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ARTICLE INFO ABSTRACT

Keywords: Graphene-based polymer nanocomposites (PNCs) are increasingly important in engineering applications
Elastomers involving large deformations. However, the nonlinear behavior of these materials has not been thoroughly
Graphene studied. Current models do not address the specific nonlinear effects of graphene nanofillers under large strains,
Experimental mechanics lack sufficient comparison with experimental data, and primarily focus on uniaxial behavior without exploring
Hype_rdasmlty . biaxial responses, which are relevant in technological applications. This study investigates PNCs composed
Nonlinear modeling

of silicone elastomer and graphene nanoplatelets (GNPs). We present experimental tests conducted in both
simple tension and biaxial inflation on circular membranes. A homogenized hyperelastic model is developed,
incorporating distinct contributions from the matrix and the nanofiller. Specifically, we introduce a novel strain
energy function for the nanofiller contribution, tailored to reproduce the observed experimental behavior. The
model accurately predicts the nonlinear elastic response of the studied PNCs across varying contents of GNPs.
The proposed strain energy function is implemented in MATLAB to obtain an exact numerical solution for the
inflation of circular PNC membranes. Finally, to demonstrate its broader applicability, the hyperelastic model
is applied to additional experimental data from other PNCs found in the literature. This model contributes to
establishing a robust framework for the effective use of PNCs.

1. Introduction GNPs, as well as their large specific surface area, even a relatively low

volume fraction can lead to substantial improvements in the properties

Polymers and other rubber-like materials are capable of withstand-
ing large elastic deformations. This is a key feature employed in
many engineering applications, such as biomedicine (Guimard et al.,
2007), soft robotics (Gorissen et al., 2019; Chen et al., 2019), elec-
tronics (Stewart and Sitaraman, 2021; Liu et al.,, 2021), and impact
engineering (Du Bois et al., 2006). However, the high stretchability
of polymers comes with relatively low stiffness and strength com-
pared to other technological materials. Additionally, most polymers
lack electrical conductivity, which is crucial in devices for flexible
electronics (Corzo et al., 2020). Therefore, in the early decades of the
20th century, polymers began to be reinforced by stiff fillers such as
silica and carbon black to increase stiffness, strength, and electrical
conductivity (Yamaguchi et al., 2003; Lorenz and Kliippel, 2012).

The introduction of nanoparticles, such as carbon nanotubes (CNTs)
and graphene nanoplatelets (GNPs), has opened the door to new fillers
with significant potential. The material obtained by mixing a polymer
matrix with nanoparticles is known as a polymer nanocomposite (PNC).
Due to the exceptional mechanical and electrical properties of CNTs and

* Corresponding author.

of the polymer matrix (Kim et al., 2010; Das et al., 2012; Gao, 2017;
Fu et al., 2019). Young et al. (2018) observed that reinforcing the
thermoplastic elastomer Alcryn 2265 with 10% by volume of GNPs
increased the Young’s modulus of the matrix by approximately six
times. Mondal and Khastgir (2017) reported a 46% increase in the
elastic stiffness of NBR polymer with only 1 part per hundred rubber
(phr) of GNP content, and a 247% increase with 15 phr. Qian et al.
(2000) found that adding just 1% in weight of CNTs to polystyrene
composites resulted in a 25% increase in tensile strength and a 40%
increase in elastic stiffness. Electrical and thermal properties are also
significantly enhanced. For instance, Winey et al. (2007) reported
that the electrical conductivity of polystyrene reinforced with 10%
by weight of single-wall CNTs increases from 107> to 1 S/cm. Wang
et al. (2015) observed a 115% improvement in the thermal conductivity
of a GNP/epoxy nanocomposite with a content of 5% in weight of
nanofiller. In light of these and other exceptional properties, PNCs offer
important advantages in various promising applications, including the
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development of ultra-stretchable sensors (Qin et al., 2015), coatings
for gas barriers (Cui et al., 2016), self-healing materials (Thakur and
Kessler, 2015), energy storage (Wang and Zhu, 2011), and membrane
technologies (Miculescu et al., 2016; Bassyouni et al., 2019).

Since numerous applications of polymers rely on their ability to un-
dergo large deformations while maintaining an elastic response (Loew
et al., 2019; Xu et al., 2019), the literature has extensively focused on
modeling their behavior under finite deformations. The most common
approach involves developing phenomenological hyperelastic models
in nonlinear elasticity, which are particularly effective because they
provide relatively straightforward material models. One of the earli-
est invariant-based hyperelastic models for isotropic materials is the
generalized Rivlin model (Rivlin and Saunders, 1951). Following this
foundational work, numerous models have been developed, including
the Yeoh and Yeoh-Fleming models (Yeoh, 1990; Yeoh and Fleming,
1997), the Gent and Gent-Gent models (Gent, 1996; Pucci and Sac-
comandi, 2002), the Carroll model (Carroll, 2011), and the Ogden
model (Ogden, 1972). These models have been successfully applied to
predict the mechanical response of elastomers and polymers filled with
carbon black or silica particles. However, when it comes to PNCs, there
remains a significant gap in hyperelastic models that can accurately
describe their behavior under finite deformations. Specific challenges
in modeling PNCs still need to be addressed to develop models that
align with experimental data and ensure reliable application.

Incorporating stiff nanofillers such as CNTs and GNPs into polymers
typically enhances the initial stiffness of the polymer matrices (Wang
et al., 2024; Caliskan and Gulsen, 2023). However, the behavior of
PNCs under large deformations remains a complex and unresolved is-
sue. Experimental evidence suggests that initial stiffness enhancements
tend to diminish at larger strains due to the debonding of nanofillers
from the matrix. Specifically, Frogley et al. (2003) observed that the
stiffness enhancement in silicone-based elastomers with single-wall
CNTs is lost after 10%-20% strain. Dufresne et al. (2002), Koerner
et al. (2005), and Xing et al. (2014) noted a reduction in failure
strains and a loss of stiffness enhancement at larger strains. Potts
et al. (2013) dispersed thermally exfoliated graphene oxide into natural
rubber and discovered that the strain stiffening of the polymer matrix
transitions into pseudo-plastic behavior under large stretches. However,
some observations contrast with the above findings. Yang et al. (2018)
reported an increase in failure strain for low contents of graphene in
silicone rubber nanocomposites, which then decreased only for higher
contents around 4%-5% by weight. Additionally, they observed im-
proved strain stiffening at large deformations, contrasting with previous
studies. Costa et al. (2018) noted a significant increase in failure strain
by incorporating 10% by weight of CNTs in an SBS rubber matrix, con-
trary to other experimental findings. Sadeghpour et al. (2020) did not
observe a decrease in failure strain with increasing graphene content in
polyvinyl alcohol-graphene oxide nanocomposites. Varol et al. (2017)
found that in PNCs, the strain stiffening in large deformations depends
on the volume fraction but not on the size of nanofillers. In contrast,
the increase in initial stiffness depends on both the volume fraction and
the size of nanofillers.

These varying results highlight the complexity of the behavior
of PNCs under finite deformations. The primary factor responsible
for this complexity is the interface interactions between the matrix
and nanofiller, which significantly influence the mechanical behav-
ior of PNCs (Senses and Akcora, 2013; Shen et al.,, 2014; Molinari
et al.,, 2018). These interactions depend on several factors, includ-
ing production methods, the type of nanofiller, and curing and post-
processing conditions (Jouault et al., 2014; Idumah and Obele, 2021;
Choi et al., 2021; Zare, 2016a). Given the numerous factors affecting
these interactions and the contradictory nature of empirical observa-
tions, there is a clear need to develop modeling approaches that align
with experimental data.

International Journal of Solids and Structures 308 (2025) 113144

Hyperelastic homogenized models that consider the type, content,
and effects of nanofillers on the polymer matrix are an effective ap-
proach for predicting the response of PNCs under large strains. How-
ever, there has been limited focus on this topic, with only a few
studies available. Among these, Cantournet et al. (2007) reinforced an
elastomer with multi-wall CNTs and proposed a hyperelastic model
based on the rule of mixtures to separate the contributions of the
matrix and nanofiller. The analyzed PNC reached failure at relatively
low strains in simple tension, specifically within the range of 0.8-
1.2. Therefore, nonlinear effects under large deformations, such as
reduced stiffness enhancement and strain stiffening caused by dimin-
ished interactions between CNTs and matrix, were not observed. This
allowed the use of a relatively simple constitutive model to describe
the contribution of the nanofillers. Shin et al. (2019) and Arash et al.
(2019) proposed multiscale homogenization modeling approaches for
hyperelastic PNCs by fitting to molecular dynamics simulations. Their
studies focused on epoxy nanocomposites and considered only small
deformations in simple tension, up to 6%-8%. Islam et al. (2023) de-
veloped a multiscale continuum model specific for polymers reinforced
with randomly oriented nanofibers. Other authors employed existing
hyperelastic models and fitted the parameters to experimental data on
PNCs, without distinguishing between the contributions of the matrix
and nanofillers (Barghamadi et al., 2021; He et al., 2022).

The above discussion highlights existing limitations in current hy-
perelastic models. Firstly, there appears to be a lack of models specifi-
cally addressing the effects of graphene nanofillers on the response of
polymers under large strains. Secondly, there is a deficiency in com-
parisons and alignments with experimental data. Lastly, the available
experiments mainly focus on uniaxial responses, while there is a lack
of experimental investigations exploring the biaxial behavior of PNC
membranes, which are increasingly significant in several technological
applications. Hence, in this work, we consider PNCs produced by
mixing GNPs and silicone elastomer and conduct uniaxial experiments
in simple tension and biaxial inflation of membranes. Based on these
experimental observations, we propose a homogenized hyperelastic
model for graphene-based PNCs under large deformations. The pro-
posed model is valid not only for the specific silicone matrix and GNPs
considered but also for other cases, as demonstrated by applying the
model to additional experimental data available from the literature.

The novel aspects of the present research are outlined as follows.
The primary advancement is the development of a new strain energy
function for graphene nanoparticles that specifically accounts for their
effects in the nonlinear strain regime. In particular, we employ an addi-
tive decomposition of the strain energy into separate contributions from
the matrix and the nanoparticles. For the nanoparticles, we propose a
new function based on the concept of softening hyperelasticity, which
captures the debonding of nanoparticles from the matrix occurring at
large strains. This debonding reduces the initial reinforcement effect of
the particles in the nanocomposite. Additionally, we introduce proce-
dures to calibrate the parameters of the proposed model by computing
residual stresses from experimental data. A final aspect is the imple-
mentation of an exact numerical solution for the problem of inflated
circular PNC membranes using MATLAB. After calibrating the model
parameters, we demonstrate that the model accurately reproduces the
experimentally observed biaxial behavior. This is significant because
the biaxial response of PNCs has not been thoroughly addressed in the
literature from both experimental and numerical perspectives. Through
these contributions, our work advances the field of mechanics of solids
by establishing a solid foundation for modeling the nonlinear elastic
behavior of graphene-based PNCs under large deformations.

The paper is organized as follows. In Section 2, we report the ex-
perimental tests on PNCs. Section 3 describes the proposed hyperelastic
model for graphene-based PNCs. Subsequently, in Sections 4 and 5,
we calibrate the model to the experimental data from uniaxial and
biaxial inflation tests, respectively. In Section 6, we fit the model to
experimental data on other PNCs from the literature to demonstrate its
broader applicability. Finally, conclusions are drawn in Section 7.
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Fig. 1. Scheme of the production of PNCs. (a) GNPs were introduced in the liquid silicone rubber, obtaining a solution that was mixed and then casted into plastic dog-bone-shaped
molds and circular molds. Figure (b) shows the silicone matrix and the GNPs. Figure (c) shows the analytical balance and the mechanical stirrer, used to weigh GNPs and agitate
the solution, respectively. The obtained dog-bone specimens and circular flat membranes are depicted in figure (d).

2. Experiments

In this section, we describe the production of PNC samples and
the subsequent experimental procedures. The conducted experiments
encompass simple tension tests and inflation tests on circular flat
membranes.

2.1. Samples preparation

For the rubber matrix of the nanocomposites, we employed liquid
silicone rubber obtained from RESIN PRO. Specifically, we used Pure
Mold liquid silicone rubber with a shore hardness of 13 and a density
of 1.1 g/cm?3. This product comprises components A and B, which were
mixed at a ratio of 1:1. The working time of this rubber compound is
approximately 40 min at 20°, and complete polymerization is achieved
after 24 h. As for the nanofiller reinforcement, we utilized GNPs pur-
chased from Nanografi Nano Technology. The GNPs have a declared
purity exceeding 99.9%, a density of 2.2 g/cm’, a size of 5 nm, a
diameter of 7 ym, and a specific surface area of 170 m?/g.

As depicted in Fig. 1(a), to produce PNCs we firstly introduced the
nanofiller in the liquid silicone rubber, then the obtained solution was
thoroughly mixed. Subsequently, the mixture was cast into dog-bone-
shaped molds and circular molds. Figs. 1(b) and (c) respectively show

the materials, silicone and GNPs, and the instruments used to weigh
the nanofiller and agitate the solution. We used an analytical balance
KERN ADB-200-4 with a readability of 0.1 mg to weigh the nanofiller,
and a mechanical stirrer AM 20-D ARGOlab to agitate the solution. We
measured the nanofiller to obtain solutions with the following GNP
contents: 0.2, 0.4, 0.8, 1.4, 2, 4, 6, and 10 phr, which correspond
to volume fractions of 0.1%, 0.2%, 0.398%, 0.695%, 0.99%, 1.961%,
2.913%, and 4.762% of the nanocomposite, respectively. The solution
was agitated for 15 min at a speed of 600 rpm. Following agitation,
the solution was cast into plastic molds to produce dog-bone specimens
and circular membranes (Fig. 1(d)). The dog-bone specimens had an
effective length of 60 mm, a height of 7 mm, and a thickness of 2.5 mm.
The circular membranes had a radius of 60 mm and a thickness of
2.5 mm. Investigation with microscopy revealed good dispersion and
random orientation of GNPs within the elastomeric matrix. The images
are presented and discussed in Appendix A.1.

2.2. Simple tension test

For each case of PNC with varying GNP content, three dog-bone
specimens were tested until failure. Additionally, tests were conducted
on the silicone matrix alone. The experiments were carried out using
the Instron 5567 testing machine, equipped with a 100 N load cell,
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Fig. 2. Experimental tests on PNCs. (a) Simple tension test setup, with a camera positioned in front of the specimen at an orthogonal view for subsequent DIC post-processing. (b)
Inflation test conducted on circular flat membranes. The steel tank includes a laser at the bottom to monitor membrane deflection. Air is inflated using an air compressor, with
pressure values monitored by a pressure transmitter. A camera positioned orthogonally to the initially flat membrane is used to determine the pole stretch via DIC analysis.
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Fig. 3. Results from DIC analysis using MATLAB software Ncorr for a specimen with a GNP content of 2 phr. Figures (a) and (b) show respectively longitudinal and lateral
Green-Lagrange strains, ¢, and ¢, at a specific step of the test with ¢, = 4.2. Figure (c) illustrates the deformed configuration, characterized by longitudinal stretching and lateral

contraction.

applying elongation at a displacement rate of 120 mm/min. The cor-
responding strain rate is 0.033 s~!, which is considered quasi-static.
Several studies, including those by Meunier et al. (2008), Tomita et al.
(2008), and Cheng and Chen (2003), have reported that silicone and
common elastomers typically exhibit negligible or minimal strain rate
sensitivity within strain rate ranges of approximately 0.005 to 0.1 s~1.
Additionally, we note that viscoelastic effects and damage mechanisms
may influence the response of elastomers. However, the strain rate
used in this study is sufficiently low to minimize such influences, as
supported by the literature on quasi-static testing of silicone-based
materials.

As depicted in Fig. 2(a), a Panasonic LUMIX DC-GH6 camera was
positioned in front of the specimen to record a video of the test from
an orthogonal view. Subsequently, the displacement and deformation
of the specimen during the test were post-processed using digital image
correlation (DIC) with the Ncorr package in MATLAB. Further details
regarding this can be found in Pelliciari et al. (2023). The Green—
Lagrange strains, ¢, and ¢,, in the region of interest (ROI) for a
specimen with a GNP content of 2 phr, are displayed in Fig. 3. The
variations in their values within the ROI are negligible, indicating
homogeneous deformation during simple tension, as expected. The
absence of regions with localized strain concentrations confirms the

homogeneity of the composites. The same trend was observed in the
other samples across the range of GNP contents analyzed.

From the values of the Green-Lagrange strains, the corresponding
stretch components were computed as 4, = +/1+2¢ and 4, =
/T+ 2¢,. The nominal stress o, was computed as F/A, where F is the
force applied by the testing machine and A is the cross-section area of
the specimen in its initial configuration. For each PNC with a specific
GNP content, the variation in results across three tests was minimal.
Therefore, we considered the average data of stretches and stresses
from the three tests. The obtained experimental curves are presented
in Figs. 4(a) and 4(b), depicting o, vs. 4, and Ay V8. Ay, respectively.

From Fig. 4(a), it is evident that adding GNPs to the silicone
matrix significantly increases the initial stiffness of the nanocompos-
ite. However, as commonly observed in other studies (Frogley et al.,
2003; Dufresne et al., 2002; Koerner et al., 2005), an increase in GNP
content leads to a decrease in the ultimate stretch. This phenomenon
is attributed to particle aggregation and debonding of nanofiller from
the matrix during deformation, introducing defects into the material.
The decrease in ultimate stretch is relatively limited up to a content
of around 2 phr, indicating that nanofiller reinforcement is highly
beneficial. However, when the content reaches 4 phr, the ultimate
stretch experiences a significant decrease. In fact, the microscopy im-
ages presented in Appendix A.1 reveal a gradual increase in particle
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represents the data of the silicone matrix alone, while the others depict PNCs with GNP loading reported in the legend in terms of phr (from 0.2 to 10). In figure (b), the dashed

black curve shows the behavior of incompressible materials, expressed by 4, = 1/4/4,.
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Fig. 5. (a) Experimental data in simple tension for elongation up to 15% (solid lines) and corresponding fitting curves used to estimate the Young’s modulus (dashed lines). E,,
and E, represent the Young’s modulus of the silicone matrix and PNC, respectively. (b) Semi-logarithmic plot of the ratio E,/E,, as a function of increasing GNP content.

aggregation with higher GNP content, which subsequently impacts the
mechanical performance.

Additionally, the silicone matrix alone exhibits substantial strain
stiffening as the stretch increases, particularly beyond a stretch of
2.5. The addition of GNPs reduces the strain stiffening response under
large deformations. This reduction is particularly noticeable at a GNP
content of 10 phr, where, after reaching a stretch of approximately 1.7,
the specimen shows a gradual decrease in stiffness until failure. This
behavior has also been reported in other works (see, for instance, Potts
et al. (2013)) and is explained by the debonding of the nanofiller from
the elastomer matrix under large strains.

The plot in Fig. 4(b) indicates that the introduction of GNPs only
minimally affects the response of silicone in terms of longitudinal
versus lateral stretches. As expected, the curve representing the silicone
matrix (black curve) remains nearly incompressible throughout the
test. With increasing GNP content, there is a slight deviation from the
incompressible curve (dashed black curve). This deviation is very small
and therefore it is reasonable to regard the PNCs as incompressible.

To quantify the increase in elastic stiffness resulting from the pres-
ence of GNPs, we analyzed the experimental curves in the small strain
region and estimated the values of the elastic modulus. Fig. 5(a) dis-
plays the data for elongation up to 15%. In this region, the stress—strain
behavior is considered linear, and the data are fitted with the relation
o, = E(A,—1), with E representing the estimated Young’s modulus. The
Young’s modulus of the silicone matrix obtained is E,, = 0.326 MPa. The
increasing values of the modulus E, of the PNCs with different GNP
contents are listed in Fig. 5. A visual representation of the increase in
stiffness is presented in Fig. 5(b) through a semi-logarithmic plot of the
ratio E,/E,, as a function of GNP content. With a content of 4 phr, the
stiffness more than doubles, and with a content of 10 phr, it increases
by almost six times.

2.3. Inflation test on circular membranes

For the inflation test, a handcrafted steel device was built (see
Fig. 2(b)). The device comprises a hollow cylinder closed at the bottom
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and equipped with a flanged cap at the top, which includes a hole
with a 40 mm radius for positioning the circular membrane specimen.
The upper flange has a surface knurling with a thickness of 0.1 mm to
ensure enhanced adhesion of the membrane compressed between two
steel plates.

The device, functioning as a pressure tank, features three openings.
At the upper opening, a pressure sensor is mounted to measure the
internal pressure of the tank. The pressure transmitter used is the NAH
8254 model from Trafag International, with a measurement range of
0-10 bar and a precision of 0.03 bar. The sensor signal undergoes
conversion to pressure values through a current loop operation. The
central opening, with a diameter of 5 mm, allows the flow of air
supplied by a compressor via a gun equipped with a manometer. The
flow is regulated by a screw-type regulator, ensuring quasi-static test
execution when nearly closed. Preliminary tests on silicone membranes
were conducted to adjust the air flow regulation, achieving a test
duration of approximately 70-80 s, which is comparable to that of
the simple tension tests (around 100 s). Lastly, the bottom opening
transmits the signal of a laser sensor optoNCDT ILD1420-500 from
Microepsilon, featuring a measurement range from 100 to 600 mm with
an accuracy of 0.01 mm. The laser is directed at the central point of the
membrane (pole), and its orthogonality is carefully checked to ensure
precise readings. During inflation, the laser signal provides data on the
displacement of the membrane pole, thus the membrane deflection.

The two signals from the laser and pressure sensors are acquired
by a data acquisition system based on PXI (PCI eXtensions for In-
strumentation) hardware and LabVIEW software produced by National
Instruments. This system comprises a PXI Chassis housing all necessary
hardware modules and providing mechanical, electrical, and communi-
cation interfaces. LabVIEW software is used to design the user interface,
implement data processing, and control the pressure-deflection curve
in real time. The same data acquisition system is employed to acquire
both signals, ensuring synchronization. The sampling rate is set at
10 kHz to capture any potential instability phenomena that might occur
during quasi-static inflation.

In addition to the setup described previously, as depicted in
Fig. 2(b), a camera was installed above the membrane, aligned orthog-
onally to the initially flat membrane. With this camera, we recorded a
video of the experiment and then performed DIC post-processing using
the Ncorr package in MATLAB. Since the membrane does not remain
flat during inflation, it is not feasible to reconstruct the entire three-
dimensional deformed geometry with a single camera. However, this is
not the purpose of the test or of this work. Our focus is solely on the
pole stretch of the membrane, to derive pressure vs. pole stretch data
in addition to the pressure vs. deflection data. The computation of pole
stretch with DIC analysis is detailed in Appendix A.2.

Two tests were conducted for both the silicone membrane and
each of the PNC membranes with varying GNP content. The data of
the two tests revealed minimal differences and therefore we consider
the average of the two tests. The resulting pressure vs. deflection
curves are depicted in Fig. 6(a). The curves are displayed in terms of
normalized pressure 5 = pR/H and normalized deflection § = §/R,
where H = 2.5 mm and R = 40 mm are membrane thickness and
radius, respectively. As the GNP content increases, we observe a trend
similar to that seen in simple tension. The stiffness of the response
significantly increases, particularly noticeable with contents exceeding
2 phr. Moreover, the ultimate deflection gradually decreases, consistent
with the reduction in ultimate stretch due to the increasing presence
of defects. The ultimate pressure value increases with GNP content,
showing a maximum increase of 36% in the case of 10 phr compared
to the silicone matrix.

A remark concerns the phenomenon of limit-point instability, com-
monly observed in elastomeric membranes. Towards the end of the
experiment, we note a significant and abrupt decrease in stiffness in the
curves, accompanied by a rapid increase in deflection while pressure
remains nearly constant. In the silicone membrane (black curve), we
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observed this instability during the test, but it only occurred when
the membrane was already close to failure. As soon as it occurred,
the membrane abruptly reached failure. With increasing GNP con-
tent, instability in the PNC membranes tended to disappear. This is
attributed to a stiffer response and a decrease in ultimate deflection.
Regardless of the GNP content, material failure consistently aligned
closely with the limit point instability. This phenomenon is significant
for membrane design in practical applications requiring stability and
controlled deformations, e.g. biomedical devices and soft robotics.

The pressure vs. pole stretch curves of the membranes are shown
in Fig. 6(b). They reflect a similar trend to the pressure vs. deflection
data, emphasizing the abrupt decrease in stiffness towards the end of
the experiment, suggesting that instability is imminent. Our main aim
in measuring pole stretch with DIC was to observe when the mem-
branes reached failure. Remarkably, we found a strong correspondence
between the ultimate stretches observed during inflation and those in
simple tension tests (Fig. 4). It is interesting to note that typically,
one might expect the ultimate stretch during inflation to be smaller
than in simple tension due to the biaxial stress state. However, the
results suggest that, in a biaxial stress state like inflation, the membrane
reaches failure when the stretch approaches approximately the same
value observed in simple tension tests.

3. Hyperelastic model for polymer nanocomposites

In this section, we present the phenomenological hyperelastic model
for PNCs. Elastomers are generally assumed to be isotropic. Since the
nanofiller is randomly oriented, we assume that the PNC maintains
the isotropic property of the matrix. Using a homogenized modeling
approach, we describe the constitutive behavior of the nanocomposite
through the definition of a strain energy (SE) function W. We intro-
duce the deformation gradient F and the left and right Cauchy—Green
deformation tensors, defined as B = FFT and C = FTF, respectively.
For isotropic materials, W is a function of the principal invariants of
B, defined as

L=tB=2+4+4, IL= % [(trB)? —tr (B?)] = 4243 + 4243 + 4343,

— — 123252
Iy =detB=A2222,

(€8]

where 4, 4,, and A5 are the principal stretches. For incompressible
materials, the deformation is isochoric, meaning I; = 1, and the SE
function becomes solely dependent on I, and I,, expressed as W =
W (1,, I,). This assumption is considered in this work, supported by the
experimental curves in simple tension from Fig. 4(b), which show that
the PNCs analyzed are nearly incompressible.

The nanofiller content in PNCs is low to modest, so it is assumed that
the nanoparticles deform following the deformation of the elastomer
matrix. Therefore, the strain energy of the polymer nanocomposite
can be viewed as an additive composition of two contributions: one
from the elastomer matrix and the other from the nanofiller. Thus, we
express the strain energy function using the rule of mixtures as

W == W, + W, 2

where W, and W, are the strain energy functions accounting for the
matrix and nanofiller contributions, respectively, and f is the volume
fraction of nanofiller. A similar approach has also been employed
for PNCs by other researchers, particularly in Refs. Cantournet et al.
(2007), Islam et al. (2023). The advantage of this method is that the
response of the elastomer is calibrated independently. Subsequently,
the contribution of the nanofiller is calibrated on a phenomenological
basis using experimental data from PNCs with various GNP contents.
Note that, as observed in the experiments presented in Section 2, the
detachment of nanoparticles from the matrix occurs in PNCs at large
strains, affecting the enhancement of material properties. This effect
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Fig. 6. Experimental curves from biaxial inflation tests on circular membranes. (a) Normalized pressure j vs. deflection § and (b) normalized pressure j vs. pole stretch A.
Normalization of pressure and deflection are done by defining j = pR/H and § = §/R, respectively. The black curve represents the data of the silicone matrix alone, while the

others depict PNCs with GNP content reported in the legend in terms of phr.

is incorporated into the nanofiller contribution W, to the total strain
energy, as will be explained in detail in Section 3.2.

We remark that, for general composite materials, reinforcing par-
ticles or fibers may exhibit preferred orientations. A widely adopted
approach in hyperelasticity, developed by Holzapfel et al. (2000) for
composites with fibers aligned in a particular direction, introduces
an additional invariant to account for anisotropy due to fiber ori-
entation. This model was later extended by Gasser et al. (2006) to
composites with fibers distributed across multiple orientations, using
a generalized structure tensor H. This approach expresses the SE func-
tion contribution of reinforcing fibers in terms of I,, which captures
fiber orientation dispersion. For randomly oriented fibers, the material
response becomes isotropic, and I, simplifies to I,/3, representing
an equivalent isotropic strain measure. Following this framework and
given that we are dealing with randomly oriented nanoplatelets, we
adopt 1, /3 as the strain measure for the nanofiller contribution in our
model. Accordingly, we express the SE functions of the matrix and
nanoparticles as W,, = W,,(I;, I,) and W, = W,(I)).

The Cauchy stress tensor T of the nanocomposite is given by

ow T
=2V g7 _ o, 3
9F p 3

where p denotes the arbitrary hydrostatic pressure associated with
the incompressibility constraint. We separate the contributions of the
elastomer matrix and nanofiller as

T

W, W,
T, = a—F”’FT -p,L T,= a—F"FT -p,L (C))

with p = (1 - f)p,, + fp,. Thus, the Cauchy stress of the nanocomposite
is obtained additively as T = (1 — f)T,, + fT,. Accordingly, the first
Piola—Kirchhoff stress tensor P = TF~7 is decomposed additively in the
two contributions of matrix and nanofiller as

P=(1-f)P,+ [P, ®)
where
P,=T,F 7, P,=T,F7. (6)

3.1. Strain energy of polymer matrix

The silicone matrix exhibits typical elastomeric behavior, charac-
terized by strain stiffening resulting from the alignment and stretching

of polymer chains. Numerous hyperelastic models in the literature
describe such behavior, with one common choice being the Yeoh-
Fleming model (Yeoh and Fleming, 1997). The SE function of this
model is expressed as
Wm=%(l—e_B(1‘_3))—CIO(Im—.’a)]n(l—%), 7)
where A, B, Cyy, and I,, are material constants. This function was
specifically developed by combining concepts proposed by Yeoh and
Gent to optimize behavior at both small and large strains. The ex-
ponential term, involving A and B, governs the behavior at small
strains and was derived by observing the trend of shear modulus from
experiments. The logarithmic term, involving C,, and I,,, governs the
response at large strains, with I,, representing the limiting value of
I, corresponding to the deformation when the polymer chain is fully
stretched.

In Pelliciari et al. (2023), the authors analyzed elastomers with
characteristics similar to the silicone considered in this work. They
compared different hyperelastic models and found that, for the materi-
als analyzed, the most effective in terms of the number of parameters
and quality of fitting was the Yeoh—Fleming model. Therefore, we chose
this model for the silicone matrix. Note that other hyperelastic models
could also be suitable. The additive decomposition of the SE function
of Eq. (2) allows for the selection of a different strain energy function
for the matrix if deemed a better choice.

The Cauchy stress tensor of the elastomer matrix is computed by
substituting Eq. (7) into Eq. (4), and the Piola—Kirchhoff stress tensor
from Eq. (6). For the uniaxial stress state, the nominal stress—stretch
relation of the elastomer matrix is given by

1 ow,, oW,
=2|1-— —n
xm ( Ai) <’1" aI, oI, )’ ®)

where 0W,,/0I, is computed from Eq. (7) and 0W,,/oI, = 0, as the
selected strain energy function depends only on the invariant I;.

3.2. Strain energy of nanofiller

The experimental tests in Section 2 revealed that adding GNPs
increases the initial stiffness of the PNCs but diminishes the strain-
stiffening response at large strains, primarily due to the gradual detach-
ment of nanoparticles from the matrix as strain increases. With higher
GNP content, the filler detachment and thus the reduction in strain
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stiffening becomes more pronounced. This implies that if we define
the residual stress as the difference between the stress of the PNC and
that of the elastomer matrix, the residual stress exhibits a softening
behavior. Therefore, the SE function of the nanofiller contribution must
capture two key behaviors: the increase in initial stiffness and the
softening effect due to detachment, which becomes more pronounced
with increasing GNP content.

A phenomenological approach to hyperelastic softening was pro-
posed by Volokh (2007, 2010), primarily aimed at modeling material
failure. The core idea is that the energy increment, as the deformation
process advances, should be limited to a critical value. This means that
as ||C|| - oo, the strain energy W, approaches a constant value ¢, often
referred to as material failure energy. Following this approach, Volokh
proposed an exponential form of softening hyperelasticity, which has
been successfully applied to simulate material failure.

In the present work, we extend the softening hyperelasticity to
a more general form that reproduces the contribution of nanofillers
observed from our experiments. As our focus is on a broader soften-
ing response induced by the incorporation of nanofillers, rather than
exclusively on material failure, we refer to ¢ as the limiting energy.
We propose a SE function for the contribution of nanofiller given by

s 1/P
m:l,/n[u(%)] . with Wn:%(l;'—sa), ©)
where N is a material parameter related to elastic stiffness, and a > 1
and f > 0 are dimensionless fitting parameters. Term y,(F) in Eq. (9)
represents the energy of the intact material without softening, while the
total energy of the nanofiller contribution, W, = W, (y,(F)), includes
softening. In fact, as ||F|| — oo, y, approaches infinity, while W,
converges to ¢. Conversely, if the limiting energy ¢ goes to infinity,
W, tends to y,,, indicating no softening. Note that in the expression for
y,, the parameter N is divided by 3* to account for the fact that the
actual strain measure is I, /3, as discussed earlier in this section.

The form of y, in Eq. (9) corresponds to the one-term model,
which is the I,-based hyperelastic model proposed by Lopez-Pamies
(2010) with M = 1. The model involves two fitting parameters, N
and a. We chose this SE function for the following reasons: (i) it offers
mathematical simplicity and effectiveness for a wide range of deforma-
tions; (ii) it involves only I, a scalar strain measure that captures the
variations in the length of line elements averaged over all orientations.
This is ideal for representing the contributions of randomly oriented
nanofillers in the elastomer, where deformation predominantly results
from the stretching of molecular chains; (iii) in Lopez-Pamies (2010)
the author demonstrated that the material parameters have physical
significance, which aids in guiding the fitting process.

Softening in W, is governed by the term in Eq. (9) that multiplies
y,, with parameters ¢ and . The advantage of this proposed softening
function lies in its versatility in reproducing different rates of softening.
A lower value of g results in a slower softening process, while higher
values lead to more rapid softening. This is illustrated in Fig. 7(a),
which shows that increasing g results in a sharper decline in the strain
energy.

The first Piola—Kirchhoff stress tensor associated with the nanofiller
contribution, derived from Eq. (6) using the chain rule, is given by

v v\ —(1+p)/B v ov
P,=—pF T+ 2L 1+<—"> . with =2 =2F—2. (10)

" oF @ oF oI,

The term multiplying dy, /dF tends to zero as y, approaches infin-
ity, resulting in strain softening. In the case of uniaxial loading, the
stress—stretch relation is

1 P w V] -(1+p)/p

j— n n

O'Xv"_z(/lx_;l_2> ol |:1+(E> ] s an
X

with dy, /01, =37 Na I¢~" and I, = 2/4, + 42. The effect of parameter

B on the stress associated to the nanofiller contribution, o, ,, is depicted
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in Fig. 7(b). Lower values of g produce a smooth and slow decrease in
the tangent stiffness, while higher values result in sharper and more
abrupt softening. The effect of varying the limiting energy ¢ is shown
in Fig. 7(c).

In Appendix B, Eq. (B.1), we present the expression of the fourth-
order tangent moduli tensor, a quantity of particular importance in
computational mechanics, especially in FE methods (Itskov, 2000). We
also derive the expression for the elastic modulus of the nanofiller
contribution, E, = 2aN. As expected, the term introduced for the
softening in the strain energy, Eq. (9), does not affect the elastic
quantities in the linear elasticity regime.

4. Fitting of model parameters to uniaxial response

In this section, we calibrate the model parameters to reproduce the
experimental data from uniaxial tests conducted on PNCs. The uniaxial
stress—stretch relation for the nanocomposite is

Ox = (1 - f)o_x,m + fo_x,n’ (12)

where o, ,, and o, , are given respectively by Egs. (8) and (11). The
additive decomposition allows us to independently calibrate the model
parameters of the elastomer matrix (4, B, Cy, and I,) by fitting o, ,,
to experimental data of the silicone alone. Subsequently, we compute
the residual stress as

Oxres — Oxexp — (I- f)dx,mi 13)

where o, .., represents the experimental data obtained from simple
tension tests on PNCs. For each GNP content tested, a set of residual
stress data is computed. The contribution of the nanofiller, fo, ,, is then
fitted to the residual stress data o, o5, allowing us to obtain the model
parameters N, ¢, a, and g involved in the SE function W,.

As observed from the experiments in simple tension (Section 2.2),
the influence of GNPs varies with their content inside the nanocom-
posite. Increasing the content of GNPs leads to an increase in elastic
stiffness, but it also affects the response in large stretches by reduc-
ing strain stiffening. The rule of mixtures, which linearly weighs the
contributions W,, and W, of the matrix and nanofiller, is not sufficient
to fully capture the changing behavior. As GNP content varies, the
parameters inside W, change to accurately describe the qualitatively
different responses of the PNCs. Therefore, in general, we have that
N =N(f), ¢ =¢(f), a =a(f), and = (/).

Parameters a and f are mathematical exponents in the functions in-
volved and primarily influence the nonlinear response and the softening
at moderate to large strains, respectively. In contrast, N and ¢ have
clearer physical meanings, as they respectively represent the contribu-
tions of nanofiller to initial stiffness and the limit energy for softening.
For these reasons, in a specific PNC, it is expected that the qualitative
changes with variations in GNP content are already well captured by
variations in N and ¢, allowing a and g to remain fixed. This ensures
the physical soundness and simplicity of the model, thereby enhancing
its predictive capability. Consequently, the model involves exponents
a and g that do not vary with GNP content, while the variations in
parameters N and ¢ are taken into account by estimating fitting laws
N(f) and ¢(f) as functions of GNP content. A scheme of the framework
for the fitting procedure and estimation of laws defining the model
parameters is given in Fig. 8.

For convenience in the fitting process, we define the following
nondimensional fitting parameters:

- N - ¢
N—2faE—, ¢—fW )

m mu

14)

where W, , is the ultimate value of W,,, corresponding to the defor-
mation at which the elastomer matrix reached failure. In this way, the
expression of the Young’s modulus of the nanocomposite becomes:

E =E,[1-H+N], 1s)
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Fig. 7. Softening in the hyperelastic model for the nanofiller contribution. (a) Plot of normalized strain energy with softening W, /¢ vs. normalized strain energy of intact material
v, /¢, showing the effect of variations in §. (b) Plot of normalized uniaxial stress o,,/N vs. stretch 4, illustrating that f§ regulates the sharpness of the softening, with ¢ = 2N
and a = 1. (c) Plot of 6, ,/N vs. A, showing the effect of variations in the limiting energy ¢, with § and « fixed at 1.
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Fig. 8. Schematic representation of the steps for calibrating the hyperelastic model of PNCs.

which indicates that N represents the increment in Young’s modulus
due to the nanofiller contribution, normalized with respect to E,,.
Similarly, ¢ represents a normalization of the limiting energy with
respect to the ultimate value of strain energy of the matrix. These
definitions allow for easier handling of the parameter ranges during
the fitting process.

The material parameters of the silicone matrix were determined by
fitting the stress ¢, ,, predicted by the model, as expressed in Eq. (8),
to the experimental o, vs. A, data of silicone reported in Fig. 4(a). This
fitting was conducted using the FindFit function in Wolfram Mathemat-
ica. The fitting parameters are reported in Table C.1 of Appendix C,
and the corresponding stress—stretch curve is displayed in Fig. 9(a).
Subsequently, the residual stress data o, ¢ Vs. 4, for each GNP content
were computed using Eq. (13). The contribution of the nanofiller, given
by fo,, where o, , is expressed by Eq. (11), was then fitted to the
residual stress data using FindFit in Wolfram Mathematica. This fitting
process was initially conducted without any specific restrictions on
parameter ranges to observe if certain parameters tended to show a
consistent trend or assumed values close to constants. It was observed
that parameters « and f consistently tended to have values around 2
and 1, respectively. Consequently, their values were fixed to a« = 2
and g = 1. The fitting was then performed again, considering only the
unknown parameters N and ¢, resulting in optimal values reported in
Table C.1. The plots of residual stress curves obtained from the fitting
are shown in Fig. 9(b).

The final uniaxial response of the PNCs was computed by summing
the contributions of the matrix and nanofiller, as described in Eq. (12).
The plot in Fig. 9(c) displays the model curves alongside the exper-
imental data. The model demonstrates a good capability to describe
the behavior, including both stiffness increase and influence on strain
stiffening in large deformations. With parameters a and g fixed, the
model provides a good description of the softening observed in the
residual stress (Fig. 9(b)), while maintaining simplicity and a physical
basis.

The final step of the fitting process involved estimating laws to
describe N(f) and ¢(f) as functions of GNP content. The optimal values
of both parameters, obtained from the previous fitting and listed in
Table C.1, are plotted in Fig. 10(a). As shown, the values of N increase
with the GNP content. This aligns with its physical meaning, as N
quantifies the contribution of nanofillers to the initial stiffness of the
nanocomposite, which increases as the GNP content rises. To fit the
data, we selected a power-law model and obtained the following fitting
function:

N(f) =343.6f128 (16)

where f represents the volume fraction of GNPs in the nanocomposite.
Concerning the distribution of the ¢ data, we chose to fit using a
constant value, ¢(f) = 0.49. This decision was based on the observa-
tion that, after a GNP content of 1 phr, the fitted values consistently
cluster around 0.49. Therefore, for the sake of simplicity, we fixed its
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Fig. 9. Fitting of the model to experimental uniaxial data of PNCs. (a) Stress-stretch response obtained by fitting ¢, to the data of the silicone matrix. (b) Fitting of the nanofiller
contribution fo,, to the residual stress data for each of the analyzed GNP contents, with f representing the GNP volume fraction. (c) Final stress—stretch response of the model
obtained by summing the contributions of the matrix and nanofiller, with model parameters reported in Table C.1. Dashed and solid lines represent the fitting model and the

experimental data, respectively. The GNP contents reported in the legend are in phr.
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Fig. 10. Laws for the parameters involved in the nanofiller contribution and final model for the uniaxial response. (a) Values of parameters N and ¢ with varying GNP content
and their respective fitting laws, N(f) from Eq. (16) and ¢ = 0.49. (b) Final stress—stretch uniaxial response of PNCs modeled with @ = 2, § = 1, N(f) given in Eq. (16), and
¢ = 0.49. Dashed and solid lines represent the fitting model and the experimental data, respectively. The GNP contents reported in the legend are in phr.

value. Additionally, for low contents of GNPs, the softening behavior is
much less pronounced than for higher contents, making the role of ¢
secondary compared to N.

The uniaxial response of PNCs with varying GNP contents, given by
the final model with « =2, g = 1, N(f) given in Eq. (16), and ¢ = 0.49,
provides the stress—stretch curves shown in Fig. 10(b). The quality of
the prediction is slightly reduced compared to Fig. 9(c), but the model
still accurately reproduces the uniaxial behavior of PNCs.

5. Fitting of model parameters to biaxial response

As it is well known, parameters calibrated from uniaxial tests do
not generally provide accurate predictions for biaxial stress states.
Therefore, in this section, we calibrate a set of model parameters to
simulate the biaxial response of PNCs observed from inflation tests
conducted on circular membranes.

The steps for calibrating the model follow those depicted in Fig. 8,
but now in terms of pressure-deflection instead of stress—stretch rela-
tionships. Unlike simple tension tests, the inflation of circular mem-
branes lacks an explicit analytical solution, making parameter fitting

10

more complex. However, during our experiments on PNC membranes,
their deformed shapes closely resembled a spherical cap. An approxi-
mate analytical solution under this assumption was derived in Pelliciari
et al. (2022), expressing the pressure-deflection relation as
16 52 H sin’
= DO (6escSg—1) ("_W

- 2 17)
(62+1)" @°R

+ — @~ csc (p),

where ¢ = 2tan!§. The accuracy of this approximate solution gen-
erally holds until the limit point instability is reached. Since our PNC
membranes failed close to this point, the approximate formula is ex-
pected to provide an accurate description of their behavior. Therefore,
this solution was used for initial parameter calibration. Subsequently,
the final response to verify the calibration was obtained with an exact
numerical solution, as will be detailed in the following.

The parameters of the elastomer matrix were calibrated based on
the pressure-deflection response of pure silicone shown in Fig. 6. To
achieve this, Eq. (17) was evaluated for the elastomer matrix (W =
W,), yielding the expression of p,, as a function of §. Using FindFit
in Wolfram Mathematica, we fitted p,, to the experimental curve and
obtained the optimal values of A, B, C|y, and I, listed in Table C.2.
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Fig. 11. Fitting of the model to experimental biaxial (inflation) data of circular PNC membranes. (a) Pressure—deflection response obtained by fitting the approximate analytical
solution, p,,, to the data of the silicone matrix. (b) Fitting of the nanofiller contribution using the approximate solution, fp,, to the residual pressure data for each of the analyzed
GNP contents, with f representing the GNP volume fraction. (c) Final pressure-deflection response of the model obtained by summing the contributions of the matrix and nanofiller,
with model parameters reported in Table C.2. This final response was derived using the exact numerical solution, outlined in Appendix D. Dashed and solid lines represent the
fitting model and the experimental data, respectively. The GNP contents reported in the legend are in phr. The pressure and displacement are normalized as p = pR/H and § = 5/R.

Fig. 11(a) shows the corresponding plot of the pressure-deflection
curve. Subsequently, the residual pressure data were computed as

Pres = Pexp — = (18)

where pe,,, represents the experimental pressure data from inflation
tests on PNCs. For each GNP content tested, a set of residual pressure
data was computed. The contribution of the nanofiller, p,, was obtained
by evaluating Eq. (17) with W = W,, and the expression fp, was
fitted to the residual pressure p.. The fitting curves are displayed
in Fig. 11(b). The obtained values of parameters N, ¢, a, and g are
reported in Table C.2. Note that « and f were fixed respectively to the
values 1.75 and 1.25, while N and ¢ varied with the GNP content.

After calibrating the fitting parameters with the approximate for-
mula, we adopted the numerical solution reported in Appendix D,
which is valid for incompressible membranes subjected to inflation. The
SE function for PNCs, W = (1 — /)W,, + fW,, with W,, and W, given
in Egs. (7) and (9) respectively, was integrated into the equilibrium
equations. These equations were implemented in MATLAB, and simu-
lations were conducted for all GNP contents using the fitting parameters
of Table C.2. The numerical pressure-deflection curves obtained are
displayed in Fig. 11(c), alongside the experimental data from the
inflation tests. We observe that the curves match well the experimental
responses, confirming the effectiveness of using the approximate ana-
lytical solution, Eq. (17), for deriving the fitting parameters. Note that
this effectiveness is attributed to the fact that the analyzed membranes
deform similarly to a spherical cap during inflation and reach failure
before the onset of limit point instability.

Finally, we estimated laws to describe N(f) and ¢(f) as functions of
GNP content. The fitting values of both parameters, listed in Table C.2,
are plotted in Fig. 12(a). We fitted the data of N with the following
power-law model:

N(f) = 0_782(102f)0,806+6,59f. 19

For simplicity, the values of ¢ were fitted with the constant ¢(f) = 0.53,
although this fit is not particularly accurate for low GNP contents.
However, for low GNP contents, the effect of ¢(f) is less pronounced
because there is less softening to be simulated. Therefore, even a
very approximate fit in this range still provides reasonable results,
considering the advantage in simplicity and ease of interpretation.
The pressure-deflection response of circular PNC membranes with
varying GNP contents, given by the final model with a« = 1.75, p = 1.25,
N(f) given in Eq. (19), and ¢ = 0.53, was computed using the exact nu-
merical solution in MATLAB. The pressure—deflection curves are shown

in Fig. 12(b), indicating that the quality of the prediction is slightly
reduced compared to Fig. 11(c). However, the model demonstrates
that even with simple formulations, it is capable of providing a good
description of the overall pressure-deflection curve of PNC membranes.
If greater accuracy is required, one may consider refining the law for
().

We emphasize that the primary objective of the model calibration in
this section was to accurately replicate the pressure-deflection behavior
of circular PNC membranes, which holds practical relevance. However,
for a thorough characterization of the biaxial behavior, additional
experimental data may be necessary, and a more comprehensive SE
function should be considered for the elastomer matrix. While the I;-
based function employed here suffices for our targeted analyses, it does
not generally provide a comprehensive description of biaxial behavior.
In fact, previous studies have underscored the importance of including
I, to capture biaxial responses and shear deformations (Anssari-Benam
et al., 2021; Kuhl and Goriely, 2024). Therefore, for a more detailed
examination of biaxial or other complex stress states, adopting a form
of W,, in Eq. (9) that includes both I, and I, is advisable. For instance,
hyperelastic functions for elastomers that are based on both invariants
and employed in nonlinear elasticity are reported in Dal et al. (2021),
Venkata et al. (2024), Destrade et al. (2017).

6. Application to other experimental data

In this section, we apply the proposed hyperelastic model for PNCs
to experimental data from uniaxial tests found in the literature. The
goal is to demonstrate that the model can be effectively applied to large
deformations of PNCs beyond the specific cases studied in this work.
The following experimental datasets were considered:

* Dataset 1: Reported by Frogley et al. (2003), this study involved
uniaxial tensile tests on nanocomposites comprising single-wall
CNTs mixed into an RTV silicone rubber matrix.

Dataset 2: Presented by Young et al. (2018), this research focused

on uniaxial tensile tests on nanocomposites that integrate GNPs

into a thermoplastic elastomer (TPE), specifically Alcryn 2265.

» Dataset 3: Described by Xing et al. (2014), this dataset includes
results from uniaxial tensile tests on nanocomposites made by
incorporating graphene nanosheets (GE) into a natural rubber
(NR) matrix.

The data were digitized, and Fig. 13 presents the stress—stretch curves
of the three datasets considered.
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Fig. 12. Laws for the parameters involved in the nanofiller contribution and final model for the biaxial (inflation) response of circular PNC membranes. (a) Values of parameters
N and ¢ with varying GNP content and their respective fitting laws, N(f) from Eq. (19) and ¢ = 0.53. (b) Final pressure—deflection response of PNCs modeled by the numerical
solution for circular inflated membranes (Appendix D), with « = 1.75, § = 1.25, N(f) given in Eq. (19), and ¢ = 0.53. Dashed and solid lines represent the numerical solution and
the experimental data, respectively. The GNP contents reported in the legend are in phr.

(@) (b)

Fig. 13. Experimental stress-stretch data from uniaxial tests reported in the literature. (a) Dataset 1 by Frogley et al. (2003), featuring RTV silicone rubber mixed with single-wall
CNTs. (b) Dataset 2 by Young et al. (2018), involving TPE mixed with GNPs. (c) Dataset 3 by Xing et al. (2014), showing NR mixed with GE. For each dataset, the legend

indicates the nanofiller content expressed in phr.

The datasets relate to PNCs composed of various elastomers, each
exhibiting distinct behaviors that are generally not well-predicted by a
single strain energy function W,, for the matrix contribution. Therefore,
for each dataset, we selected a specific form of W, that accurately
fits the observed stress-stretch response of the sole matrix. This SE of
the matrix was then introduced in the total strain energy of the PNC,
W =1- )W, + fW,, with the nanofiller contribution W, defined by
the proposed function in Eq. (9).

In the following, we describe the SE functions selected for the
elastomeric matrices of each dataset considered:

« The stress—stretch curve of the RTV silicone from Dataset 1, as
shown by Fig. 13(a), exhibits slight strain stiffening at moder-
ate stretches. However, as the stretch increases, some softening
is observed before the material reaches failure. To accurately
replicate this material response, we employed the Mooney-Rivlin
model with softening as proposed by Volokh (2007) for modeling
material failure. The function is expressed as

W, = ¢, — ¢, [C10l1=3)+Cor(12=3)1/dy (20)

where C|, and C,, are the material parameters of the Mooney-
Rivlin model, and ¢, represents the material failure energy, as
defined by Volokh.
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» For Dataset 2, the stress-stretch curve of the TPE (Fig. 13(b))
exhibits a pattern similar to that of the RTV silicone, with strain
stiffening followed by more pronounced softening prior to failure.
Given the similar behavior, we adopted the same function for W,,
as in Eq. (20).

The NR matrix from Dataset 3, as displayed in Fig. 13(c), exhibits
the typical uniaxial tensile response of elastomers. Specifically, at
large stretches, strain stiffening becomes predominant until the
material reaches failure. This classic response can be effectively
modeled using several hyperelastic models designed for such be-
haviors. For this analysis, we employ the Carroll model (Carroll,
2011), which is characterized by the following strain energy
function:

172

4
W, = Al, + BI{ + C1,”?, 1)

where A, B, and C are material fitting parameters.

For each of the three datasets considered, we calibrated the model
parameters following the procedure outlined in Fig. 8, which was
previously implemented in Section 4. Initially, we obtained the fitting
parameters for the selected SE functions for W,,, which are listed in
Table C.3. Subsequently, we computed the residuals for each of the
nanofiller contents and estimated the optimal parameters N, ¢, a, and



M. Pelliciari et al.

International Journal of Solids and Structures 308 (2025) 113144

Fig. 14. Application of the proposed model to experimental uniaxial stress—stretch data from the literature. (a) Dataset 1 by Frogley et al. (2003), (b) Dataset 2 by Young et al.
(2018), and (c) Dataset 3 by Xing et al. (2014). Model parameters for the matrix are reported in Table C.3, and for the nanofiller contributions in Egs. (22)-(24). Dashed and
solid lines represent the model fitting and the experimental data, respectively. Legends indicate the nanofiller content expressed in phr.

p for the nanofiller contribution W,. Finally, we derived fitting laws
to predict the model parameters as functions of the nanofiller content,
expressed as the volumetric fraction f. The resulting functions and
parameters of W, for the three datasets are as follows:

* Dataset 1

a=1, =06, N()=658.1f, ¢(f)=0344+1465f (22)
* Dataset 2

a=2 B=12, N()=559f, H(f)=4.15043 (23)
* Dataset 3

a=21, p=1 N(f)=17.61083+057  5(r)= 1314636/

(24)

The corresponding stress—stretch curves, presented alongside the exper-
imental data, are shown in Fig. 14.

The model provides sufficiently accurate fitting of the experimental
data considered. Particularly, the stress—stretch response from Dataset
1 is relatively simple, primarily characterized by an increase in initial
stiffness and only a slight influence on strain stiffening with an increase
in CNT content. In fact, linear functions for N(f) and ¢(f) provide
satisfactory results. The behaviors from Dataset 2 and Dataset 3 exhibit
more complex trends, which are observed partly because the GNP and
GE contents are higher than those in Dataset 1. Thus, more complex
fitting functions for N(f) and ¢(f) were required to achieve good
accuracy.

7. Conclusions

We investigated the mechanical behavior of PNCs composed of
silicone and GNPs through simple tension and inflation tests. Consistent
with other experimental studies, we found that the introduction of
nanofillers not only significantly increases the initial stiffness in the
small strain regime but also affects the nonlinear behavior at large
strains. Particularly, increasing nanofiller content reduces sensibly the
strain stiffening of the elastomer and its failure strain.

We developed a strain energy function that incorporates two sep-
arate contributions: W,,, representing the elastomer matrix, and W,,
representing the nanofiller. Accordingly, W,, was independently cal-
ibrated using experimental data solely from the elastomer, while W,
was calibrated by fitting the residual stresses derived from tests on the
PNCs. For the nanofiller contribution, we proposed a novel function
tailored to replicate the experimentally observed behavior, and to
predict the response as a function of the nanofiller content.
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The proposed model proved capable of accurately reproducing the
mechanical response of PNCs under both uniaxial and biaxial (inflation)
stress states. For simple tension, an established analytical solution was
used, while for the inflation of circular membranes, we implemented
the new strain energy function in a MATLAB numerical code to obtain
the exact numerical solution. Additionally, we applied the model to
replicate the behavior of other PNCs using experimental data available
in the literature, demonstrating its broader applicability.

This hyperelastic model represents an important advancement over
previous studies, which generally did not address the specific effects of
graphene nanofillers under large deformations, often lacked compar-
isons with experimental data, and focused predominantly on uniaxial
data. In contrast, we aimed to develop a model that captures the non-
linear effects of nanoparticles under large strains, with experimental
observations serving to support the development and validation of our
model. Given the significance of the topic in both research and engi-
neering technologies, the proposed model offers a robust foundation
for employing PNCs effectively.

Future research will focus on a more in-depth analysis of the in-
teractions between nanoparticles and the elastomer matrix, with the
goal of developing a comprehensive multiscale modeling approach.
In our current model, interfacial debonding of nanoparticles from the
matrix was incorporated on a phenomenological basis, as observations
showed that debonding affected the macroscale mechanical response by
introducing softening. Future detailed analyses using advanced electron
microscopy may enable a more thorough examination of this effect
and help establish connections between microscale phenomena and
the macroscopic continuum model. Additionally, by closely examining
the formation of aggregates, we aim to incorporate more precise de-
scriptions of this process into the model. Finally, we are conducting
ongoing research to extend the hyperelastic model to PNCs reinforced
with carbon nanotubes.
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Appendix A. Microscopy and DIC analyses

This appendix presents microscopy images of the produced PNC
samples and a detailed description of the DIC analysis used to deter-
mine pole stretch during inflation tests on circular membranes.

A.1. Microscopy images

Optical microscopy images were obtained to examine the disper-
sion, morphology, and size of GNPs within the produced PNC samples.
The samples were cut to expose the internal structure and then ob-
served under optical microscopy. The resulting images are shown in
Fig. A.15.

Fig. A.15(a) shows the pure silicone matrix, while Figs. A.15(b)-(d)
illustrate the increasing presence of GNPs (dark regions) as the content
rises to 0.8, 2, and 6 phr, respectively. Two important observations
can be made from these images. First, the nanoparticles are well-
dispersed within the matrix, exhibiting a random orientation, which
indicates that the mixing process during production was effective.
Second, at a GNP content of 0.8 phr, only minimal aggregation appears,
with few larger dark regions visible. As expected, with higher filler
content, the nanoparticles increasingly interact and form aggregates,
especially noticeable in Fig. A.15(d). However, at these relatively high
GNP concentrations, such aggregation behavior is typical and gener-
ally unavoidable (Chieng et al., 2013; Zare, 2016b). Therefore, the
nanoparticle distribution remains satisfactory, even at higher filler
levels.

Finally, Figs. A.15(e) and (f) present higher magnification images
of the PNC sample with 0.8 phr GNP content, clearly illustrating the
morphology of the GNPs within the matrix. When nanoplatelets are in
close proximity, they naturally tend to interact, forming aggregations,
visible in detail in the high-magnification image in Fig. A.15(f). This
aggregation trend is typical and, as previously noted, expected as the
GNP content increases.

A.2. DIC analysis for membrane pole stretch

In the following, we outline the DIC analysis conducted using Ncorr
to determine the pole stretch of the membranes during inflation tests.
To ensure image correlation by the software, the membranes were
prepared with superficial patterns. Silicone membranes were marked
with a black pattern, while PNC membranes were marked with a red
pattern. Initially, PNC membranes were black, suggesting that a white
pattern would be optimal. However, significant deformations during
inflation caused the silicone matrix to crystallize, resulting in the PNC
membranes appearing white. Consequently, we opted for red paint to
create the pattern, ensuring consistent contrast throughout the test.

We extracted 300 frames from the video of each test and loaded
all frames into Ncorr. Figs. A.16(a) and (b) show four distinct frames
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during the inflation of the silicone membrane and PNC membrane with
2 phr GNP content, respectively.

We defined the ROI for both silicone and PNC membranes with a
circular shape around the pole, as depicted in Figs. A.16(c) and (d). We
performed a high-strain analysis, which provided the values of ¢, and
€, during the inflation tests. As expected, the contour plots of the strain
components along both the x and y directions reveal a central area
within the ROI where the strain is higher. Additionally, the maximum
values of ¢, and ¢, within this area are nearly identical. This is because
during the inflation of circular membranes, the pole represents the only
point where the stress and strain states are equibiaxial, while all other
points exhibit non-equibiaxial states. We computed the average of these
maximum values, referring to it as ¢,,,. The pole stretch was then
computed as 4 = /1 + 2¢,,, and synchronized with the pressure data
to extract the pressure vs. pole stretch curves depicted in Fig. 6(b).

We remark that the inflation of circular membranes exhibits axial
symmetry, meaning that strain data can be reliably obtained only at
the pole when using a single camera. In fact, we concentrated our
analysis on a specific ROI centered around the pole and extracted only
the maximum strain. Achieving a three-dimensional reconstruction of
the strain field would require more sophisticated techniques, such as
employing multiple cameras and advanced DIC technology. Though
simple, our approach proved effective in capturing the pole stretch, our
primary focus.

Appendix B. Tangent moduli tensor

The fourth-order tangent moduli tensor is expressed by

2
e, =Wy [‘)ZW" <a"’"> W, az"’”] FeF+2 Y n OV

) oy2 \ 9l o, o1? oy, oI,

7 (B.1)

where ® indicates the tensor product, I represents the fourth-order
identity tensor, and

all/,, N a—1

= —a R
oI, 3« !

—(1+p)/p
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oy, ¢ ’
B.2)
02 (
L I,

o1 3¢

-(142p)/p
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oy? W, ¢ ¢ ’
The above tensor vanishes with y,, - o, indicating as expected that the

tangent stiffness of the softened material response tends to zero when
|[F|| = oo. The case of the intact material is retrieved by taking the limit

(B.3)

which corresponds with the expression reported in Lopez-Pamies
(2010).

To derive the elastic modulus of the nanofiller contribution, we
compute the tangent stiffness in the uniaxial response from Eq. (11)

as
) 2 2 2
O-X’"—i(j}_])z am'(aWn) +aVVnaWn
A, 2T ay? \ ol o, or?
2 3 aI/I/n aWn
+ = (A, +2 . B.4
A (4+2) oy, dI, .4

Evaluating Eq. (B.4) in the undeformed configuration, A, = 1, gives the
expression for the elastic modulus of the nanofiller contribution:
do

E = x,n

,1 =2aN.
oA,

(B.5)

Je=1
The elastic modulus of the polymer nanocomposite, described by the
total strain energy given in Eq. (2), is thus expressed as

E.,=6(1-[)(A+Cy)+2faN. (B.6)
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Fig. A.15. Optical microscopy images at a magnification of 100x for (a) pure silicone and PNCs with GNP contents of (b) 0.8 phr, (c) 2 phr, and (d) 6 phr. Higher magnification
images of the sample with 0.8 phr content at (e) 200x and (f) 1000x provide a more detailed view of the nanofiller morphology.

Appendix C. Fitting parameters

The fitting parameters are presented below for the cases of uni-
axial response in simple tension, biaxial response under inflation of
circular membranes, and the application of the model to additional
experimental data from the literature.

C.1. Simple tension

Table C.1 presents the parameters obtained from fitting to uniaxial
tensile data, as described in Section 4. Note that parameters N and ¢,
as defined in Eq. (14), require the estimation of the elastic modulus E,,
and the ultimate value of the strain energy W, , of the matrix. For the
silicone considered in this work, E,, was estimated to be 0.326 MPa, as
reported in Fig. 5, and W, , was computed as 3.364 MPa by evaluating
the strain energy from Eq. (7) at the ultimate stretch of the silicone in
the uniaxial tensile test.

Table C.1
Values of parameters for matrix and nanofiller contributions, W,, and W,, resulting
from fitting to uniaxial experimental data. Units are in MPa where applicable.

Matrix parameters Nanofiller parameters

GNP content (phr) a i} N )

0.2 2 1 00543  0.302
A =-0515 0.4 2 1 0151 0.314

0.8 2 1 0349 0.322
B = 0.0886 1.4 2 1 0558 0.558

2 2 1 0988 0.462
Cio = 0.565 4 2 1 219 0.469

6 2 1 36l 0.496
1, = 499 10 2 1 691 0.489

We provide here a note on the values of the parameter N obtained
from the fitting process. This parameter represents the relative con-
tribution of GNPs to the composite’s elastic modulus compared to the
matrix alone. Two considerations are as follows:

(1) Despite the low volume content, the nanofillers contribute sig-
nificantly to the initial stiffness of the composite. The relative
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Fig. A.16. DIC analysis using Ncorr to determine pole stretch during inflation tests. Figures (a) and (b) show frames extracted by the videos of the tests on silicone membrane
and PNC membrane with 2 phr GNP content, respectively. The ROI and contour plots of Green-Lagrange strains ¢, and ¢, for silicone and PNC membranes are depicted in (c)
and (d), respectively.

(2)

contribution of the nanofillers compared to the matrix is calcu-
lated from Eq. (15) as N/(1 — f). According to the values in
Table C.1, the increases in the elastic modulus are as follows:
at 1.4 phr (~0.7% by volume), there is approximately a 55%
increase; at 4 phr (~2% by volume), the increase reaches around
220%; and at 10 phr (~5% by volume), the elastic modulus rises
by approximately 720%. These substantial enhancements in the
elastic modulus, achieved at low volume fractions, underscore the
high efficiency of GNP reinforcement.

The intrinsic Young’s modulus of GNP nanoparticles is generally
estimated to range from 0.5 to 1 TPa, due to factors such as man-
ufacturing imperfections and the number of layers influencing
these values. While a simple rule of mixtures could be used to
estimate the total composite modulus, it would overestimate the
contributions of the nanofillers, as it does not account for stress
transfer and interactions between the matrix and nanofillers. In
contrast, models like Mori-Tanaka (Shu and Stanciulescu, 2020)
and Halpin-Tsai (Wu et al., 2004) incorporate these interactions
by applying reduction factors, providing a more accurate esti-
mation of the effective contribution of nanofillers to the elastic
modulus. To illustrate this, we apply the Halpin-Tsai model (Wu
et al., 2004):

L4 ExS i g o BB
l=—xf E,/JE,+¢
where E, is the composite modulus, E,, is the matrix modulus, E,
is the nanoparticle modulus, and w and ¢ represent the width and
thickness of the nanoparticles, respectively. According to the data
sheet, our GNPs have an approximate width of 7 pm and thick-
ness of 5 nm. However, as observed in the microscopy images
(see Appendix A.1), the GNPs tend to interact, stack, and form
aggregates, resulting in larger structures composed of several
individual particles. For a simplified estimation, it is reasonable
to use an approximate value of w ~ 10 pm and ¢ ~ 100 nm,
acknowledging that this is a rough approximation intended for

E =E, and &= sz 1)

Table C.2
Values of parameters for matrix and nanofiller contributions, W, and W,, resulting
from fitting to biaxial (inflation) experimental data. Units are in MPa where applicable.

Matrix parameters

Nanofiller parameters

GNP content (phr) a B N ¢
0.2 1.75 1.25 0.088  0.550
A=-0625 0.4 1.75 1.25 0223  0.672
0.8 1.75 125 0379 0715
B = 0.0516 1.4 1.75 1.25 0559  0.649
2 1.75 125 0754  0.536
0 = 0.675 4 1.75 1.25 1524  0.526
— 4950 6 1.75 1.25 2234  0.531
" 10 1.75 1.25  4.490  0.528

basic computation. Using these values and assuming E, = 0.5 TPa,
the elastic modulus values of the nanocomposite calculated from
Eq. (C.1) are comparable to those obtained from Eq. (15), with
parameters reported in Table C.1. This indicates that the stiffness
contributions modeled in our study are generally consistent with
established theoretical predictions.

C.2. Membrane inflation

Table C.2 presents the parameters obtained from fitting to biaxial

inflation data, as described in Section 5. In this case, the strain energy
evaluated at the ultimate stretch of the silicone in the inflation test is
W, = 7.817 MPa.

C.3. Other experimental data

Wm

Table C.3 lists the fitting parameters for the matrix contribution,
, for datasets 1, 2, and 3, as detailed in Section 6. To simplify

the presentation, we do not report all the fitting parameters of the
nanofiller contributions, W, for all three cases. Instead, we directly
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Fitting parameters for the matrix contribution, W,,, derived from modeling the stress—stretch response of experimental data reported in the

literature. Units are expressed in MPa.

Dataset Material Model Parameters
Dataset 1, Frogley et al. (2003) RTV silicone Mooney-Rivlin with softening Cyy =0.477
Cpy = —0411
¢, =685
Dataset 2, Young et al. (2018) TPE Mooney-Rivlin with softening Cy =892
Cy =734
¢, =333
Dataset 3, Xing et al. (2014) NR Carroll A=0.187
B=147x10"°
C =0.464

report the final values of « and g, and the fitting laws N(f) and ¢(f),
which provide the optimal parameters as functions of the nanofiller
content. These are expressed in Egs. (22)-(24). These laws are referred
to the computations of E, and W,,, described below. Due to the un-
availability of detailed stress—stretch data in the small strain regime, as
the data were digitized, the estimation of the elastic modulus was based
on linearizing each hyperelastic model employed for the matrices. The
computed values are as follows:

* Dataset 1: E,, = 6 (Cjy + Cy;) = 0.4 MPa and W,,,, = 7.255 MPa;

* Dataset 2: E,, = 6 (Cyy + Cy; ) = 9.465 MPa and W, , = 1.781 MPg;

- Dataset 3: E,, = 6A + 648B + /3C = 1.927 MPa and W,,, =
25.405 MPa.

The densities of the constituent materials used in the nanocomposites,
which are required for calculating the volume fractions (/) for the three
referenced datasets, are reported below. Frogley et al. (2003) reported
densities of 1.215 g/cm? for RTV silicone and 1.34 g/cm? for CNTs. For
the PNCs by Young et al. (2018), densities are taken as 1.08 g/cm3 for
TPE Alcryn 2265 and 2.2 g/cm?® for GNPs. Lastly, for the materials from
Xing et al. (2014), the densities considered are 0.92 g/cm> for NR and
2.2 g/cm? for GE.

Appendix D. Numerical solution for the inflation of circular PNC
membranes

We consider a circular flat membrane with radius R and thickness
H. We define a cylindrical coordinate system (p, ©, Z) with origin in
the central point of the membrane. Under the action of pressure p the
membrane inflates preserving axisymmetry, with a generic material
point P = (p, ©,0) moving to P’ = (r, 0, z). The principal stretches are
oriented along the meridians, the latitudinal lines, and the normal to
the deformed surface, and are given respectively as follows:

n=Vrti? ap=Ll =L
p

, D.1
PR (D.1)

where the prime denotes differentiation with respect to p. The prin-
cipal curvatures of the deformed surface are K; = (A’]n—iln’ )/

(/ﬁ,/,ﬁ —n2> and K, = /4% = n?/ (A Ayp), with =1/,

For a generic biaxial stress state of an incompressible hyperelastic
material described as a function of the first invariant of deformation,
W = W(,), the principal stress resultants per unit length are given by

A
T, =2Hw, 41 , BLj=12
A B

with w, = oW /oI,. The equilibrium equations in radial and normal
directions read
dT,

dr

(D.2)

1
-0 =0, (D.3)

KT, + K, T, = p.
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Substituting the expressions for T}, T,, K;, and K, into Eq. (D.3), the
following governing system of differential equations is obtained (Sirotti
et al., 2024):

o [wy (078323 = 30— 2328+ 34,) -

) Wi (BB =1) (1= )]

(B2 = a) + (At +3)w)]

dwy |
,0/12[,”l
pU _’7_)*2

P

o EMMIN 22—+ 2w, (225 —1) (i - A2)
T 2pw; Ay (4422 - 1) |

(.4

where & = p(p/H). In the case of the strain energy function proposed
in Section 3 for the PNCs, we have w, = (1 — f)oW,,/dI, + foW, /dI,,

with
ow,, CB(r -3\
=Ae B0 o (1- 21—
o, ¢ TG\ TT 3
~(1+p)/p (D-5)
W Wydvs N po [y (1)
oI, ~ oy, oI, 3« ! ¢
The derivatives of w, with respect to 4, and 4, are given by
ow, W, I, *W, dI,
L =-pH—2 Lt =12 D.6
a4 =9 or> 04 ! oI? 0% l ®-6)

System (D.4) represents an initial value problem that must be
integrated along the radius of the membrane, with the additional
condition 4, (L) = 1 at the outer boundary. Various methods are
available for solving the governing ODEs (see, for instance, Verron
and Marckmann (2003), Saxena et al. (2019)). We adopted the well-
established procedure proposed by Yang and Feng (1970), which offers
the advantage of avoiding iterations. The numerical integration was
performed in MATLAB using function ode45, and the detailed procedure
for this solution can be found in Appendix D.1 of Sirotti et al. (2024).

Data availability

Data will be made available on request.
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