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Abstract

We analyze mathematically a system of impulsive nonlinear parabolic equations that
model a shallow lagoon subject to anoxic crises and two types of impulsive harvesting.
The main focus is on the existence and properties of periodic solutions. In particular
we give conditions that ensure the existence of such solutions and examine the effect of
harvesting on the occurrence of anoxic crises. Our approach is based on estimates on
the principal eigenvalue of associated linear problems, and on results from Nonlinear
Functional Analysis. In particular we obtain explicit criteria that involve the integrals
of coefficients rather than maxima and minima. This is significant due to the large
seasonal variations in the coefficient values.
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1 Introduction

It is the purpose of this paper to mathematically analyze the effects of biomass harvesting
on an ecological model describing shallow lagoons ecological interactions. To be specific we
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consider a model based on ones proposed in papers by Ciaffi, Di Eugenio and Gallerano [1]
and Ciaffi and Gallerano [2] — where more details (in particular values of coefficients) can
be found — to describe the ecology in shallow lagoon of central Italy. These lagoons suffer
from anoxic crises: under suitable conditions water layers with zero oxygen concentrations
as well as high levels of hydrogen sulphide are present in the lagoon. Based on these models
we consider a nonlinear coupled parabolic system involving four unknowns: S; representing
phytoplankton or floating microphytes concentrations; Sy representing rooted plants (Ruppia
sp.) concentrations, O and H representing oxygen and hydrogen sulphide concentrations
respectively. Since we must allow the possibility that oxygen may vanish in some layers,
its equation is really an obstacle problem (with zero as the obstacle). Unlike the above
references, we assume that nutrient levels are always very high and that all forms of carbon
are proportional to the biomass densities S7, So. These simplifications are given primarily for
convenience of presentation, since the approach presented works in more general cases with
obvious changes. It is well known that the interplay between water and bottom sediments
is very important in determining the ecological behavior. We account for this by defining
H(z,t) and O(z,t) for x in a domain 2 that include both water and sediments, while the
biomass is also defined for x in the whole 2 not just the water, due to the assumption that
carbon concentration is proportional to that of the biomass.

We introduce on this model two harvesting processes formally described below and
roughly described as follows: in the first instance the biomass components, i.e. [, Si(z,t)dz,
for + = 1,2, are measured at a given time t, each year. If they exceed a threshold value a;
then biomass is removed until it is reduced to a; at a specified later time t;. In the second
approach, harvesting is started at a given time ¢y (regardless of the biomass levels) and
reduced to a specified fraction a;(z) at time ¢;. As we show below, it suffices to treat the
cases where the two times are t; and t], i.e. with the harvesting viewed as an impulsive
phenomenon, since the other cases can be reduced to this one.

We establish in particular conditions for the existence of positive periodic solutions for
the two harvesting processes, and show that if the harvesting effort is increased then in
one harvesting procedure we still have positive periodic biomass (albeit small), but this
is impossible for the other harvesting procedure. Furthermore we show that if there is
“sufficient” harvesting in one procedure, then O is always positive so that no anoxic layers
forms. We also gives sufficient conditions on the coefficients for crises to occur regularly.

Our analysis is based primarily on a suitable reduction of impulsive periodic problems
to related non-impulsive problems, and a detailed examination of the principal periodic
eigenvalue. It is important for us to obtain estimates on the eigenvalues which depend on
coeflicient averages rather than pointwise estimates. For this we draw on results from [9].
Our existence process is topological and this approach is most important in the situation
of the first harvesting process which leads to non-local terms in the equations. It is in part
based on a perturbation that guarantees that solutions stay above any bifurcation.

Our paper outline is as follows. In Section 2 we introduce the model and basic assump-
tions. In Section 3 we consider a linear impulsive periodic problem and show how this can



be reduced to a non-impulsive case. This reduction may introduce jumps in the coefficients.
We thus find it convenient to work with C*®/? spaces. In Section 4 we obtain conditions
based on suitable eigenvalues estimates for the existence of positive periodic solutions via
topological methods. In Section 5 we examine the consequences of the two harvesting proce-
dures. In Section 6 we obtain some explicit sufficient conditions on the coefficients to ensure
that the eigenvalue estimates of Section 4 hold. Finally Section 7 gives conditions for crises
to occur.

In conclusion we observe that there is a vast literature on these topics. For the readers
interested in lagoon ecological model development and simulations, besides the above ref-
erences [1], [2] we also mention the book [3] and papers [4], [5], [6], [7], [8], [9], [16], [17],
where many other references may be found. But as far as the mathematical analysis of these
ecological models is concerned we are only aware of the two papers [4], [9]. The mathemat-
ical analysis of periodic eigenvalue problems and/or impulsive problems is also vast. For
the non-impulsive eigenvalue problem we recall the classic book by Hess, [10], where the
subject is developed. For impulsive problems applied to biological questions there is also a
long history ([13]) and a recent reference is [12]. There are also numerous papers on general
impulse questions: [11], [14], [15]. Harvesting processes have also been considered, see e.g.:
[18], [19]. Finally in [20] a non-local problem with application to biology is discussed.

The interested reader will find many other references in the cited papers. While the above
references have some relation to what we discuss, with the closest earlier work probably being
[9], we were not able to find the problem we present here discussed mathematically elsewhere.

2 The model

The earlier considerations lead to the following ecological model:

(1) 4(S) = % —V[Ds, VS, + 65151]

— [Ng,1(x,t) — Ng,2(z,t,0, H)S; — Ng, 5(x,1)55]S; 2 F1(S1, 55,0, H)S,
(2) £y(Sy) = % —V[Ds, VS, + bSQSQ]

— [Ng,1(z,t) — Ng,5(z,t)S; — Ng,5(z,t,0, H)S5]Ss & Fy(Sy, 85,0, H)S,
(3) (u(H) & aa_i[ — V[DyVH + bHH]

= —Nyi(z,t)OH + NHg(x,t, O)(Sy + S) 2 Fy(S1,S,,0,H)
(4) (o(0) = %—(t) — V[DoVO + bo O]

= [Noa(x,1)S1 + Noa(x,1)Ss] — [Nos(x,t)S) + Noal(z,)Sa]x(O)

—Nos(z,t)OH

(1>

FO(Slv SQa OvH)



In these equations all coefficient functions are assumed positive (except for the drift coef-
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ficients bg,, bs,, by, bo), smooth except for the characteristic function y — albeit very
different in the water as compared to the sediments — and bounded in their respective ar-
guments. The functions Ng, 2, Ng, 3 are taken to be monotone non-increasing (respectively:
non-decreasing) with respect to O (resp.: H), while Ny is assumed to be non-increasing
in O. Note that this is not a standard competitive system. We recall that (1), (2), (3),
(4) hold in €2 (water and sediments). With equations (1)-(2) we associate natural (no flux)
homogeneous boundary conditions, i.e.

oS, —

Dy, + bg, - ﬁSi =0 for i = 1,2 on 012,
on
while for (3) and (4) we assume on 0§
00 — -
(5) Do— + bo -n0 + CllO = a2
on
oH — ~

with a1, as, by non-negative non-trivial smooth functions.

We comment briefly on the significance of the coefficient functions, and direct the inter-
ested reader to our references [1], [2] where a much more detailed explanation is given. The
left hand side of equations (1)—(4) involve the usual diffusion (turbulent and molecular) and
drift (water currents) processes. The right hand side of equations (1)—(2) are of the classical
Lotka-Volterra competitive type. They take into account the effect of the exogenous inputs
(light, wind, temperature, nutrients), as well as the effects of oxygen and hydrogen sulphide.
The right hand side of (3) has terms representing aerobic re-oxidation and anaerobic produc-
tion. The right hand side of (4) accounts for the effects of photosynthesis, of consumption
due to respiration and to re-oxidation. Finally the right hand side of (5) describes the
interchange with the oxygen in the atmosphere.

Observe that equation (4) is viewed as a classical obstacle problem (with zero as the
obstacle) thus ensuring that the oxygen levels remain non-negative at all times. This is
achieved by replacing the characteristic function

_J1 £>0
X(&)—{O £<0

on the right side of (4) by a family of functions x, (&) with x,(§) smooth, monotone and:

1 2
Xn(&) = 0if € < —; xn(§) = 1if £ > —. Henceforth we assume that this has been done,
n n

and obtain below the final result for the original system (1)—(4) by passing to the limit as
n — oo and employing the Banach-Sachs Theorem. Finally, we consider a situation where
in an attempt to control the onset of possible crises, some of the biomass is harvested yearly
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— over a very short period — at given times t,, chosen for simplicity to occur at the same
time each year. This process is assumed to occur based upon measurements of the biomass
components at an earlier time ¢ of the year. Specifically we assume for ¢ = 1,2 that

(7) Si(x, th) = g, (/Q Si(x,th)d:U> Si(x, t57)

with

)1 §<a
9:(§) = {ai/ﬁ £>a,

where a; > 0 represent chosen threshold values. We observe that employing ¢, ¢*~ allows
the possibility that t = ¢,, i.e. that the harvest is an impulsive effect. System (1)-(4) is
now to hold for all t # ¢,, while at ¢ = t,, condition (7) is applied. Observe that condition
(7) implies that the biomass of S; at ¢ does not exceed a;: it is reduced to this value if the
biomass at t; exceed a;, otherwise no harvest take place.

Clearly related to (7) is the harvesting process:
(8) Si(z,ty) = ai(2)Si(, ")

with 0 < o; < 1. In this situation, the harvesting occurs regardless of the biomass quantity
at ti. For process (8) we show that for any given N, ;, if a; is chosen small enough, then
we have S; — 0 as t — oo.

There are two possible problems: the periodic situation and the initial value problem.
We focus here on the former case. The situation in the latter case can be considered in the
same way with obvious changes to the approach we explicitly present. We thus consider
equations (1)—(4) with the given boundary conditions, harvesting process (7) or (8) and seek
a periodic solution for the interval 0 < t < T. All coefficients/data are assumed periodic
in time with this period. The harvesting process described by (7) or (8) is assumed to take
place at a time t; with observation at time t, with 0 < t5 < t; < T and then periodically
repeated with period 7. We seek conditions for the existence of a periodic solution, with
S1, Sa, H, O non-negative non-trivial. As may be expected, the investigations involve the
properties of a distinguished eigenvalue of impulsive periodic-parabolic problems, which we
first consider for convenience in a prototype situation.

3 Problem reduction and parabolic eigenvalues

Let Qr = Q x (0,7) and t; € (0,7). Consider the impulsive parabolic operator formally
given by:

(9) l(w) = w, — V]aVw + Ew] + cw



in Qr, for t # t1, with coefficients in C*°, except we allow ¢ to have simple jump discon-
tinuities at specified times, and a > 0 > 0 for some constant 6. With ¢ are associated:
natural boundary conditions on 0€2; periodicity conditions: w(z,0) = w(z,T); the impulsive
condition w(x,t) = Bw(z,t;) with 8 > 0 constant. We indicate at the end of the section
the changes needed to treat the cases where § = f(x) and/or t] is replaced by ty with
0 <ty <ty

We first reduce the problem to a “standard” case by incorporating the impulsive condition
in the expression for ¢ as follows: define A(t) by

(10) Alt) =14 Hp(t —t)[p7" — 1]

where H(§) denotes the Heaviside unit step function, and let h(t) be a positive smooth
function such that A(0)h(0) = A(T)h(T) = 1. For example we may choose h to be a
mollified A~!. Observe that A'(t) = 0 if ¢t # ¢;. Suppose now f € LP(Qr) for p suitably
large. Then results in [21] show that if w solves the non-impulsive periodic problem

h/
(11) l(w) — W= fhA
with ' = 9% we must have w € C**/2(Qy) for some a > 0. Now setting u = w/(hA) gives
directly that u is periodic and satisfies ¢(u) = f if t # t1, while at ¢t = ¢; we have:

wwt))  w)s
= R ~ a0

Thus the impulsive condition is satisfied. We may consider henceforth the impulsive problems
associated with (9) in terms of the non-impulsive problem (11).

We can thus state the following result which extends the one given in [9] (which is based
in part on classical results of [22]) to the present impulsive case. Set CT**(Qr) = {u :
Au € C*°/2(Q;)}. We emphasize that o denotes a generic constant, 0 < a < 1, which may

change within the same proof or from proof to proof.

Theorem 1 The following statements hold:

(a) The impulsive periodic parabolic eigenvalue problem €(w) = pw has a unique principal
real eigenvalue p with corresponding positive eigenvector w € C’j’a/Q(@T).

(b) p is continuous with respect to ¢ (in the LP norm for p sufficiently large) and . It is
monotone with respect to c.

(¢c) The impulsive periodic problem u = f € éj’a/Q(@T) has a non-negative solution
u € C’f{’a/z(@T) for any f >0 iff u > 0.



07 Inp
(4) < %lfm/ﬂ[@'w (b-5e)o+ (7 [G1] ~ 7)o
where T é% rdt. Let 6(t) satisfy fort € [0,T]

{/ a(z,t)Vo + b(m t)¢) - Vo + c(z, t)¢*|dx : ¢ € H'(Q), [|¢]l i = 1}.

1
Then,u>—/ dt—n—ﬁ

(e) Let u>0, u e éjfé{f [Q x (0,4+00)], solve the impulsive initial value inequality fu < 0
with u(x,0) = ug(x) and homogeneous natural boundary conditions. We assume that
the coefficients and the impulsive times are periodic. If > 0 then u(-,t) — 0 in
L>(Q) ast — oo.

Proof. Observe that y is the principal eigenvalue to the non-impulsive problem:

/
0(z) — %z =z
iff 1 is the principal eigenvalue of the impulsive problem ((w) = pw with w = z/hA.
Proofs of parts (a), (b), (c), (d) follow immediately from the non-impulsive results given in
[9] which also hold in the case of ¢ with jumps. In particular, for part (d), observe that
fOT h'/h dt = 1In B, while the lower estimate for p comes from choosing ¢ = z.
Finally, for part (e), observe that w = hAu solves the non-impulsive inequality

!/

E(w)—%ng

with h and A continued by periodicity. The non-impulsive periodic problem also has eigen-
value 1 > 0 and so does its adjoint £*, i.e.
h/

" (z) — 5E = e

with z periodic and p > 0. We thus obtain, for any chosen t = t; > 0,

to+nT to+nT to+nT to+nT
/ /zw—/ /[E* ——z}w——/zw / / { ——w}
to+nT
(12) /zw +,u/ /zw§ /zw
Q to+nT to Q Q
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Since z is positive, bounded above and below, by periodicity we conclude for any € > 0, by
the choice to = 0 and n large, that there exists ¢ with fgw’ < €. Whence, by choosing
to =t in (12) we obtain that [ Jqw < Ke. We now apply the results of [23] to conclude
|w(-,t)|| L) — 0 as t — oco. The result follows. |

We conclude this section with the following observations.

Remark 1 If § = (), then the same approach can be used, but now terms involving
V.3, VA arise in the equivalent non-impulsive problem. Specifically the impulsive equation
¢(u) = f is reduced to the non-impulsive problem
n - w
(13) w; = F-w = hAV [av(hA> bm] — hAf
with A = A(z,t) still given by (10) but with now
h
g = B(z), h(z,0)A(z,0) = h(z, T)A(z,T) =1 and = %

A variant of Theorem 1 is immediately applicable to (13), but the expressions (particularly
of the analogue of the estimate in Part (d)) are more complicated.

Remark 2 Suppose that t] is replaced by ¢y (with ¢t < t;) in the impulsive condition:
u(tf) = Bu(ty). This corresponds to the harvesting process occurring for ¢ € (t,t;) and
reducing the biomass by a factor of 5. This problem can be treated in the same way by a
time shift for ¢ > ¢ in the coefficients as follows: consider the periodic impulsive problem

(14) vt—V[EVU%—%v}—k/c\v:f
v(t3) = Bu(ty)

iz, 1) a(x,t) 0<t<ty
a J," =
a(x,t+ At) to<t<T—At

with:

At = t; — ty, T replaced by T — At. An identical shift for ¢ > ¢ is done to obtain /b\, c, f
We treat problem (14) by the above methods, and find the solution v. We then obtain u by:
v(x,t) 0<t<t,
u(z,t) =< z(x,t) ty<t<t
v(x, t+At) t1<t<T
where z(z,t) solves the initial value problem ¢z = f, z(z,t2) = v(x,t2). Observe that the

values of the coefficients a, b, ¢ in the interval (¢;,%s) are not significant in determining
the properties of the principal periodic parabolic eigenvalue. However the “period” has been
reduced to T'— At from T in the estimates. If T'— At is sufficiently small, then the “impulsive”

term Tnﬂ in Theorem 1 becomes dominant for § # 1.
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4 The existence of a positive periodic impulsive solu-
tion

We seek conditions for a periodic solution to system (1)-(4) under one of the harvesting
processes (7), (8) where — for simplicity of presentation — we choose: a(x) equal to a
constant in (8), t* = t; in (7) and x(O) replaced by a smooth function x,(0) in (4). The
more general situation can be considered by the procedures outlined above.

We incorporate the harvesting effects on S;, Sy into system (1)—(4) by the process of
Section 3. Specifically, we replace (1)—(4) by

(15) £1<s;)—%5; _ F(ﬁi,%,@,ﬂ) st
(16) eg(s;)—z—is; _ F2<h?i,%,o,ﬂ> st
(17) (a(H) = Fy (hil,hfiz,o,@

(18) (0(0) = F, (%,%,O,H) |

As discussed above, a solution of the impulsive system (1)—(4) can be obtained from a solution
of the non-impulsive system (15)—(18) by setting S; = S;/(hi1 A1), So = S5/(hyAs). Note
that for the harvesting process (7) we have 3; = g;[ [, Si(s,t7)] and thus

A(t) = 1+ Hy(t— 1) [(g UQ Si(x,tf)])_l _ 1] |

Observe that A;(t;) = 1, and now for convenience we choose h;(t) such that h;(t;) = 1 also.

Thus o

It is also convenient to note that for both (7) and (8) we have h'/h < 0 by construction.

We consider first harvesting process (8) (with a;(x) = «; constant). For this it is conve-
nient to consider first the following sub-problems. Let §f >0, §§ > 0 denote the solutions
of the decoupled equations for ST, S; for the “best” ecological case for ST, S5:

ty

/\* h/ A* . S\* A*
(19) 0,(ST) — h—iSl = |Ng1— sglzfo {Nsl,z(“fatfﬁ)}hlflh S

o= h/2 Ox - 1 S\; - S
(20) 0(55) =325 = | Nswa = dnf {Nsa(o,t,6,7)} =01 55



We allow the possibility that (one of) :5’\1*, §§‘ = 0. Consider then the decoupled principal
eigenvalue problem:

hll NSl 3 O

(21) El(wl) - h—l’wl - Nsl’l - mSz w; = Muiwp
h Ng, 9 ~

(22) lo(ws) — h_§w2 - |:N5‘2,1 - ﬁsﬂ Wz = H2W3 .

we then have:

Theorem 2 Let harvesting process (8) hold and assume the eigenvalues i1, pio of (21), (22)
respectively are negative. Suppose the elliptic parts of {g,lo are coercive. Then system
(15)—(18) has a solution (S}, S5, H,O) with St,S3, H,O positive in Q and S7,S5, H,O €
Co2(Q x [0, 7).

[N

Proof. Rewrite system (15)—(l8lin the form L[G] = ]?(8’) with: £ — diag(y + k, ly +
kU3, 00); G = (7,85, H,0); F(G) = (% +k + F1)(S)*, (%2 + k + F3)(S3)*, Fu, Fo)
for some chosen large k. Let 0 < € < 1 be chosen and consider the approximate problem
LIG] = F(G)+€(1,1,0,0)" 2 Z(G). We write G € C*/2if §*, S5 H,0 € Co/2(Qx [0,T)).
If now 0 < A <1 is also chosen, then we have that the problem Z[E‘] = )\2(5) (with A also
multiplying the non-homogenous part of the boundary conditions) cannot have solution 5’
on HaHCa,a/z = R for some a and some R independent of e. This is immediate f(f ST, ;Sg;by

the positivity of Ng, 3, Ng, 2. These then bound H, O. Furthermore the map (£)™[Z(G)]
is continuous and completely continuous from C*%/2 to itself by classic results in [21], [23].
We then have the existence of a positive C®“®/2 solution to the perturbed system. We now
let ¢ — 0 and observe that the resulting sequence of S} is bounded in C%%/2 and cannot go
to zero. Indeed, if S§ — 0 as € — 0, then S} /4 0 due to (21) and, in the limit, S5 must
be no greater than §§ of (20) by simple subtraction. But this contradicts the assumption
that the principal eigenvalue p; of (21) is negative by Theorem 1(c). By exactly the same
argument, Si 4 0 in C®*/2, whence also H,O 4 0 in C®*/2, We conclude the existence of
a positive solution. [ ]

We now pass to a consideration of harvesting process (7). In this case h; depends on
fQ St — and we note that now A; = h; = 1 at t] by choice of h;. Furthermore equations
1

(19)—(20) will still have a positive solution S, S if the least eigenvalues &; of £;(w;) —
Ng, 1w; = d;w; are negative as h; < 0 and h; = 0 if S} is small enough.

Conditions under which :S'\f, §§‘ are unique are now not clear due to the presence of the
nonlocal term [, S in h; for i =1,2.

10



Theorem 3 Let the harvesting process (7) hold and assume that the terms h'/h; have been
dropped from the left hand side of equations (21)—(22). If the principal eigenvalues pq, ps of
(21)—(22) are negative for any solutions §f, §§‘ of (19)—(20) and the elliptic parts of {y, Lo
are coercive, then the conclusion of Theorem 2 holds.

Proof. The procedure is similar to that of Theorem 2, except for the fact that h; depends
continuously on [, S} | .- Observe however that h; is still non-positive, whence the bound-
edness of S}, S5 for the perturbed problems follows by noting that hiA; = 1 except for ¢ in
some small interval. On the other hand, integration and periodicity imply

1&1&}(/(5{‘)2 < Kmin/(Sf)2
tJo tJa
for some constant K, whence

Nt (S7)° < K, / (S5

Qr Qrn{h1A1=1}

for some constant K;. It follows that S} is bounded in L? and thus in L* and finally in
Ca,a/Q‘

Finally observe that if ST — 0 then A} = 0 for ST small enough (specifically: ST < a;)
and S5 /4 0 by (21). In the limit, S5 must be no smaller than S (a solution of (20)). Once
again this contradicts (21) (with h}/hy = 0). The rest of the proof is identical. |

We cannot conclude from Theorems 2 and 3 that in the limit as x,, — x we maintain
O strictly positive in €2. Indeed O vanishing in parts of €2 is possible, as we consider in

NN

Section 7. Note that the conditions on the elliptic parts of £y, ¢ will hold if by, bp are
small due to conditions (5)—(6) by estimates similar to those of Theorem 1(d).

5 Consequence of harvesting and non-existence of pe-
riodic solutions

In Section 4, results were obtained that relate the existence of positive solutions to the
existence and properties of the solutions of the decoupled equations (19)—(22). Note in
particular that, if Ng, 1, Ng, 1 are sufficiently high (so that (21)-(22), with h}/h; set = 0,
have negative eigenvalues), then the harvesting problem (7) will allow the existence of positive
periodic solutions regardless of the size of the positive thresholds a;. This seems intuitively
reasonable, since harvesting does not take place if the biomass of S; does not exceed a;.
Observe however that with this process fQ Si‘ﬁ < a;. Since 0 < §; satisfies ¢;(S;) < Ng, 15;,
in view of the boundary conditions we conclude

[ s) < wsalee] [ 51
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ie. [, Si‘t < Ca; by periodicity, for some C' = C(||Ng,1
a value t* # t1, put S; = S7/(h;A;) in (19)—(20) and thus, since S; solves the periodic

< Ka;
t

|, 7). In the same way, chose

impulsive system corresponding to (19)-(20) with [, §z‘ < a;, we obtain [, S;
t1

for some constant K;. Observe that for ¢ near ¢*, :S’\l is a classical solution of the impulsive
problem, and we have ||S;(+,t*)||z~ < Kla; for some K. Then for t > t*, S; cannot exceed
the solution z; of the linear problem:

li(2) — Ns,1(2:) =0 Zil e = Kja; .

We conclude again by periodicity that S; = §j /(h;A;) < K!a; for some K" independent of a;.
Inserting this estimate in (21)—(22) and recalling that h./h; can be disregarded we obtain that
(21)-(22) have negative eigenvalues for a; small enough (by the non-triviality of Ng, 1, Ng, 1)
if the drifts are also small. Thus if the harvesting is intense enough while the drift terms
are small, then the (periodic) biomass is kept small and furthermore so is || H || ca.a/2(g,), 1-€.
the levels of hydrogen sulphide, while due to the non-homogeneous boundary conditions for
oxygen — accounting for the interchange with the atmosphere — we conclude from (4) that,
if a; are small enough, the oxygen levels are always positive (equivalently O is above the
obstacle) and no anoxic layer develops. This is further discussed in Section 7.

The situation is somewhat different with harvesting process (8). Indeed, if «; is small
enough, then for a given set of coefficients we have by Theorem 1(d) that u; > 0. This
coupled with ¢;(S;) — Ng,15; < 0 shows that S; — 0 by Theorem 1(c). That is: if the
harvesting level is high enough — as estimated by the positivity of the principal eigenvalue
— then no positive periodic solution are possible for the biomass.

6 Eigenvalue estimates

We focus on obtaining sufficient conditions for the existence of a positive periodic solution
for the harvesting process (8), i.e. the existence of a positive solution to (19) and of a
corresponding negative eigenvalue to (22), (the situation for the pair (20)—(21) is identical),
with A;, h; as given by (10) with 5 = «;. Observe that for the existence of a unique positive
3\{ it suffices that the least eigenvalue 9, of

!/

h
0 (wy) — |:N51,1 + h—I] wy = d1w
1

be negative. The choice ¢ =1 in Theorem 1(d) shows that for this it suffices that:

1
2l Jar

|bS1|2

dudt.
iDg, "

(23)

1
Nshldl'dt > —Inog + _/
9 Jo,
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Assuming that (23) holds then S exists and we require (again by the choice ¢ = 1 in
Theorem 1(d))

(24) ! [N NS%%?*} dedt > —Tnas + — LA
— - — x —Inay + — xdt.
9 Jo, I A 2719] Jo, 4Ds,
On the other hand, we have by periodicity
3 F(5;) i3
(25) NeaSi = [ - [ B
Qr v T hiAy Qr ha '
with F £ ginfo Ng, o(z,t,&,m). Equation (25) implies by the positivity of —h] that
777>
)2 hi A1 N2
(26) / F(S7) < / A NS 1
T h1 A Qr F
Consequently,
1/2 1/2
27) Ns2,2§* < (/ Nﬁ%z ) / (/ h1A1N§1,1> /
1S —_— .
or h1A: or MALF Or F

It follows that (24) holds if

1 Nz, \ V2 mANE N2 b, |?
28 Ngyt > —Inap+ — (/ 2 ) (/ —) +— | DSl g
%) Qr l ] or PiALF . F Q| Jo, 4Ds,

In summary, if the harvesting parameters «; in the process (8) and the equation coeffi-
cients satisfy conditions (23) and (28), then system (1)—(4) has a positive periodic impulsive
solution.

7 The occurrence of crises

We conclude by obtaining some simple explicit conditions on the coefficient integrals that
ensure that anoxic crises will occur regularly. This is equivalent to showing that system
(1)—-(4) — with x(O) replaced by unity — cannot have classical solutions with O strictly
positive. Equivalently, system (1)—(4) must have for any solution the oxygen levels actually
equal to zero in some subregions of Q7 = € x [0,T) of positive measure. The calculations
are in part similar to those of Section 6, and we present them for simplicity only in the case
of vanishing cross-terms: Ng, 3 = Ng,2 = 0 and no harvesting nor drift terms. The same
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approach can be used in the general case, but the calculations are longer and the result more
complicated. Put, for convenience:

N1,2 = Ssup NS1,2(‘rJt7§7T>7
§,7>0

N2,3 = Ssup NSQ,3(x7t7§7T)7
§,7>0

MI,Z = g??zfo NS1,2($77§7€’7_)7

N = inf N t )
iVo3 E}PZO 52,3(:177 7577_)

We then have

Theorem 4 Assume no harvesting, no drift and Ng, 3 = Ng,o = 0. If:
/ ! / !
3/4 3/4
Qr Qr
2 N2 + 2 N
Q] (/ ]151’1> / Nig Q| (/ ]XSZ’I) / Nas
Qr Nig2 Qr No,s Qr Nas Qr No
1/2 1/2 1/2 1/2
>/T/ (/ N%,1>/ (/ Nél,l)/ (/ N%,z)/ (/ N§2,1)/
> as + )4 o)
0 Joo » N or Nio or Nos or Nos

then system (1)—(4) cannot have classical solutions with O positive.

Proof. We note that S (resp.: Sy) must satisfy S; > S7 (resp.: Sy > S3) with S} (resp.:
S3) solution of (19) (resp.: (20)), with A, = 0 and inf replaced by sup. Observe that (19)
then implies by multiplication by (S7)¢, for suitable «, integration and periodicity:

N a(SH7V? < [ Nia(SHY2,
Qr Qr
Ng, 157 = NLQ(SOQ ;
Qr QT
Ng, 1 < N1,2§f :
Qr Qr

whence

Qr ’ Qr



i.e.:

5 N3 .
Nsl,lsrs/ N
T N1,2
We then obtain

N2
N3/ :/ V1L (Gey1/a gL/
Lo = [ SN

N 1/2 1/a
1,1 O 1/4
= ST Ns ,1) Q7|
</QT (ST)1/2> ( Qr ! '
1/2 1/4
/ N1 (/ —jig“l) / Q|
r (S7)Y/2 Qr Ni2 ’

IN

IN

that is:

2
</QT Sl,l) NS1 1 v Sk 1/2 N? 2
2 1/2 < T 1 2 < Nia(S7)7" < N :
N51,1 or (SHY Qr Qr Vo3
|QT| pr——
Qr N1,2

with No 3 the term occurring in equation (4). We conclude:

(%)
N S1,1
(29) No3Si > No3S7 > QZT — .
T —
QT N1,2 QT NO,?)
In exactly the same way, we obtain:
) 4
3/4
(%)
(30) NoaSs > ~ 5

T el B (]

We also have by integrating equation (19) and replacing Ns, » by N ,

N2 1/2 1/2
vost< ([ ) ([ west)
Qr Qr Ml,Q Qr
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Thus

VN VR
L))
QT TM1,2 TMLQ

and in the same way,

N(Q)Q 1/2 Ng ) 1/2
(32) NoaSs < ( | 2 ) ( | >
QT T MQ,?) T M2,3

Finally, integrating equation (4) gives in this case:
(33)

T T
/ / alO == / / a9 — NO75OH+/ [NOJSH + NO’282:| —/ [NO7351 + No’gsg] .
0 o0 0 o QT T T

Replacing the last two terms by the estimates (29)-(32) and noting that H > 0 cannot
vanish identically due to the positivity of S} + Ss, implies fOT Jo0 010+ fQT NosOH < 0. We
conclude that O must be negative somewhere, and thus all solutions of (1)—(4) must have O
equal to zero in some sub-domains of Q7. |

Observe that while the condition of Theorem 4 is complicated, heuristically it states that
respiration (No 1, No2) must be dominant. The effect of harvesting is, intuitively, to lower
Ng, 1, Ng, 1. If these coefficients are small enough then the condition of Theorem 4 is not

valid, due to the term fOT Jo0 @2 This is in keeping with the expectation that crises will
not take place if enough harvesting is done. Finally, the result of Theorem 4 and those of
Section 6 do not take particular advantage of the structure of the left hand side of system
(1)-(4). We expect that the onset of crises will also be aided by a drop in the oxygen
diffusivity in parts of the lagoon. Some results can possibly be obtained in such a case by
replacing the test functions chosen in the above arguments by functions whose support is
essentially in the part of the lagoon of interest.
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