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Contributed Discussion on Article by Finegold
and Drton

Comment by Guido Consonni1 and Luca La Rocca2

This is a very interesting paper providing both theoretical and computational results for
robust structure estimation in decomposable graphical models. Finegold & Drton (F&D
hereafter) do a splendid job in motivating and illustrating the various ramifications of
this attractive research path. We will comment on prior specification, hoping to add
further insights to a paper already rich in content. Notice that model choice results
strongly depend on prior specification; see, e.g., O’Hagan and Forster (2004, ch. 7).

Priors on graphs Formula (3) of F&D specifies a product of Bernoulli priors with fixed
edge inclusion probability d. As F&D mention in their Discussion, one could place a
prior on d. We suggest exploring this avenue in real terms, because recent results suggest
that substantial improvements can be obtained by placing, say, a beta prior on d; see
for instance Scott and Berger (2010) and Castillo and van der Vaart (2012).

Priors on matrices The Hyper Inverse Wishart (HIW) prior on Ψ, or Σ in the Gaussian
case, requires the hyperparameters δ and Φ. F&D choose δ = 1 and Φ = cIp, referring
to Armstrong et al. (2009) for alternative choices of Φ. A related option would be
using the Fractional Bayes Factor (FBF) to implement model choice based on objective
improper priors: a fraction of the likelihood would be used to make the prior proper,
then its complementary fraction would be used for inference (avoiding double use of
data); see O’Hagan and Forster (2004, ch. 7).

In the Gaussian case the FBF turns a default improper HIW prior on Σ into a
proper HIW prior with Φ proportional to the sample covariance matrix (Carvalho and
Scott 2009) and this results in a markedly improved performance with respect to the
standard choice Φ = cIp (applied to the whole likelihood). The problem is that vague
priors assign too much probability to parameter values not supported by the data, and
this alters the evidence conveyed by the marginal likelihoods. We note that Consonni
and La Rocca (2012) extend the results of Carvalho and Scott (2009) to the larger class
of Directed Acyclic Graphs (DAGs).

Implementing the FBF in the setup of F&D should be feasible, because, condition-
ally on τ , the results for the Gaussian case extend in a straightforward way. Since the
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problem it solves is general, we expect the FBF to give more reliable posterior prob-
abilities also in this setting. We would love to see some experiments in this direction,
as well as in the direction of applying the robust approach of F&D to compare general
DAG models.

Non-local priors F&D write in their Discussion that for large p the highest posterior
probability graph is difficult to find, and not necessarily informative, so that one may
like to focus on marginal posterior edge inclusion probabilities. Indeed, we remark
that the latter are enough to define the median probability graph: the graph containing
exactly those edges whose probability is above 50%. Barbieri and Berger (2004) discuss
the useful properties of the median probability model in the context of linear models.

A way of mitigating the dilution of posterior probability on model space for large p is
using non-local parameter priors; see Johnson and Rossell (2012) in the context of linear
models. Altomare et al. (2013) use non-local priors, obtained with the FBF, to compare
Gaussian DAG models for a given ordering of the variables. Implementing non-local
priors, which are characterized by (being continuous and) vanishing on the subspace
which characterizes the submodel, in the setup of F&D would be quite expensive, as far
as we can see, but also rewarding.
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Comment by Adrian Dobra1

I would like to congratulate the authors for their key contribution that makes an essen-
tial connection between the literature on Bayesian graphical models and the literature
on robust Bayesian inference. The paper introduces an approach for Gaussian graphi-
cal models determination in the presence of outliers through flexible generalizations of
multivariate t-distributions. First, the alternative t-distribution is defined as a scaled
version of a multivariate normal with independent Gamma distributed scaling factors.
Second, an adaptive clustering of the scaling factors is induced by a Dirichlet process
with a Gamma baseline measure which gives a Dirichlet t-distribution. The papers
clearly shows that reducing the effect of the outliers influences the structure of the
graphs that are inferred from the data. The sampling methods presented in the paper
seem to work well which opens the possibility of applying this methodology to numerous
real world problems in which outliers are likely to be occur.

One such real world application is presented in Section 6 and involves the analysis of
gene expression data. Typical gene expression datasets have sample sizes in the order of
tens or hundreds, but contain expression levels of tens or hundreds of thousands of genes.
In such high-dimensional settings in which the number of variables p is several orders
of magnitude larger than the sample size n, the curse of dimensionality (Bellman 1961)
phenomena create significant challenges for sound statistical inference. As the volume
of space spanned by the p variables increases at an exponential rate, the available
samples become sparse. Each sample could be regarded an outlier and, for that reason,
attempting to reduce the weight of extreme observations might not have the same
meaning in high dimensional applications as opposed to low dimensional applications
in which the number of samples exceeds the number of variables.

The Bayesian approach to graphical modeling described in this paper assumes that a
single graph expresses the conditional independence relationships of all available sam-
ples. The multivariate normal distribution constrained by the conditional independence
graph is assumed to be independent of the Dirichlet t-distribution which defines clusters
of samples. Graphical modeling of gene expression data is relevant because the inferred
graph can be linked to biological pathways with known and unknown components. The
observed samples are associated with various combinations of experimental conditions
that can turn on and off relevant biological pathways. In such cases, learning multiple
graphs associated with different groups of samples becomes key since potential changes
in the structure of the graphs can be indicative of the dynamics of the underlying bio-
logical processes. It would be quite useful if the authors could comment on how multiple
experimental conditions can be accommodated in their framework.
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Comment by Jayanta K. Ghosh1

Bayesian graphical models for multivariate normal distributions have become very pop-
ular. The basic idea is to give a simple graphical structure to the covariance matrix Σ
so that a pair of variables Yj and Yk are conditionally independent given all the other
variables if and only if Σ−1

jk = 0.

To apply Bayesian methods one would need to put a prior on the graphical structure
and a prior on the covariance matrix, such that local computations on the graph are
possible. A hyper inverse Wishart prior on the covariance matrix and a uniform prior
on the decomposable graphs allow such local computations. In particular one gets a
closed form for the marginal likelihood. Hence for inference about high dimensional
covariance models, this approach is very efficient and hence very popular.

It is interesting that so far the only such models have been for the Gaussian case.
Important people in this area are Rajaratnam, Carvalho, and Massam. I am somewhat
familiar with the work of Rajaratnam. An earlier paper, Yuan and Huang (2009), makes
a major contribution by extending this methodology for a class of t-distributions. The
present paper uses a new flexible multivariate t-distribution by modifying a method
developed in Finegold et al. (2011). This seems to work better for high dimensions than
the usual t-distribution, but requires heavy computation.

In this context, it would also make sense to check whether these small perturbations
would affect the Gaussian graphical models in some other way significantly.

“The key new contribution”, in the words of the authors, is a further modification
that shows how this can be done efficiently by adaptively switching between the classical
and an alternative t, using a Dirichlet process clustering. However the new alternative
t, being different from the usual t, may disturb the graphical structure. Will this have
an effect on the inference?

While I feel quite positive about the paper, it would be nice if the authors can point
out some additional applications of their new techniques. Using a Dirichlet process
clustering is quite novel and may be applicable elsewhere.
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Comment by Michele Guindani1

The authors provide a lucid argument for the use of flexible t-distributions in the
Bayesian estimation of graphical models. The starting point is the realization that
some samples may be contaminated, and the contamination might affect only small
parts of any given sample. Thus, although the authors focus primarily on the problem
of graph recovery, a reader may wonder if these proposals could find application also
in the multiple hypotheses testing framework. On the one hand, the improved perfor-
mance in the estimation of the graph dependence should translate to increased power
of the testing procedures (Schwartzman and Lin 2011; Sun et al. 2014). On the other
hand, the possibility to downweigh the influence of contaminated observations should
increase the accuracy of the procedure. As a matter of fact, recent work has shown the
importance of adequately taking into account the heterogeneity of the error variances,
either across tests and/or across treatment conditions. Two notable examples are the
papers by Shahbaba and Johnson (2013) and Bar et al. (2014). To set the framework,
one may start by considering for simplicity the sequence of hypothesis tests,

H0 : µj ∈ A vs HA : µj 6∈ Ac j = 1, . . . , p,

where A = (−ε,+ε) or A = {0}. We follow the notation in the manuscript, so that
p denotes the number of vertices in the set V . In the example presented in Sec-
tion 6, p is the number of genes in n experiments. Then, equation (18) defines a
convenient statistics, which can be used for the purpose of hypothesis testing. Let
t = 1, . . . , T denote the MCMC iterations after burn in. Then, at each iteration,
µtj =

∑n
i=1 τ

t
ijYij/

∑n
i=1 τ

t
ij , for both the alternative and the Dirichlet t-distributions.

Let δj be a binary decision rule such that δj = 1 denotes rejection of the null hypoth-
esis, whereas δj = 0 denotes the opposite outcome. Under a loss function which is a
linear combination of false negative and false positive counts, rules based on thresh-
olding the posterior probabilities of the alternative vj = p(µtj ∈ Ac) are known to be
optimal under several criteria (see, e.g., Müller et al. 2007; Wu and Peña 2013; Sun
et al. 2014) and can be easily determined on the basis of the MCMC output, since

vj = E(I(µj ∈ A)|data) ≈
∑T
t=1 I(µtj ∈ A)/T and δj = I(vj > τ) for a given threshold

τ . From equation (18), it’s apparent that small values of τij downweigh the relevance
of sample i in determining µtj , which is the relevant quantity in the hypothesis testing

problem. Alternatively, one could consider the sample mean Ȳn, which conditionally on
τ , µ and Ψ, is Np(µ, 1

n2 diag(
∑n
i=1 1/

√
τi) Ψ diag(

∑n
i=1 1/

√
τi)). Posterior estimates

of τ , µ and Ψ can be obtained from the MCMC output as described in the manuscript,
and can be used to define a single thresholding function for all tests when testing the
null hypothesis H0 : µj = 0, for each j = 1, . . . , p, as

S(ȳ) =

∑p
j=1Np(ȳ; µ̂j ,

1
n2

∑n
i=1 ψjj/τij)∑p

j=1Np(ȳ; 0, 1
nψjj)

,

where µ̂j = E(µj |data), similarly as in Storey (2007) and Storey et al. (2007). See
also Bogdan et al. (2008) and Guindani et al. (2009). The null hypothesis is rejected if
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S(ȳ) > τ , for some 0 ≤ τ <∞. Again, it is apparent the effect of the flexible estimation
of the τij ’s suggested in the manuscript by Finegold and Drton. A small value of τij ,
for any single sample i, does not affect much the posterior mean µ̂j and contributes
to increase the variance of the Gaussian density in the numerator of S(·). Hence, the
overall effect of a single outlier is a decrease in the value of S(ȳ), which may affect
the ranking of the hypotheses (Shahbaba and Johnson 2013). Of course, refinements
may be needed to ensure good frequentist properties of such thresholding procedures.
However, it seems reasonable to conclude that the flexible extensions of the multivariate
t-distribution proposed in the manuscript can find some interesting application also in
the multiple comparison framework.
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Comment by Alejandro Jara1

The proposal

I congratulate the authors for an interesting paper, and thank them for adding another
example to the long list successful applications of Bayesian nonparametric models. Fine-
gold and Drton’s paper deals with robust inference for graphical models and proposes
a novel class of multivariate t-distributions that arises by (i) replacing the single la-
tent gamma mixing variable with coordinate-specific independent latent variables, in
the standard stochastic representation of multivariate t-distributions as a scale mixture
of normals, and (ii) by exploiting the discrete nature of Dirichlet processes to cluster-
ing the latent mixing variables. Thus, the resulting Bayesian semiparametric model,
referred to as ‘Dirichlet-t distribution’, allows for the clustering of the original Gaus-
sian coordinates according to the ‘degree of robustification’ needed to adequately fit the
data and is an intermediate model having as limiting cases two parametric models: the
standard multivariate t-distribution and the multivariate t-distribution arising by as-
suming coordinate-specific independent gamma latent variables. The first case assumes
the same degree of departure from normality for each coordinate of the response vector,
and the latter enforces for coordinate-specific potential departures from normality.

The main comment

For some reason, the authors choose to limit their definition of the model to a case that
allows for too little borrowing of strength across samples. Since the mixing distribution
does not usually change when considering independent samples from a mixture model,
one option would have been to treat the τij ’s as exchangeable across the samples. That
is, by considering the hierarchical model given by

Y i | τ i,Ψ,µ
ind.∼ Np (µ,diag{1/

√
τ i} ·Ψ · diag{1/

√
τ i}) , (1)

τij |P
i.i.d.∼ P, (2)

and

P |α, ν ∼ DP (α, P ν0 ). (3)

However, the authors’ proposal implies the existence of n sample-specific independent
Dirichlet processes and the hierarchical model given by

Y i | τ i,Ψ,µ
ind.∼ Np (µ,diag{1/

√
τ i} ·Ψ · diag{1/

√
τ i}) , (4)

τij |Pi
ind.∼ Pi, (5)
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Pi |α, ν
i.i.d.∼ DP (α, P ν0 ), (6)

where the random measures Pi are linked only by the finite dimensional hyper-
parameters α and ν. For some applications, the model given by expressions (1) – (3)
would enforce too much borrowing by assuming essentially one ‘population’ P . However,
the model given by expressions (4) – (6) allows too little borrowing of strength across
samples, which can complicate the inferences on the infinite dimensional parameters
Pi when p is not big enough. Therefore, and along the lines of what the authors are
trying to do with the latent mixing variables, an intermediate case would be to consider
the hierarchical Dirichlet process, originally proposed by Müller et al. (2004). Under
this model, the sample-specific random measures Pi would have the following mixture
representation

Pi = εH0 + (1− ε)Hi

where H0 is a common random measure, shared by all samples, Hi is an idiosyncratic
measure which is specific to each sample, and ε ∈ [0, 1] represents the level of borrowing

strength across samples. The model could be completed by assuming Hi |α, ν
i.i.d.∼

DP (α, P ν0 ) and H0 |α, ν ∼ DP (α, P ν0 ). This model can be easily implemented, with
full conditionals of similar form of the ones described by the authors, and is a more
clear way of borrowing strength than the one suggested by the authors in the discussion
section, based on a Dirichlet process mixture model for τ 1, . . . , τn.
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Comment by Juhee Lee1

The Dirichlet t-model proposed in the paper by Finegold and Drton is well developed
to obtain inferences robust to outliers in a multivariate Gaussian setting. There are
several Bayesian approaches to handling outliers, as discussed in Lee and MacEachern
(2014). The approach that Finegold and Drton take is to downweight possible outliers
through a thick-tailed likelihood, producing posterior inference that is less affected by
the outliers. This approach provides reasonable inferences for some inferential targets
without requiring elaborate efforts to model the process generating the observations.
In particular, this approach works well when the focus is the center of a distribution.
However, as shown in Lee and MacEachern (2014), this approach does not work so well
for other inferences such as a predictive distribution. The reason is that use of a thick-
tailed likelihood is not designed to pick up asymmetry of the distribution, nor need
it correctly capture the spread of the distribution. An alternative approach pursues
density estimation of both outlying and non-outlying data and handles outliers through
use of a robust inference function.

The example of the graphical model suggests a style of hybrid model which I have
been developing in other contexts. Here, the model lies between a model that is purely
flexible for all coordinates and one that is only flexible for some bad coordinates. In
particular, one can decompose the model into two parts to describe the generative pro-
cess. One component precisely models the distribution of the good coordinates (called
the “head” of the model). The head of the model incorporates informed prior knowl-
edge and may have a sharp distribution. It will often define the primary characteristics
about which inference is to be made. As an example, for the Gaussian graphical model
setting of the paper, the good coordinates in an observation share a single τi drawn
from a gamma distribution with a large shape parameter, or even have τi = 1 to reflect
normality. The other component (called the “tail”) accommodates departures from the
head. The tail is based on vaguer information. It picks up model misfit, whether this
be systematic departures of modest size from the head, or individual or small pockets
of cases that are difficult to describe such as outlying coordinates. Use of a carefully
tailored nonparametric Bayesian component for the tail is natural, because such a com-
ponent is flexible and has full support. The Dirichlet t-distribution developed in the
paper can be a good choice for the tail in the discussed problem. Alternative versions
provide more control over the relative sizes of clusters of outlying observations. The final
piece of the model determines the split between the head and the tail, with a simple split
following a beta distribution. Under this comprehensive modeling framework, outlying
coordinates within an individual observation are hopefully assigned to the tail, reducing
the impact of the outliers for inference for the head. This model can be adapted to
account for dependence across the vectors Y. Therefore, local deficiencies of the model
will not drive inference while the computation burden is still controlled.
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Comment by Steven N. MacEachern1

Finegold and Drton provide an interesting class of models whose purpose is to provide a
more robust fit of a Bayesian model. Their focus is the normal-theory graphical model,
but, as they indicate, their technique can be applied much more broadly. The driving
forces behind their model are the use of a thick-tailed likelihood to discount modest
outliers and essentially drop extreme outliers and the exploitation of the clustering
properties of the Dirichlet process to capture pockets of outliers. The details of the
model place it squarely in the realm of nonparametric Bayesian methods in spite of the
very parametric nature of the model. The resulting model is an excellent example of
problem-driven model development.

Nonparametric Bayesian methods, in particular those based on the Dirichlet process,
are well-developed and have been applied to a wide variety of problems since the advent
of Markov chain Monte Carlo (MCMC) in the 1980s. MCMC computation in nonpara-
metric Bayesian models began with the dissertation work of Escobar (1988, 1994) who
developed a basic algorithm which has come to be known as a Gibbs sampler. Perfor-
mance of the basic algorithm has been improved with strategies that facilitate mixing
and that can aid in estimation. The perspectives and techniques in the nonparametric
Bayesian literature can be borrowed to enhance computation and to suggest routes for
robust graphical modelling. These strategies have proven useful in MCMC problems
well beyond nonparametric Bayes.

Marginalization, or “integrating out parameters” typically improves both conver-
gence and mixing of MCMC algorithms. Escobar’s basic algorithm for mixture of Dirich-
let process models marginalizes the infinite dimensional distribution function P , instead
working with Blackwell and MacQueen (1973)’s Polya urn scheme which underlies (21)
and (23) of the paper. MacEachern (1994) goes further, extending the basic algorithm
to the hierarchical model, marginalizing the cluster locations, here the ηk, and providing
a simple theoretical result on marginalization. See Liu et al. (1994) for more satisfying
results on marginalization. The ηk can be generated as needed for further inference or
other steps in the algorithm. Additional marginalization is possible, in particular of the
mass parameter of the Dirichlet process (α in the paper, though it is perhaps better to
follow Ferguson (1973)’s notation and reserve α for the base measure of the Dirichlet
process). This marginalization can be performed with a pre-integration, done once, be-
fore the iterates of the MCMC are performed (MacEachern 1998), eliminating the need
for steps (v) and (vi) in Algorithm 4 and adjusting the draws in step (ii) slightly.

Reparameterization of the model at various stages of an MCMC iterate can greatly
enhance mixing. Bush and MacEachern (1996) provide one of the earliest examples of
this technique, adding a step to the basic algorithm where the cluster locations (the
ηk) are generated (step (iii) in Algorithm 4). As Finegold and Drton have found, this
remixing step is essential to obtain full mixing of the Markov chain in a run of reasonable
length in most contexts. Mixing is further enhanced with the split-merge techniques
of Jain and Neal (2000, 2007) and Dahl (2003). These perspectives and others from
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the nonparametric Bayesian literature provide useful views on how to tune up MCMC
algorithms. They also apply more generally, having applications to particle filtering and
to a variety of approximation methods.

As a final comment, in their penultimate paragraph the authors mention the possi-
bility of hooking the collection of n problems together. The dependent Dirichlet process
(MacEachern 1999) and dependent nonparametric processes provide a framework which
has proven to be successful for the development of such models. The gene expression
data in Section 6 show evidence of “clustering by rows and columns,” suggesting links
to the work of Lee et al. (2013).
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Comment by Abdolreza Mohammadi1 and Ernst C. Wit2

We congratulate the authors with this thought-provoking paper, which constitutes a
valuable contribution in graphical model inference. They propose a robust Bayesian
inference method based on the Dirichlet t-distribution, that has clear benefits over
Gaussian graphical models. Their method can deal with continuous data that contain
outliers for some of their measurements and it is therefore more suitable for large real
data sets of variable quality. Here we would like to contribute to the discussion by
suggesting an extension to non-decomposable graphs and to suggest a comparison with
Copula Gaussian graphical models.

Extension to non-decomposable graphs

Restricting themselves to decomposable graphs allows a closed form of the marginal like-
lihood, which results in an explicit form for the acceptance ratio (see paper eq. 6). How-
ever, the space of decomposable graphs is much smaller than the full graph space. For
example, the percentages of graphs that are decomposable for p = 3, 4, 5, 6, 7, 8 variables
are 1, 0.95, 0.80, 0.55, 0.29, 0.12, respectively (Armstrong 2005, p.149). It shows that de-
composability is a serious restriction, even for a small number of variables. Moreover,
this restriction has several other computational consequences. Firstly, in each sweep
of the main MCMC algorithm (Algorithm 1) one should check by using e.g. the Max-
Cardinality algorithm whether the proposed graph is decomposable or not, which is
relatively computationally expensive. Secondly, as in high-dimensions most graphs are
non-decomposable, moves will have a high rejection rate and result in slow convergence.
As the authors mention in the conclusion, one extension of their work should be to
the non-decomposable graphs by using e.g. the double reversible jump (Lenkoski and
Dobra 2011; Lenkoski 2013) or birth-death MCMC approach (Mohammadi and Wit
2014a), which we proposed recently. In general for high-dimensional graphs, reversible
jump algorithms still suffer from high rejection rates. Using the Dirichlet t-distribution
in combination with the birth-death MCMC algorithm (Mohammadi and Wit 2014a)
would be very promising.

Comparison with copula Gaussian graphical models

Gaussian graphical models are very sensitive to outliers. The current paper proposes an
excellent way to deal with this sensitivity. A potentially different way is to use copula
Gaussian graphical models (Dobra and Lenkoski 2011; Mohammadi et al. 2014). This
method embeds a graph selection procedure inside a semiparametric Gaussian copula,
which can deal robustly with many marginal distributions of the data. For copula
estimation, the marginal likelihood is only a function of the association parameters.
Indeed, graph determination based on the t-distribution is a spacial case of copula
Gaussian graphical models (CGGMs) by assuming that the marginal distributions have

1Dept. of Statistics, University of Groningen, Groningen, Netherlands, a.mohammadi@rug.nl
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a t-distribution. It has the advantage that the full likelihood has an explicit form,
however it also means that it can deal only with continuous t-distributed data.

Simulation example: AR1 with p = 25

To compare the performance of the t-distribution method proposed in the paper with
the CGGMs, we run our simulation based on the same scenario as in subsection 5.1 of
the paper. Regrettably the code for the t-distribution method is unavailable to do any
direct comparison, so here we focus on a comparison with a standard Gaussian graphical
model (GGM). We run two algorithms. One is the birth-death MCMC algorithm for
decomposable and non-decomposable GGMs (Mohammadi and Wit 2014a). The other
is the birth-death MCMC algorithm for CGGMs (Mohammadi et al. 2014).

The simulation results are summarized in Figure 1, which shows that CGGMs indeed
perform better when the data is generated from a model with outliers, such as the t-
distribution and alternative t-distribution. For normal data, the CGGM method is
only marginally worse than the GGM method. The processing time to fit CGGMs was
around 1.2N where N is the processing time for the GGMs. The results are based on
the R-package BDgraph (Mohammadi and Wit 2014b).
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(c) Alternative,n=25,p=25

Figure 1: ROC curves present the performances of the two methods for data gener-
ated from a N25(0,K−1) distribution, a t25,3(0,K−1) distribution and a t∗25,3(0,K−1)
distribution.
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Comment by Anthony O’Hagan1

Whilst I imagine that the material in this paper relating to graphical models is its
principal focus, I am particularly interested in Finegold and Drton’s novel heavy-tailed
multivariate distributions. The authors note that, “There is substantial literature on
robustness in Bayesian inference,” but then cite two very old papers. It seems that they
have not actually researched that “substantial literature” fully. A good starting point
would be the recent review by O’Hagan and Pericchi (2012).

What Finegold and Drton call their alternative t distribution is closely related to the
case of independent t distributions which arises in the special case when Ψ is diagonal.
This case is illustrated in their Figure 2, and has been used by various authors for robust
Bayesian modelling. As the authors note, this kind of formulation allows a wider range
of robust responses than the simple multivariate t distribution. This is an important
point, because a major theme of the work reviewed in O’Hagan and Pericchi (2012)
is that different heavy-tailed modelling formulations lead to different robust responses
in the posterior distribution, and hence that care must be taken when introducing
heavy-tailed models to choose a formulation with the desired posterior behaviour. This
is the modelling philosophy first propounded in O’Hagan (1988), and is clearly seen
in the authors’ reasons for proposing first the alternative t distribution and then the
Dirichlet t distribution. However, it merits being emphasised here because there is a
common misconception amongst Bayesians that ‘robustifying’ a model by introducing
any convenient form of t distribution will automatically produce desirable posterior
behaviour.

By allowing a general Ψ matrix in their alternative t distribution, the authors have
introduced a new class of multivariate heavy-tailed distributions. Figure 2 below shows

100,000 draws from an alternative t distribution with ψ =

(
11 9
9 11

)
, the strong

correlation of 9
11 implied here being evident in the preponderance of points in the first

and third quadrants. Nevertheless, the fact that the heavy tails are operating only
along the x and y axes means that the actual correlation in this distribution is much
lower. In contrast, consider Figure 3, which shows a bivariate distribution that is also

characterised by ψ =

(
11 9
9 11

)
, but now the heavy tails apply along the principal

axes x = y and x = −y. The correlation in this distribution is 9
11 . The point is

that in multivariate heavy-tailed distributions we can have different tail weights in all
directions. The multivariate t has the same tail weight in all directions, whereas the
alternative t has heavy tails along the axes. Figure 3 illustrates just one of many other
possibilities, while others are discussed in O’Hagan and Le (1994).

The authors introduce the very interesting Dirichlet t distribution to allow for the
possibility of clustering. The tails of such a distribution will exhibit complex patterns
of thickness. Another example of heavy-tailed modelling to achieve clustering is given
in O’Hagan (1988). Another strong theme in this literature is the importance of the
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Figure 2: Draws from an alternative t distribution.

Figure 3: Draws from a bivariate distribution.
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degrees of freedom in t modelling components. Figures 2 and 3 employ 3 degrees of
freedom, which is the authors’ default choice, but changing the relative tail thicknesses
of different components can radically change the posterior behaviour; see O’Hagan and
Pericchi (2012).
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Comment by Stefano Peluso1

We congratulate the authors for the insightful generalization of the classical multivariate
t-distribution to the Dirichlet t-distribution that allows to model graphs that account for
outliers, still keeping a reasonably low computational burden. In this comment we focus
on a possible further generalization aiming at incorporating skewness in the analysis.
In more details, if we define Ω := diag(1/

√
τi)Ψdiag(1/

√
τi), then Yi|τi,Ψ, µ ∼ Np(µ,Ω)

in the model can be replaced by{
Yi|τi,Ψ, µ,∆, ω ∼ Np(µ+ ∆ω,Ω)
ω ∼ Np(0, Ip)1{ω>0}

, (7)

where ∆ is a p × p skewness matrix and ω is a p-dimensional Gaussian latent variable
truncated to the region {ωi > 0, i = 1, . . . , p}. Usually ∆ = diag(δ1, . . . , δp) or, if the
same skewness for all the data is assumed, ∆ = δIp. Note that for δi > 0 or δi < 0 a
positively or negatively skewed distribition is obtained, whilst for δi = 0 for all i, the
original model in the paper is obtained.

Rikhtehgaran and Kazemi (2013) show that the hierarchical representation in (7)
is equivalent to the multivariate Skew-Normal distribution of Azzalini and Dalla Valle
(1996). From a computational point of view, ω can be sampled simulating from a
multivariate normal until the generated number is positive or, more efficiently, using
the distribution function inversion method suggested in Gelfand et al. (1992); see also
Robert (1995) and Solgi and Mira (2014) for related sampling algorithms. Then, if
τi is a sample from a Dirichlet process of Ferguson (1973), the resulting model is a
Skew-Dirichlet t-model, generalizing, to the Bayesian nonparametric framework, the
multivariate skew t-distribution introduced in Azzalini and Capitanio (2003).

The state space in the Gibbs sampler is then extended from (G,Θ, z, η) - as in
the discussed paper - to (G,Θ, z, η,∆, ω). Following the approach in the paper, for
computational reasons µ is approximated and not sampled, but in the extended model

with skewness its approximation is now µ =
∑n

i=1 τiYi∑n
i=1 τi

− ∆ω. The full conditionals of

G,Θ, z and η remain almost unchanged, with the only difference being that µ is replaced
by µ+ ∆ω. For sampling ∆ = diag(δ1, . . . , δp) in the Gibbs iterations, it can be shown
that

ω|G,Θ, z, η,∆ ∼ Np(µω,Σω)1{ω>0},

where Σω = (∆Ω−1∆ + Ip)
−1 and µω = Σ−1

ω (∆Ω−1(Yi − µ)). Finally, for a prior
(δ1, . . . , δp) ∼ Np(0, σ2

∆Ip), a posteriori ∆|G,Θ, z, η, ω ∼ Np(µ∆,Σ∆) is obtained, where
Σ∆ = (Ω−1ωω′ + Ip/σ

2
∆)−1 and µ∆ = (Σ−1

∆ (Ω−1(Yi − µ)ω′))ii, for i = 1, . . . , p.

To illustrate the usefulness of the skewness generalization, we extend Figure 2 in the
paper, by simulating 100.000 draws from the Skew-Dirichlet t-distribution, for various
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skewness matrices. The results in Figure 4 show that the distribution is still able to
account for joint ouliers in the four corners, but it can also exhibit an asymmetric
behavior. The relevance of the skewed model on real data is under current investigation
and will be thoroughly developed in a future work.

Figure 4: Top left plot: 100.000 draws from the Dirichlet tα=1
2,3 (0, I2) (no skewness),

corresponding to the Skew-Dirichlet t-distribution with δ1 = 0 and δ2 = 0. In the other
plots: draws from the Skew-Dirichlet t-distribution under distinct skewness scenarios:
δ1 = 1, δ2 = 0 (Y 1 positive skewness), δ1 = 0, δ2 = −1 (Y 2 negative skewness) and
δ1 = 1, δ2 = 1 (Y 1, Y 2 positive skewness).
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Comment by Luis R. Pericchi1

Bayesian Robustness or Bayesian Conflict Resolution (BCR) is one of the best routes
to appreciate Bayesian Statistics: in a structured way you arrive from assumptions to
conclusions, in a “what if” approach, as opposed to ad-hoc non Bayesian methods. In
addition Bayes gives you probabilities and uncertainty measures. This powerful paper
is an excellent example, on which very creative alternative versions of multivariate t-
Distributions are employed and the objective sought fulfilled. However, BCR is much
more than replacing Normal by t-distributions (Pericchi et al. (1993), O’Hagan and
Pericchi (2012)). In the latter reference is exposed a theme under-represented in BCR,
alternative heavy tailed distributions for scale parameters. For scales, in addition to tail
considerations, behavior at the origin is crucial, and Gammas, Inverted-Gammas and
their multivariate generalizations may also need replacement as suggested by Gelman
(2006), Fuquene, Perez, and Pericchi (2014) and by Perez, Pericchi, and Ramirez (2014)
presented at this ISBA conference. But I have to recognize that what thrilled me most
was the interpolation achieved between models through the Dirichlet Process. Similar
effects may have been obtained treating the problem as a Bayesian Model Averaging
problem. The final question is, what are the relationships of these two methods of
interpolations between models? Which are the relative merits? This seems to be a
substantial and exciting research program.
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Comment by Abel Rodŕıguez1

I would like to start by congratulating the authors for a very interesting paper. Gaussian
graphical models have become an important tool in applied fields such as genomics and
finance. However, inferences derived from them are sensitive to the presence of outliers.
The authors address this issue by considering graphical models based on heavy-tailed
distributions that can be written as scale mixtures of Gaussians. In particular, the main
contribution is a new sparse multivariate t distribution in which the over-dispersion
parameters are assigned a nonparametric prior based on a Dirichlet process. Their
specification allows for differential shrinkage along each dimension while attempting to
preserve parsimony by reducing the number of distinct parameters being estimated.
Furthermore, the fact that the model is conditionally Gaussian allows the authors to
leverage well-known Markov chain Metropolis Hastings algorithms for posterior infer-
ence.

One important concern associated with the kind of t-variate graphical models pre-
sented in the paper relates to the interpretation of the underlying graph. Indeed, in
the t models discussed by the authors, zeros in the precision matrix do not imply that
the corresponding variables are conditionally independent. Of course, conditional on
the over-dispersion parameters {τi,j} (the “divisors”, in the language of the paper) we
do have normality, and therefore conditional independence. However, since divisors are
different for different observations and, potentially, different dimensions, the interpreta-
tion of the model is very awkward. Note that a similar problem arises in the context of
countable mixtures (see, for example, Rodriguez et al. 2011). However, in that case ob-
servations within each cluster follow the same Gaussian distribution, so interpretations
that condition on the group structure are straightforward. I believe that it would be
useful if the authors can comment on the interpretation of the underlying graph (partic-
ularly in the context of their application), and the differences between using their models
for testing hypotheses about structural relationships in the data and for prediction (in
which case the issues I just raised are moot).

A number of natural extensions of the models presented here come to mind. Probably
the most obvious arises by treating the number of degrees of freedom ν as unknown. This
is computationally straightforward and would allow the data to automatically inform the
model about the weight of the tails. Moreover, we could allow the behavior of the tails
of each marginal distribution to be different by considering a different value νj for the
distribution of each sequence τ1,j , . . . , τn,j (in the case of the alternative t distribution
considered in Section 3.3) or mixing on both ν and τ (in the case of the Dirichlet-tmodels
discussed in Section 4). In a different direction, we could further borrow strength across
observations by modeling P0 non-parametrically by letting P0 ∼ DP (β,Γ(ν/2, ν/2))
instead of letting P0 = Γ(ν/2, ν/2) (leading to a hierarchical Dirichlet process prior
on {τi,j}, Teh et al. 2006). I am somewhat surprised that the authors did not consider
using a different (unknown) number of degrees of freedom for each marginal distribution,
which I believe could have an impact on the results at least as big as the introduction
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of a nonparametric prior on the over-dispension coefficients.

One final point that the authors could expand upon refers to the scalability of the
computational algorithms discussed in the paper. Although the authors consider higher
dimensional examples as part of their simulation study, the real data is relatively low
dimensional (p = 8) for today’s standard. What are the execution times (per posterior
equivalent sample size) of their algorithms, and how do they scale as the number of
variables and sparsity of the graph increase?
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Comment by Pablo E. Verde1

My congratulations to the authors for this interesting paper. I found the extension of the
classical t-distribution by using a scale mixture of normal distributions per coordinate
quite useful in practice and the Dirichlet t-distribution an elegant approach. I would
like to make the following practical comments:

Statistical inference of the parameter α in the Dirichlet t-distribution looks chal-
lenging. The authors Michael Finegold and Mathias Drton applied two strategies: one
by fixing α to different values and another one by applying a Gamma prior distribution
with parameters equal to 1, which gives a prior E(α) = 1. In applications, I would rec-
ommend to make a prior to posterior analysis of this parameter in order to understand
if we could learn something about α from the data at hand. The same strategy should
be applied to the degrees of freedom parameter ν.

In my work in multi-parameters meta-analysis (Verde 2010; Verde and Sykosch 2011)
I found that the single component scale mixture is useful enough for outliers’ identifi-
cation and for down-weighting pieces of evidence with unusual results. However, the
introduction of the Dirichlet t-distribution opens an interesting possibility in the detec-
tion of conflict of evidence in meta-analysis and in the detection of structural outliers
in Bayesian hierarchical modeling.

The conflict assessment is the deconstructionist side of meta-analysis, where each
piece of evidence is put aside from the full model and compared to the rest of the
evidence. One possibility for this type of analysis is to embed a meta-analysis model in
a more general model where the non-conflict situation is a particular case. For example
in Verde et al. (2014), we applied a scale mixture of multivariate normal distributions
in a meta-analysis combining randomized and non-randomized evidence and we made
conflict diagnostics by direct interpretation of the scale weights. Another alternative
is presented by Presanis et al. (2013), where the authors described how to generalize
the conflict p-value proposed by Marshall and Spiegelhalter (2007) to complex evidence
modeling. In summary, by using a Dirichlet t-distribution conflict of evidence can be
generalized and performed for each parameter in a multi-parameter meta-analysis.
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