘)(𝑥(𝑘+1)) + 1
2

(
𝐿𝜇 − 1

𝛼𝑘

)‖𝑥(𝑘+1) − 𝑥(𝑘)‖2
𝐷𝑘

.

By adding and subtracting 𝑒(𝑥(𝑘))𝑇 (𝑥(𝑘+1) − 𝑥(𝑘)), we obtain

𝑃 (𝑥(𝑘+1)) ≤ 𝑃 (𝑥(𝑘)) + ℎ(𝑘)(𝑥(𝑘+1)) + 𝑒(𝑥(𝑘))𝑇 (𝑥(𝑘+1) − 𝑥(𝑘)) + 1
2

(
𝐿𝜇 − 1

𝛼𝑘

)‖𝑥(𝑘+1) − 𝑥(𝑘)‖2
𝐷𝑘

+

− 𝛼𝑒(𝑥(𝑘))𝑇 𝑥(𝑘+1) − 𝑥(𝑘)

𝛼

≤ 𝑃 (𝑥(𝑘)) + ℎ(𝑘)(𝑥(𝑘+1)) + 𝑒(𝑥(𝑘))𝑇 (𝑥(𝑘+1) − 𝑥(𝑘)) + 1
2

(
𝐿𝜇 − 1

𝛼𝑘

+ 1
𝛼

)‖𝑥(𝑘+1) − 𝑥(𝑘)‖2
𝐷𝑘

+

+ 𝛼

2
‖𝑒(𝑥(𝑘))‖2

𝐷𝑘

(𝑘) (𝑘) (𝑘+1) (𝑘) 𝑇 (𝑘+1) (𝑘) 1
(

1 1
)

(𝑘+1) (𝑘) 2
5

≤ 𝑃 (𝑥 ) + ℎ (𝑥 ) + 𝑒(𝑥 ) (𝑥 − 𝑥 ) +
2

𝐿𝜇 −
𝛼𝑘

+
𝛼

‖𝑥 − 𝑥 ‖
𝐷𝑘

+
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+ 𝛼𝜇

2
‖𝑒(𝑥(𝑘))‖2 (12)

where the inequality −𝛼𝑒(𝑥(𝑘))𝑇 𝑥(𝑘+1)−𝑥(𝑘)

𝛼
≤

1
2𝛼 ‖𝑥(𝑘+1) − 𝑥(𝑘)‖2

𝐷𝑘
+ 𝛼

2 ‖𝑒(𝑥(𝑘))‖2𝐷𝑘
has been used. Thus, by considering the conditional 

expectation in both members, it is possible to find a value of 𝛼𝑘 < 𝛼 <
1
𝐿𝜇

such that 𝐿𝜇 − 1
𝛼𝑘

+ 1
𝛼
< 0 (for example 𝛼𝑘 =

𝛼

2 ) and we 
can write

𝔼(𝑃 (𝑥(𝑘+1))|𝑘) ≤ 𝔼(𝑃 (𝑥(𝑘)) + ℎ(𝑘)(𝑥(𝑘+1);𝑥(𝑘)) + 𝑒(𝑥(𝑘))𝑇 (𝑥(𝑘+1) − 𝑥(𝑘))|𝑘) +
𝛼𝜇

2
𝔼(‖𝑒(𝑥(𝑘))‖2|𝑘).

Hence, if 𝛼 <
1
𝐿𝜇

and 𝔼(‖𝑒(𝑥(𝑘))‖2|𝑘) ≤ 𝜀𝑘 where 
∑

𝑘 𝜀𝑘 <∞, then condition (10) is satisfied.

Theorem 2 state the conditions which ensure that any limit point of the sequence {𝑥(𝑘)} generated by (4) is a stationary point for 
(1) almost surely.

Theorem 2. Let {𝑥(𝑘)} be the sequence generated by the method (4) with 𝔼(‖𝑒(𝑥(𝑘))‖2 | 𝑘) ≤ 𝜀𝑘 where {𝜀𝑘} is a non-negative sequence 
such that lim𝑘→∞ 𝜀𝑘 = 0, 𝛼𝑘 ∈ [𝛼, 𝛼], 𝛼 > 0 and 𝐷𝑘 ∈𝜇 . Moreover, suppose that the condition (10) is satisfied for any 𝑥(0) ∈ 𝑑𝑜𝑚(𝑃 ). 
Then any limit point of the sequence {𝑥(𝑘)} is stationary for problem (1) a.s.

Proof. The proof of this theorem directly follows [20, Theorem 2] by accounting for the scaling matrix 𝐷𝑘 and the bounds on its 
eigenvalues. □

The last theorem of this section shows that if the objective function is convex, then the sequence {𝑥(𝑘)} obtained by (4) almost 
surely converges to a solution of problem (1).

Theorem 3. Let {𝑥(𝑘)} be the sequence generated by the method (4) with 𝔼(‖𝑒(𝑥(𝑘))‖2 | 𝑘) ≤ 𝜀𝑘 where {𝜀𝑘} is a deterministic non-negative 
and non-increasing sequence such that 

∑
𝑘

√
𝜀𝑘 < +∞, 𝛼𝑘 ∈ [𝛼, 𝛼], 𝛼 > 0 and 𝐷𝑘 ∈𝜇 , 𝜇 ≥ 1. Moreover, suppose that

𝐷𝑘+1 ⪯ (1 + 𝜁𝑘)𝐷𝑘 (13)

where the deterministic sequence {𝜁𝑘}𝑘∈ℕ satisfies the following conditions

{𝜁𝑘}𝑘∈ℕ ⊂ℝ≥0,

+∞∑
𝑘=0

𝜁𝑘 < +∞. (14)

Finally, suppose that condition (10) is satisfied for any 𝑥(0) ∈ 𝑑𝑜𝑚(𝑃 ) and the function 𝐹 is convex. Then the sequence {𝑥(𝑘)} converges to 
a solution of problem (1) a.s.

Proof. Let 𝑥∗ ∈𝑋∗. Since 1
𝛼𝑘

𝐷𝑘(𝑥(𝑘) − 𝑥(𝑘+1)) − 𝑔𝑘
(𝑥(𝑘)) ∈ 𝜕𝑅(𝑥(𝑘+1)), it holds that

𝑅(𝑦) ≥𝑅(𝑥(𝑘+1)) + 1
𝛼𝑘

(
𝑥(𝑘) − 𝑥(𝑘+1) − 𝛼𝑘𝐷

−1
𝑘

𝑔𝑘
(𝑥(𝑘))

)𝑇

𝐷𝑘

(
𝑦− 𝑥(𝑘+1)

)
, ∀𝑦 ∈ℝ𝑑 .

It follows that, ∀𝑦 ∈ℝ𝑑 ,

(𝑥(𝑘+1) − 𝑥(𝑘))𝑇𝐷𝑘(𝑦− 𝑥(𝑘+1)) ≥ 𝛼𝑘

(
𝑅(𝑥(𝑘+1)) −𝑅(𝑦) + 𝑔𝑘

(𝑥(𝑘))𝑇 (𝑥(𝑘+1) − 𝑦)
)
. (15)

For 𝑦 = 𝑥∗ the previous inequality gives

(𝑥(𝑘+1) − 𝑥(𝑘))𝑇𝐷𝑘(𝑥∗ − 𝑥(𝑘) + 𝑥(𝑘) − 𝑥(𝑘+1)) ≥ 𝛼𝑘

(
𝑅(𝑥(𝑘+1)) −𝑅(𝑥∗) + 𝑔𝑘

(𝑥(𝑘))𝑇 (𝑥(𝑘+1) − 𝑥(𝑘) + 𝑥(𝑘) − 𝑥∗)
)
.

As a consequence, we obtain the following relations:

(𝑥(𝑘+1) − 𝑥(𝑘))𝑇𝐷𝑘(𝑥∗ − 𝑥(𝑘)) ≥ 𝛼𝑘

(
𝑅(𝑥(𝑘+1)) −𝑅(𝑥∗) + 𝑔𝑘

(𝑥(𝑘))𝑇 (𝑥(𝑘) − 𝑥∗)
)
+‖𝑥(𝑘+1) − 𝑥(𝑘)‖2

𝐷𝑘

+ 𝛼𝑘𝑔𝑘
(𝑥(𝑘))𝑇 (𝑥(𝑘+1) − 𝑥(𝑘))

≥ 𝛼𝑘

(
𝑅(𝑥(𝑘+1)) −𝑅(𝑥∗) + 𝐹 (𝑥(𝑘)) − 𝐹 (𝑥∗)

)
+ 𝛼𝑘𝑒(𝑥(𝑘))

𝑇 (𝑥(𝑘) − 𝑥∗)+

+ ‖𝑥(𝑘+1) − 𝑥(𝑘)‖2
𝐷𝑘

+ 𝛼𝑘(∇𝐹 (𝑥(𝑘)) + 𝑒(𝑥(𝑘)))𝑇 (𝑥(𝑘+1) − 𝑥(𝑘))

= 𝛼𝑘

(
𝑅(𝑥(𝑘+1)) −𝑅(𝑥(𝑘)) + 𝑃 (𝑥(𝑘)) − 𝑃 (𝑥∗)

)
+ ‖𝑥(𝑘+1) − 𝑥(𝑘)‖2

𝐷𝑘
+

6

+ 𝛼𝑘𝑒(𝑥(𝑘))
𝑇 (𝑥(𝑘) − 𝑥∗) + 𝛼𝑘(∇𝐹 (𝑥(𝑘)) + 𝑒(𝑥(𝑘)))𝑇 (𝑥(𝑘+1) − 𝑥(𝑘))
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≥ 𝛼𝑘

(
𝑅(𝑥(𝑘+1)) −𝑅(𝑥(𝑘))

)
+ ‖𝑥(𝑘+1) − 𝑥(𝑘)‖2

𝐷𝑘
+ 𝛼𝑘𝑒(𝑥(𝑘))𝑇 (𝑥(𝑘) − 𝑥∗)+

+ 𝛼𝑘(∇𝐹 (𝑥(𝑘)) + 𝑒(𝑥(𝑘)))𝑇 (𝑥(𝑘+1) − 𝑥(𝑘)), (16)

where the second inequality follows from the convexity of 𝐹 and the last inequality follows from the fact that 𝑃 (𝑥(𝑘)) − 𝑃 (𝑥∗) ≥ 0. 
From a basic property of the Euclidean norm2 and (16) we can write

‖𝑥(𝑘+1) − 𝑥∗‖2
𝐷𝑘

= ‖𝑥(𝑘+1) − 𝑥(𝑘)‖2
𝐷𝑘

+ ‖𝑥(𝑘) − 𝑥∗‖2
𝐷𝑘

− 2(𝑥(𝑘+1) − 𝑥(𝑘))𝑇𝐷𝑘(𝑥∗ − 𝑥(𝑘))

(16)

≤ ‖𝑥(𝑘+1) − 𝑥(𝑘)‖2
𝐷𝑘

+ ‖𝑥(𝑘) − 𝑥∗‖2
𝐷𝑘

− 2𝛼𝑘

(
𝑅(𝑥(𝑘+1)) −𝑅(𝑥(𝑘))

)
− 2‖𝑥(𝑘+1) − 𝑥(𝑘)‖2

𝐷𝑘
+

− 2𝛼𝑘𝑒(𝑥(𝑘))
𝑇 (𝑥(𝑘) − 𝑥∗) − 2𝛼𝑘(∇𝐹 (𝑥(𝑘)) + 𝑒(𝑥(𝑘)))𝑇 (𝑥(𝑘+1) − 𝑥(𝑘))

= ‖𝑥(𝑘) − 𝑥∗‖2
𝐷𝑘

− 2𝛼𝑘𝑒(𝑥(𝑘))
𝑇 (𝑥(𝑘) − 𝑥∗) − 2𝛼𝑘𝑒(𝑥(𝑘))

𝑇 (𝑥(𝑘+1) − 𝑥(𝑘))+

− 2𝛼𝑘

(
𝑅(𝑥(𝑘+1)) −𝑅(𝑥(𝑘)) + ∇𝐹 (𝑥(𝑘))𝑇 (𝑥(𝑘+1) − 𝑥(𝑘)) + 1

2𝛼𝑘

‖𝑥(𝑘+1) − 𝑥(𝑘)‖2
𝐷𝑘

)
= ‖𝑥(𝑘) − 𝑥∗‖2

𝐷𝑘
− 2𝛼𝑘

(
ℎ(𝑘)(𝑥(𝑘+1)) + 𝑒(𝑥(𝑘))𝑇 (𝑥(𝑘+1) − 𝑥(𝑘))

)
− 2𝛼𝑘𝑒(𝑥(𝑘))

𝑇 (𝑥(𝑘) − 𝑥∗)

≤ ‖𝑥(𝑘) − 𝑥∗‖2
𝐷𝑘

− 2𝛼
(
ℎ(𝑘)(𝑥(𝑘+1)) + 𝑒(𝑥(𝑘))𝑇 (𝑥(𝑘+1) − 𝑥(𝑘))

)
− 2𝛼𝑘𝑒(𝑥(𝑘))

𝑇 (𝑥(𝑘) − 𝑥∗).

This inequality combined with assumption (13) allows to state that

‖𝑥(𝑘+1) − 𝑥∗‖2
𝐷𝑘

≤ (1 + 𝜁𝑘−1)‖𝑥(𝑘) − 𝑥∗‖2
𝐷𝑘−1

− 2𝛼
(
ℎ(𝑘)(𝑥(𝑘+1)) + 𝑒(𝑥(𝑘))𝑇 (𝑥(𝑘+1) − 𝑥(𝑘))

)
− 2𝛼𝑘𝑒(𝑥(𝑘))

𝑇 (𝑥(𝑘) − 𝑥∗)

≤ (1 + 𝜁𝑘−1)‖𝑥(𝑘) − 𝑥∗‖2
𝐷𝑘−1

− 2𝛼
(
ℎ(𝑘)(𝑥(𝑘+1)) + 𝑒(𝑥(𝑘))𝑇 (𝑥(𝑘+1) − 𝑥(𝑘))

)
+ 𝛼

‖𝑒(𝑥(𝑘))‖2√
𝜀𝑘

+

+ 𝛼
√

𝜀𝑘‖𝑥(𝑘) − 𝑥∗‖2
≤ (1 + 𝜁𝑘−1)‖𝑥(𝑘) − 𝑥∗‖2

𝐷𝑘−1
− 2𝛼

(
ℎ(𝑘)(𝑥(𝑘+1)) + 𝑒(𝑥(𝑘))𝑇 (𝑥(𝑘+1) − 𝑥(𝑘))

)
+ 𝛼

‖𝑒(𝑥(𝑘))‖2√
𝜀𝑘

+

+ 𝛼𝜇
√

𝜀𝑘‖𝑥(𝑘) − 𝑥∗‖2
𝐷𝑘−1

= (1 + 𝜁𝑘−1 + 𝛼𝜇
√

𝜀𝑘)‖𝑥(𝑘) − 𝑥∗‖2
𝐷𝑘−1

− 2𝛼
(
ℎ(𝑘)(𝑥(𝑘+1)) + 𝑒(𝑥(𝑘))𝑇 (𝑥(𝑘+1) − 𝑥(𝑘))

)
+ 𝛼

‖𝑒(𝑥(𝑘))‖2√
𝜀𝑘

,

where the second inequality follows from the fact that for any 𝑎, 𝑏 ∈ ℝ𝑑 and 𝜀 > 0 it holds that −2𝑎𝑇 𝑏 = ‖𝑎∕𝜀‖2 + ‖𝜀𝑏‖2 − ‖𝑎∕𝜀 +
𝜀𝑏‖2 ≤ ‖𝑎∕𝜀‖2 + ‖𝜀𝑏‖2. Taking the conditional expectation with respect to the 𝜎-algebra 𝑘 and recalling that the sequences {𝜀𝑘}
and {𝜁𝑘} are a priori fixed, we obtain

𝔼
(‖𝑥(𝑘+1) − 𝑥∗‖2

𝐷𝑘
|𝑘

)
≤ (1 + 𝜁𝑘−1 + 𝛼𝜇

√
𝜀𝑘)‖𝑥(𝑘) − 𝑥∗‖2

𝐷𝑘−1
− 2𝛼𝔼

(
ℎ(𝑘)(𝑥(𝑘+1)) + 𝑒(𝑥(𝑘))𝑇 (𝑥(𝑘+1) − 𝑥(𝑘))|𝑘

)
+

+ 𝛼
√

𝜀𝑘.

By combining this last inequality and part i) of Theorem 1 together with Lemma 1 where 𝛾𝑘 = 𝜁𝑘−1 + 𝛼𝜇
√

𝜀𝑘, we can state that the 
sequence {‖𝑥(𝑘) − 𝑥∗‖𝐷𝑘−1

}𝑘∈ℕ converges a.s. Since 𝐷𝑘−1 ∈𝜇 , {‖𝑥(𝑘) − 𝑥∗‖}𝑘∈ℕ converges a.s. too. The proof can be concluded as 
the one of Theorem 3 in [20]. □

Condition (13) states that the sequence {𝐷𝑘}𝑘∈ℕ asymptotically approaches a constant matrix [29, Lemma 2.3]. In Section 3 we 
discuss how to satisfy condition (13) in practice.

Remark 2. We conclude this section by noting that under the hypotheses of Theorem 3, a convergence rate result analogous to that 
of [20, Theorem 4] also holds for the sequence {𝑥(𝑘)} generated by the method (4). Starting from inequality (16), the proof follows 
as in [30, Theorem 4].

3. Practical implementation

In this section, we detail how to select the hyperparameters defining iteration (4), namely the sequences {𝛼𝑘}, {𝐷𝑘} and {𝑘}, 
to practically realize the theoretical conditions stated in Theorems 1-3. Algorithm 1 lists the main steps of the proposed method.
7

2 ‖𝑎 − 𝑏‖2
𝐷
+ ‖𝑏 − 𝑐‖2

𝐷
− ‖𝑎 − 𝑐‖2

𝐷
= 2(𝑎 − 𝑏)𝑇 𝐷(𝑐 − 𝑏), ∀𝑎, 𝑏, 𝑐 ∈ℝ𝑑 .



EURO Journal on Computational Optimization 12 (2024) 100088P. Cascarano, G. Franchini, E. Kobler et al.

Selection of the sample 𝑘 (STEP 1.) To guarantee that the theoretical assumption (10) holds in the practice, the condition

𝔼(‖𝑒(𝑥(𝑘))‖2 | 𝑘) ≤ 𝜀𝑘,

+∞∑
𝑘=0

𝜀𝑘 < +∞ (17)

must be satisfied. However, inequality (17) involves the computation of ∇𝐹 (𝑥(𝑘)). As a consequence, we need to consider an 
approximate criterion that exploits the sample’s variance. In more detail, since for an arbitrary 𝑖 ∈𝑘 [31, pg. 183]

𝔼
(1
2
‖𝑒(𝑥(𝑘))‖22 | 𝑘

)
≤

1
2𝑁𝑘

𝔼
(‖∇𝑓𝑖(𝑥(𝑘)) − ∇𝐹 (𝑥(𝑘))‖22 | 𝑘

)
, (18)

as a practical counterpart of (17), one could consider

𝑉𝑘
(𝑥(𝑘)) ∶= 1

2𝑁𝑘(𝑁𝑘 − 1)
∑
𝑖∈𝑘

‖∇𝑓𝑖(𝑥(𝑘)) − 𝑔𝑘
(𝑥(𝑘))‖22 ≤ 𝛾1𝜀𝑘, (19)

where the right-hand side of (18) has been approximated by the sample’s variance, borrowing similar strategies as exploited in 
[16,20]. As a result, the variance is controlled by a vanishing nonnegative sequence 𝛾1𝜀𝑘, where the positive scalar 𝛾1 needs to 
be adapted to the problem at hand to control the variance, especially at the beginning of the iterative process. In this work, we 
instead control the variance by the upper bound

𝑉
(𝑘)

∶= min
⎛⎜⎜⎝𝛾1𝜀𝑘, 𝑉 (𝑘−1)

1 − 𝛽𝑘−1
1

+ 𝛾2

√√√√ 𝑉
(𝑘−1)
var

1 − 𝛽𝑘−1
2

⎞⎟⎟⎠ (20)

using 𝛽1, 𝛽2 ∈ (0, 1), positive constants 𝛾1, 𝛾2, any nonnegative sequence {𝜀𝑘}𝑘∈ℕ such that 
∑

𝑘 𝜀𝑘 < +∞, and the running statistics 
of the sample variance from the previous iteration

𝑉 (𝑘−1) = 𝛽1𝑉
(𝑘−2) + (1 − 𝛽1)𝑉𝑘−1

(𝑥(𝑘−1))

𝑉 (𝑘−1)
var = 𝛽2𝑉

(𝑘−2)
var + (1 − 𝛽2)

(
𝑉𝑘−1

(𝑥(𝑘−1)) − 𝑉 (𝑘−1)
)2

.

As a result, the upper variance bound 𝑉
(𝑘)

accounts for outliers along the iterative process due to the running statistics. In 
addition, it vanishes in the limit and thereby guarantees that (17) holds in the limit. Whenever

𝑉𝑘
(𝑥(𝑘)) ≤ 𝑉

(𝑘)
(21)

is not satisfied, the sample size 𝑁𝑘 is increased as outlined in STEP 1 of Algorithm 1. Note that we use an upper bound for the 
sample size 𝑁𝑘 in practice to account for limited hardware resources. Additionally, it is worth mentioning that our algorithm 
provides the flexibility to reduce the sample size. In STEP 4, we decrease the attempt value for the next sample size by a factor 
of 𝛿2 compared to the current size. In STEP 1, if necessary, the sample size can be increased to ensure that inequality (21) is 
satisfied at each iteration.

Selection of the scaling matrix 𝐷𝑘 (STEP 2). According to the hypotheses of Theorem 2 the sequence of the scaling matrices {𝐷𝑘}
must fulfill the following condition

{𝐷𝑘} ⊆𝜇, 𝜇 ≥ 1. (22)

In practice, given 𝜇 > 1, a possibility to realize a sequence {𝐷𝑘} satisfying condition (22) is to define the scaling matrix 𝐷𝑘 as 
the diagonal matrix

𝐷𝑘 = diag
(
min

(
𝜇,max

(
𝑑(𝑘),

1
𝜇

)))
(23)

where 𝑑(𝑘) is a proper vector. Inspired by the preconditioner employed in [32], we fix

𝑑(𝑘) =

√√√√ 𝑔
(𝑘)
var

1 − 𝛽𝑘
2

+ 𝜖 (24)

for

𝑔(𝑘) = 𝛽1𝑔
(𝑘−1) + (1 − 𝛽1)𝑔𝑘

(𝑥(𝑘))

𝑔(𝑘)var = 𝛽2𝑔
(𝑘−1)
var + (1 − 𝛽2)(𝑔𝑘

(𝑥(𝑘)) − 𝑔(𝑘))2 + 𝜖,

where 𝛽1, 𝛽2 ∈ (0, 1), 𝜖 > 0, 𝑔(0) and 𝑔(0)var are null vectors and the vector squaring is intended element-wise.

In order to ensure stronger convergence results (Theorem 3), the sequence of the scaling matrices {𝐷𝑘} must satisfy an additional 
8

assumption:
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𝐷𝑘+1 ⪯ (1 + 𝜁𝑘)𝐷𝑘, {𝜁𝑘} ⊂ℝ≥0,

+∞∑
𝑘=0

𝜁𝑘 < +∞.

A possibility to fulfill this condition (see [33]) is to impose

{𝐷𝑘} ⊆𝜇𝑘
, where 𝜇2

𝑘
= 1 + 𝜈𝑘, {𝜈𝑘} ⊂ℝ≥0,

+∞∑
𝑘=0

𝜈𝑘 < +∞. (25)

As a consequence, 𝐷𝑘 can be defined as in (23)-(24), but instead of 𝜇 and 1∕𝜇, the diagonal entries must be bounded by 𝜇𝑘 and 
1∕𝜇𝑘.

Selection of the learning rate 𝛼𝑘 (STEP 3.) In order to ensure the validity of condition (10) we need to act on the learning rate 
𝛼𝑘, as shown in Remark 1. In particular, a proper bound on the learning rate should be imposed: 𝛼 <

1
𝐿𝜇

. Since the Lipschitz 
constant 𝐿 is not always known we suggest estimating it employing an adaptive procedure. Firstly we recall that, given the 
sub-sampled function

𝑓𝑘
(𝑥) = 1

𝑁𝑘

∑
𝑖∈𝑘

𝑓𝑖(𝑥) (26)

and since 𝑔𝑘
is 𝐿-Lipschitz continuous, the following inequality

𝑓𝑘
(𝑥(𝑘+1)) ≤ 𝑓𝑘

(𝑥(𝑘)) + 𝑔𝑘
(𝑥(𝑘))𝑇 (𝑥(𝑘+1) − 𝑥(𝑘)) + 1

2𝛼
‖𝑥(𝑘+1) − 𝑥(𝑘)‖2

𝐷𝑘
(27)

holds for all 𝛼 <
1
𝐿𝜇

[33, Lemma 6]. As a consequence, we consider (27) to realize a line search strategy to achieve the bound for 
the learning rate sequence practically. A similar approach has been also exploited in [15,20,34] in the non-scaled framework. 
However, differently from [15,20,34], the line search proposed in this paper exploits a relaxed version of inequality (27). Indeed 
we force 𝛼𝑘 to satisfy the following inequality

𝑓𝑘
(𝑥(𝑘+1)) ≤ 𝑓𝑘

(𝑥(𝑘)) + 𝑔𝑘
(𝑥(𝑘))𝑇 (𝑥(𝑘+1) − 𝑥(𝑘)) + 1

2𝛼𝑘

‖𝑥(𝑘+1) − 𝑥(𝑘)‖2
𝐷𝑘

+ 𝜏𝑘 (28)

where {𝜏𝑘} is a non-negative summable sequence. In view of (27), it is always possible to find 𝛼𝑘 such that condition (28) is 
satisfied. Accordingly, the line search at STEP 3 of Algorithm 1 is well defined. Hereafter we clarify why the presence of the 
sequence {𝜏𝑘} can be seen as a parameter inducing a non-monotone behavior to the line search. By adding 𝑅(𝑥(𝑘+1)) −𝑅(𝑥(𝑘))
to both sides of inequality (28) and recalling that 𝑔𝑘

(𝑥(𝑘)) =∇𝐹 (𝑥(𝑘)) + 𝑒(𝑥(𝑘)), it holds that

𝑓𝑘
(𝑥(𝑘+1)) +𝑅(𝑥(𝑘+1)) ≤ 𝑓𝑘

(𝑥(𝑘)) +𝑅(𝑥(𝑘)) + ℎ(𝑘)(𝑥(𝑘+1)) + 𝑒(𝑥(𝑘))𝑇 (𝑥(𝑘+1) − 𝑥(𝑘)) + 𝜏𝑘. (29)

Thanks to (8), we can conclude that inequality (28) is equivalent to a non-monotone decrease of the sub-sampled objective 
function. Indeed, since {𝜏𝑘} is supposed to be a summable sequence, a stricter decrease of the sub-sampled objective function 
can be ensured as the number of iterations increases. We also note that the non-monotone line search mimics the step size 
annealing techniques frequently applied in the training of deep learning models. Indeed the presence of 𝜏𝑘 promotes larger 
learning rates during the initial iterations and reduces them as the optimization process approaches a (local) minimum point. 
Finally, we observe that inequality (29) can be thought of as a practical counterpart of condition (10). In (10) a summable “error” 
term is allowed: for this reason, we believe that inequality (28) could better reflect the nature of the theoretical requirement 
(10) with respect to (27). From the practical point of view, we consider the sequence

𝜏𝑘 =
𝛾3𝜎𝑘√
𝑁𝑘

𝜀𝑘 (30)

using 𝛾3 > 0, 𝜎𝑘 =min

(√
Var

(
𝑓𝑘

(𝑥(𝑘))
)
, 𝜎

)
with 𝜎 > 0, and

𝛾3 =
√
2erf−1(2𝜌− 1).

With this selection of 𝜏𝑘, we take into account the lack of precision in the current approximate objective function 𝑓𝑘
(𝑥(𝑘)). 

Indeed the quantity 𝛾3𝜎𝑘√
𝑁𝑘

is an approximate width of the confidence interval around 𝑓𝑘
(𝑥(𝑘)) with 𝜎𝑘 being the sample standard 

deviation and 𝛾3 the corresponding 𝜌 quantile of the Gaussian distribution  (0, 1). Finally, in view of 𝑁𝑘 ≤𝑁 , where 𝑁 > 0, 
(see STEP 4. of Algorithm 1), we remark that the following inequality holds

𝜏𝑘 ≤
𝛾3𝜎√
𝑁

𝜀𝑘, (31)

and hence {𝜏𝑘}𝑘∈ℕ is summable if also {𝜀𝑘}𝑘∈ℕ is a summable sequence. The particular values for 𝜎 and 𝑁 are detailed in 
9

Section 4.
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Algorithm 1 Variable metric Prox-LISA.

Given 0 < 𝛼 < 𝛼, 0 <𝑁 <𝑁 , 𝜎 > 0, 𝛽1, 𝛽2, 𝛿1, 𝛿2 ∈ (0, 1), 𝛾1, 𝛾2, 𝛾3 > 0, and a nonnegative sequence {𝜀𝑘}𝑘∈ℕ , ∑+∞
𝑘=1 𝜀𝑘 < +∞. Select initial values 𝑥(1) ∈ℝ𝑑 , 𝛼1 ∈ (𝛼, 𝛼), 

𝑉 (0) = 𝑉
(0)
var = 0, 𝑉 (1)

= 𝛾1 , null vectors 𝑔(0), 𝑔(0)var ∈ℝ𝑑 , and 𝑁1 =𝑁 .

FOR 𝑘 = 1, 2, ...

STEP 1. Sample selection

choose a sample 𝑘 of size 𝑁𝑘 and compute its gradient 𝑔𝑘
(𝑥(𝑘)) and variance 𝑉𝑘

(𝑥(𝑘)).

IF 𝑉𝑘
(𝑥(𝑘)) ≤ 𝑉

(𝑘)
OR 𝑁𝑘 ≥𝑁

THEN go to STEP 2.

ELSE set 𝑁𝑘 =min
{
𝑁,max

{
𝑁𝑘𝑉𝑘

(𝑥(𝑘) )

𝑉
(𝑘) ,𝑁𝑘 + 1

}}
and go to STEP 1.

STEP 2. Update running statistics and scaling matrix

Compute the running statistics of the variance estimate and update the variance upper bound

𝑉 (𝑘) = 𝛽1𝑉
(𝑘−1) + (1 − 𝛽1)𝑉𝑘

(𝑥(𝑘))

𝑉 (𝑘)
var = 𝛽2𝑉

(𝑘−1)
var + (1 − 𝛽2)(𝑉𝑘

(𝑥(𝑘)) − 𝑉 (𝑘))2

𝑉
(𝑘+1)

= min

(
𝛾1𝜀𝑘,

𝑉 (𝑘)

1−𝛽𝑘
1
+ 𝛾2

√
𝑉

(𝑘)
var

1−𝛽𝑘
2

)
;

and the gradient estimate

𝑔(𝑘) = 𝛽1𝑔
(𝑘−1) + (1 − 𝛽1)𝑔𝑘

(𝑥(𝑘))

𝑔(𝑘)var = 𝛽2𝑔
(𝑘−1)
var + (1 − 𝛽2)(𝑔𝑘

− 𝑔(𝑘)(𝑥(𝑘)))2

to compute the diagonal scaling matrix 𝐷𝑘 according to (23).

STEP 3. Step size selection

Let �̄�(𝑘) = prox𝐷𝑘

𝛼𝑘𝑅
(𝑥(𝑘) − 𝛼𝑘𝐷

−1
𝑘

𝑔𝑘
(𝑥(𝑘))), and 𝜏𝑘 as in (30).

IF

𝑓𝑘
(�̄�(𝑘)) ≤ 𝑓𝑘

(𝑥(𝑘)) + 𝑔𝑘
(𝑥(𝑘))𝑇 (�̄�(𝑘) − 𝑥(𝑘)) + 1

2𝛼𝑘

‖�̄�(𝑘) − 𝑥(𝑘)‖2
𝐷𝑘
+𝜏𝑘

THEN go to STEP 4.

ELSE set 𝛼𝑘 ← 𝛿1𝛼𝑘 and repeat STEP 3.

STEP 4. Sample and step size prolongation

Set 𝑥(𝑘+1) = �̄�(𝑘) , 𝛼𝑘+1 = min
(
𝛼,max

(
𝛼𝑘

𝛿2
, 𝛼

))
, and 𝑁𝑘+1 = max(⌊𝑁𝑘𝛿2⌋, 𝑁)

END FOR

4. Numerical experiments

In this section, we evaluate the performance of the proposed proximal scaled stochastic gradient methods, denoted by Prox-

LISA-VM. We compare our method to stochastic gradient descent (SG) and proximal LISA (prox-LISA) [20] on binary classification 
tasks using simple convex statistical models. In addition, we consider more challenging multi-class image classification problems by 
learning deep neural networks using Prox-LISA-VM and compare its performance to the Adam [35] and Adabelief [32] optimization 
schemes.

Throughout all numerical experiments, the following hyperparameters are used for Prox-LISA-VM. We set the positive and 
summable sequence 𝜀𝑘 to

𝜀𝑘 = exp
(
− 𝑘2

2𝜎2

)
for 𝜎 > 0 due to a slower initial decrease compared to exp(−𝑘). In practice, we set 𝜎2 = − 𝐾2

2 log(1∕100) using the maximal number of 
steps 𝐾 . Likewise, we set the scaling factor of the 𝜀𝑘-sequence to 𝛾1 = 104 and 𝛾2 = 4 for determining the sample size. The scaling 
factor for the non-monotone line search is set to

𝛾3 =
√
2erf−1(2𝜌− 1),

to reflect the 𝜌 = 0.75 quantile of the 𝑘 sample’s objective values. We use the smoothing parameters 𝛽1 = 0.9, 𝛽2 = 0.999 to estimate 
the running statistics, and 𝜖 = 10−16, which are also the default parameters in [32]. To fulfill the constraint for the line search, we 
choose a large enough upper bound 𝜎 = 106 for the 𝜎𝑘 sequence and set 𝛼 = 10−10 and 𝛼 = 1010. Finally, we set the learning rate 
10

factors of the line search 𝛿1 = 𝛿2 =
2
3 .
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Table 1

Features of the data sets considered in the convex binary 
classification setting.

Data set 𝑑 𝑁 training set 𝑁 test set

MNIST 784 60000 10000

w8a 300 44774 4975

CHINA0 132 16033 1604

GISETTE 5000 6000 1000

IJCNN1 22 49990 91701

RCV1 47236 20242 10000

4.1. Convex setting

We consider the optimization problem arising in training binary classifier, with the form

min
𝑥∈ℝ𝑑

𝑃 (𝑥) = min
𝑥∈ℝ𝑑

1
𝑁

𝑁∑
𝑖=1

𝑓𝑖(𝑥) + 𝜆‖𝑥‖1,
where 𝜆 > 0 is the regularization parameter, 𝜆 = 1

𝑁
where 𝑁 is the number of samples in the training set.

We consider six data sets and two different convex loss functions. Table 1 shows the details of the six data sets and the number of 
samples of both the training and the testing sets. The data sets w8a, GISETTE, IJCNN1, RCV1 can be found in the same repository,3

whereas MNIST4 and CHINA05 are available online. In particular, we adapt MNIST for the binary case. The two classes are the even 
and odd digits.

We built linear classifiers corresponding to two different convex loss functions. By denoting as 𝜉𝑖 ∈ℝ𝑑 and 𝜁𝑖 ∈ {1, −1} the feature 
vector and the class label of the 𝑖-th example, respectively, the loss function 𝐹 (𝑥) assumes one of the following forms:

• logistic regression (LR) loss:

𝐹 (𝑥) = 1
𝑁

𝑁∑
𝑖=1

log
[
1 + 𝑒−𝜁𝑖𝜉

𝑇
𝑖
𝑥
]
;

• square loss (SL):

𝐹 (𝑥) = 1
𝑁

𝑁∑
𝑖=1

(1 − 𝜁𝑖𝜉
𝑇
𝑖
𝑥)2;

In this section, we compare the behavior of:

• Prox-SG;

• Prox-LISA (as defined in [20]);

• Prox-LISA 𝜀𝑘 = exp
(
− 𝑘2

2𝜎2

)
(as in [20] but using 𝜀𝑘 = exp

(
− 𝑘2

2𝜎2

)
);

• Prox-LISA-VM.

For the Prox-SG method, we consider a fixed sample size 𝑁𝑘 = 𝐵 and a decreasing learning rate sequence. In particular, for all the 
test problems, we set 𝐵 = 50 and 𝛼𝑗 =

100𝛼1
100+𝑗

, 𝑗 ≥ 0, where 𝛼1 is the initial learning rate and 𝑗 denotes the counter of the epochs. We 

select the initial learning rate as 𝛼1 = 𝛼𝑜𝑝𝑡 ⋅𝑁 , where 𝛼𝑜𝑝𝑡 is the best-tuned value for the initial learning rate found for Prox-SG with 
𝐵 = 1. We remark that the value for 𝛼𝑜𝑝𝑡 has been obtained through time and resource-consuming procedure of repeated trials. For 
all the other methods we consider 𝑁1 = 𝑁 = 32 and 𝛼1 = 1𝑒 − 5. Furthermore, to fulfill the assumptions required for the stronger 
convergence guarantees of Theorem 3, we use 𝜈𝑘 =

1010
𝑘2

. We recall that for Prox-LISA the sequence 𝜀𝑘 has been fixed as 100 ⋅ 0.999𝑘
in [20]. To determine whether the benefits achieved by applying Prox-LISA-VM result solely from the selection of a new sequence 
𝜀𝑘, we also consider the original version of Prox-LISA but with the sole variation being the selection of 𝜀𝑘 .

In Figs. 1-2, we report the average graph of the optimality gap. We refer to these as average graphs since we conducted the test 
five times using different pseudo-random number generators, and the displayed graphs represent the averaged results. In stochastic 
contexts, it is good practice to analyze different realizations to get statistically robust and meaningful outcomes. The x-axis represents 
the epochs, where an epoch can be defined as a single pass through the training set. On the other hand, the y-axis represents the 

3 https://www .csie .ntu .edu .tw /~cjlin /libsvmtools/.
4 https://yann .lecun .com /exdb /mnist/.
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5 https://www .causality .inf .ethz .ch /home .php.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
https://yann.lecun.com/exdb/mnist/
https://www.causality.inf.ethz.ch/home.php
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Table 2

Accuracy for all the data sets with Logistic Regression loss function.

MNIST w8a CINA0 GISETTE IJCNN1 RCV1

mean 0.8988 0.9062 0.9210 0.9818 0.9206 0.9572

std 0.0004 0.0011 0.0024 0.0047 0.0024 0.0048

min 0.8961 0.9053 0.9168 0.9757 0.9113 0.9422

max 0.9006 0.9079 0.9239 0.986 0.9232 0.9668

Table 3

Optimality gap for all the data sets with Logistic Regression loss function.

MNIST w8a CINA0 GISETTE IJCNN1 RCV1

mean 0.0049 0.0036 0.0024 0.0194 0.0006 0.0121

std 0.0013 0.0011 0.0001 0.0043 0.0004 0.0036

min 0.0032 0.0020 0.0014 0.0137 0.0002 0.0092

max 0.0077 0.0061 0.0052 0.0275 0.0024 0.0168

Table 4

Accuracy for all the data sets with Square Loss function.

MNIST w8a CINA0 GISETTE IJCNN1 RCV1

mean 0.8936 0.8919 0.9196 0.9789 0.9108 0.9468

std 0.0009 0.0085 0.0017 0.0026 0.0003 0.0038

min 0.8906 0.8899 0.9148 0.9732 0.9101 0.9422

max 0.8964 0.8947 0.9221 0.984 0.9119 0.9631

Table 5

Optimality gap for all the data sets with Square Loss function.

MNIST w8a CINA0 GISETTE IJCNN1 RCV1

mean 0.0027 0.0009 0.0024 0.0577 0.0003 0.0137

std 0.0003 0.0002 0.0001 0.0028 0.0001 0.0021

min 0.002 0.0005 0.0014 0.0211 0.0001 0.0103

max 0.0034 0.0024 0.0052 0.0639 0.0007 0.0148

values of the optimality gap. To obtain a good estimate of 𝑃 ∗ we performed Prox-SG for 3000 epochs. As Figs. 1-2 show, the proposed 
method outperforms the others in six out of twelve cases, demonstrating the significant acceleration of the learning process in the 
analyzed binary classification scenarios. In the remaining tests, where the improvement is less evident, it is worth noting that the 
proposed method exhibits comparable performance to existing methods from the literature.

4.1.1. Ablation of hyperparameters

To evaluate the impact of the different hyperparameters of Prox-LISA-VM, we conducted an ablation study. Specifically, we 
examined the following parameters: 𝑁 ∈ {10, 32, 64}, 𝛿1 ∈ {1∕2, 2∕3}, 𝛿2 ∈ {1∕2, 2∕3}, 𝛾2 ∈ {3, 4, 5}, and 𝛾3 ∈ {0.60, 0.75, 0.9}, 
resulting in a total of 108 hyperparameter configurations. Tables 2–5 list the mean and the standard deviation of the final accuracy 
(on the test set) and the final value of the optimality gap (on the training set) over the 108 configurations. Moreover, the minimum 
and the maximum values obtained for both the accuracy and the optimality gap are also provided. The results of this ablation 
study provide strong evidence that the algorithm maintains stability across a range of settings for these hyperparameters. This 
robustness is further confirmed by the fact that in all the proposed numerical experiments, we kept the same configuration for all the 
hyperparameters.

We excluded the hyperparameters 𝛽1, 𝛽2, and 𝜖 from the ablation study. This decision was made because we opted for standard 
values for these hyperparameters, which align with the recommendations for Adabelief. The remaining parameters (𝛼, 𝛼, 𝜎) were not 
subjected to ablation. These parameters play a critical role in the theoretical results of our approach, although their values do not 
significantly impact the algorithm’s performance. Particularly we select 𝛼 = 10−10, 𝛼 = 1010 and 𝜎 = 106 to force that they are never 
attained by 𝛼𝑘 and 𝜎𝑘 throughout the iterative process.

4.2. Non-convex setting

Let  = {𝜉𝑖, 𝜁𝑖}𝑁𝑖=1 denote the training data set consisting of inputs 𝜉𝑖 ∈ℝ𝑛 and corresponding one-hot encoded class labels 𝜁𝑖 ∈Δ𝐶 , 
where Δ𝐶 = {𝜁 ∈ℝ𝐶 ∶ 𝜁𝑐 ≥ 0, 

∑𝐶

𝑐=1 𝜁𝑐 = 1} is the unit simplex. Further, let 𝐺∶ ℝ𝑛×ℝ𝑑 →Δ𝐶 be a (deep) neural network that predicts 
a distribution over class labels 𝜁𝑖 ∈Δ𝐶 for a given input 𝜉𝑖 ∈ℝ𝑛 and is parameterized by 𝑥 ∈ℝ𝑑 . Then, every component 𝑓𝑖 ∶ ℝ𝑑 →ℝ
12

of the corresponding empirical risk reads as
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Fig. 1. Binary classification with the Logistic Regression function on 5 different trials.
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Fig. 2. Binary classification with the Square Loss function on 5 different trials.
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Fig. 3. Training and test loss as well as test accuracy for the considered non-convex multi-class classification problems.

𝑓𝑖(𝑥) = 𝓁(𝐺(𝜉𝑖, 𝑥), 𝜁𝑖),

where 𝓁∶ Δ𝐶 ×Δ𝐶 →ℝ+ is the cross-entropy loss, i.e.

𝓁(𝜁, 𝜁) = −
𝐶∑

𝑐=1
𝜁𝑖 log(𝜁𝑖).

In this setting, we evaluate our optimization method for the following non-convex optimization problems:

• MNIST Simple: In this case we use a simple feed-forward network to classify grayscale images of size 28 × 28 (𝑛 = 784) of the 
MNIST data set into the depicted digit (𝐶 = 10). In detail, the neural network 𝐺 consists of two layers that successively perform 
a convolution, ReLU activation function, and 2 × 2 max-pooling using 64 and 32 feature channels, respectively. A final fully 
connected linear layer along with a softmax activation function maps the intermediate features to predictions 𝜁𝑖.

• CIFAR-10 ResNet18: For this problem, the CIFAR-10 data set [36] is used, which consists of 60 000 RGB-images of size 32 × 32
(𝑛 = 3072) belonging to 𝐶 = 10 different classes. The training set and the test set contain 50 000 and 10 000 images, respectively. 
We use the ResNet18 [37] model as neural network 𝐺, which contains 𝑑 = 11 169 162 trainable parameters. To avoid any side 
effects due to batch normalization, we removed those layers from the model.

• TinyImageNet ResNet18: For the last test, the same neural network as in the previous setting (ResNet18) is used. However, we 
consider a more challenging image classification problem using the TinyImageNet data set [38], which is a reduced version of 
15

the well-known ImageNet data set [39]. In detail, the TinyImageNet data set consists of 100 000 train and 10 000 test RGB images 
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Fig. 4. Sample size 𝑁𝑘 and step size 𝛼𝑘 over the epochs for the three considered non-convex deep learning problems.

of size 64 × 64 (𝑛 = 12 288), which depict instances of 𝐶 = 200 categories. In this case, the number of trainable parameters of 
the neural network is 11 266 632.

To minimize the effect of overfitting, we utilize weight decay regularization in all cases, that is 𝑅(𝑥) = 𝜆

2‖𝑥‖22. For the three different 
setting 𝜆 is set to 1 × 10−4, 5 × 10−4, and 1 × 10−4, respectively. As the lower bound for the sample set size, we used 𝑁 = 32 for the 
MNIST and CIFAR-10 data set and 𝑁 = 64 for the TinyImageNet data set to account for the increased initial variance.

In all tests, we compared our algorithm with the Adam [35] and Adabelief [32] optimization schemes, which already proved its 
competitiveness to the standard stochastic gradient descent schemes. For both algorithms, we used a fixed sample size 𝑁𝑘 =𝑁 and 
set the initial learning rate to 2.5 × 10−4 and reduced it to 1 × 10−6 using cosine annealing. The remaining hyper-parameters are set 
to the default values. This setup led to the fastest convergence for all three considered problems.

Fig. 3 depicts for all three considered problems from top to bottom the sampled training loss 𝑓𝑘
(𝑥), the loss on the test set, 

and the accuracy on the test set as a function of epochs. Given the stochasticity of the sampling, all the metrics are averaged over 5 
different runs, as in the convex setting. Concerning the training loss, Prox-LISA-VM shows a faster decrease rate compared to Adam 
and Adabelief, especially for the TinyImageNet data set and in the initial phase. However, the overall accuracy is comparable for 
both methods across the different problems. We highlight that for Prox-LISA-VM no selection of the learning rate is required; only a 
reasonable selection of the lower bound of the sample size 𝑁 is necessary to allow a reliable estimation of the sample’s statistics.

The average sample size 𝑁𝑘 along with the average step size 𝛼𝑘 across 5 different runs is depicted in Fig. 4. In all tests, we observe 
that the sample size is increasing and decreasing. For the MNIST data set the sample size has a tendency to increase toward the end, 
while for the CIFAR-10 and TinyImageNet data set the sample size is only slightly larger initially and at the end. The plots of the step 
sizes in the second row show similar behavior in all three tests; there is an initial increase followed by a decrease of about an order 
of magnitude toward the end of the iterative process. This decrease originates from the reduced non-monotonicity of the line search 
due to a decreasing 𝜀𝑘 sequence.

Finally, we would like to compare the computational complexity of the different algorithms. While Prox-SG, Adam, and Adabelief 
only require the estimation of a sample’s objective and gradient, Prox-LISA-VM requires the estimation of the objective value and 
gradient for every sample to determine the sample size 𝑁𝑘. However, the computational complexity of both tasks is the same for a 
given sample size. Moreover, the experimental results demonstrate that Prox-LISA-VM performs comparably to the state-of-the-art if 
epochs, which do account for the varying sample size, are considered. Further, the average number of backtracking steps in the line 
search procedure was at most 2 for all considered problems. Thus, the computational complexity of Prox-LISA-VM is similar to the 
16

related methods.
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5. Conclusions

In this paper, we presented a variable metric approach for preconditioning stochastic gradient directions in conjunction with an 
automatic sample size selection to control the variance of stochastic gradient directions for regularized empirical risk minimization 
problems. We developed conditions for the sequence of variable metrics to ensure convergence in convex and non-convex settings. 
Various numerical experiments demonstrated that the proposed method performs equally well or even outperforms state-of-the-

art methods on challenging binary and multi-class classification problems. Moreover, our proposed method only requires a rough 
selection of the sample size lower bound and no further hyperparameters need to be adapted due to the utilization of a non-monotone 
line search criterion.
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