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Abstract 

In this paper, we analyze the information value of the VSTOXX (volatility) index as a measure of 

risk for the EU stock market. Employing daily data from 2007 to 2017, we inspect and contrast the 

properties of the VSTOXX index under various market conditions and in high- and low-volatility 

periods. Moreover, to evaluate the contribution of each country-specific index to the VSTOXX index, 

we employ the Ordered Weighted Averaging (OWA) operator, which provides a flexible aggregation 

procedure ranging between the minimum and the maximum of the input values. We obtain a number 

of useful insights. The correlation between the VSTOXX index and the volatility indices is high 

during the entire period only for France and Germany. Moreover, the VSTOXX index acts more like 

an OR-like measure than as an AND-like measure of volatility for the EU stock markets and acts as 

an average only during periods of extreme volatility. 
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1. Introduction 

Recent studies highlight the importance of using option-implied measures in asset pricing and 

portfolio management (see, e.g., Elyasiani et al., 2020a for a literature review). Option-implied 

volatilities are commonly used to capture market volatility as a proxy for market-wide risk (Leppin 

and Reitz, 2016). In fact, option prices reflect the risk of rare economic events, such as consumption 

disasters (Seo and Wachter, 2019), and can convey informed investors' negative news through their 

trades. They also become very useful in highly uncertain situations such as build-ups of potential 

systemic risk (Bevilacqua et al., 2020), since they represent natural financial instruments for hedging 

purposes. 

Nowadays, the only option-implied index intended to measure the aggregate volatility of the 

EU markets is the VSTOXX. The VSTOXX, officially EURO STOXX 50 Volatility Index, is referred 

to as the “European VIX” since it represents the equivalent of the VIX index for the European markets 

(Kalyvas et al., 2020), and it is the most widely used measure of expected volatility in Europe 

(Peterburgsky, 2021). The VSTOXX has been designed to reflect the investor sentiment and overall 

EU economic uncertainty by measuring the 30-day implied volatility of the EURO STOXX 50 Index,1 

using near-term EURO STOXX 50 option prices. The EURO STOXX 50 Index is the most widely 

followed benchmark to track equity market performance and development in the Eurozone2 and 

comprises fifty of the largest and most liquid stocks covering Austria, Belgium, Finland, France, 

Germany, Greece, Ireland, Italy, Luxembourg, the Netherlands, Portugal, and Spain (Li, 2013).3 Its 

composition is annually reviewed in September.  

Although the VSTOXX is generally accepted as the leading market indicator of risk sentiment 

in the Eurozone (see, e.g., Zhang et al., 2017; Forte and Lovreta, 2019), it has received some criticism 

in the literature. Indeed, there is mixed evidence on its representativeness for the EU market. For 

instance, Peterburgsky (2021) points out that EURO STOXX 50 companies account for less than 35% 

of the European stock market value. Moreover, important EU financial markets such as the UK and 

Switzerland are not considered in the EURO STOXX 50 index, even if many studies find significant 

interactions between these markets, especially before the campaign for the EU referendum started in 

January 2016 (see e.g., Li, 2020). Since there is a lack of studies investigating the behavior of the 

VSTOXX as a measure of risk for all the EU markets, it is our aim to fill this void.  

 
1 https://www.eurexchange.com/resource/blob/146798/29a67e60c49811de80c7252b627ee738/data/factsheet_eurex_ 

vstoxx .pdf 
2 www.stoxx.com 
3 A stock index of Eurozone stocks developed by STOXX, an index provider owned by Deutsche Börse Group, introduced 

on 26 February 1998. According to STOXX, its goal is “to provide a blue-chip representation of Supersector leaders in 

the Eurozone”. 
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Among existing studies, Peterburgsky (2021) finds that during the 2002-2016 period, 

investors do not care about aggregate volatility measured by the VSTOXX. Other criticisms in the 

literature concern the fact that the VSTOXX is characterized by a slow response to shocks in non-

equity markets, such as the bond market; moreover, the VSTOXX cannot be used to hedge specific 

sectors of the stock market (Zghal et al., 2018). Furthermore, López and Esparcia (2021) provide 

evidence that the VSTOXX reacts to the German unemployment rate and ESI (Economic sentiment 

indicator) release, but not the release of the corresponding economic indicators for the Eurozone. This 

result is affected by the fact that German indicators are announced before those of the Eurozone. 

Thus, part of the information content of the latter has already been discounted in option prices. 

However, the reaction of the VSTOXX to the German economic indicators may be at least partly due 

to the importance (in terms of relative weight) that German companies have in the EURO STOXX 

50 index computation.  

In an international setting, Clements et al. (2019) find evidence of declining informational 

dominance of the VIX as global volatility leader, replaced by the VSTOXX since the European debt 

crisis. The importance of the VSTOXX is also supported by Shu and Chang (2019), who investigate 

the interaction between the VIX (the US volatility index), VSTOXX (the EU volatility index), 

VKOSPI (the Korean volatility index) and international stock market indices over the 2004-2014 

period. Even if the VIX is the most influential volatility index in terms of effects on the stock market 

returns, they find that the VSTOXX also has a significant impact on stock returns in the U.S., 

European and Asian markets, and has been an originator of spillovers during the European fiscal 

crisis. 

We contribute to the literature in several respects. First, we introduce model-free implied 

volatility indices for nine index options markets in the EU during the 2007-2017 period. The index 

options markets under investigation include AEX (the Netherlands), BEL (Belgium), CAC (France), 

DAX (Germany), FTSE (the United Kingdom), IBEX (Spain), MIB (Italy), OMX (Sweden), and SMI 

(Switzerland). This sample period is a suitable framework to investigate the behavior of implied 

volatility measures because it is characterized by the occurrence of both the subprime crisis (2007-

2009) and the European debt crisis (2010-2012). Second, the presence of high-volatility periods in 

the sample period allows us to inspect and contrast the properties of the VSTOXX under various 

market conditions and economies under stress, such as EU peripheral countries. Third, we provide 

for the first time a deep analysis of the relationships between the VSTOXX and the country-specific 

volatility indices computed from major EU economies and their behavior over time. To investigate 

the information value of each country-specific index for the VSTOXX, we exploit the Ordered 

Weighted Averaging (OWA) operator, which provides a flexible aggregation procedure ranging 



4 
 

between the minimum and the maximum of the input values. Most studies rely on expert opinions to 

select the OWA weights, whereas only a few researchers determine these weights from data 

(Dominguez-Catena et al., 2021). We adopt the latter approach with the aim to analyze the properties 

and the information on single countries embedded in the VSTOXX index. We find three main results 

that are of interest for investors and policymakers. 

First, the VSTOXX index recorded an average volatility above the mean of the country-

specific volatility indices during the sample period. Peripheral countries such as Spain and Italy, 

which suffered the most from the European debt crisis, recorded a very high average volatility. On 

the other hand, other countries that do not take part in the EUROSTOXX, such as Switzerland and 

the UK, recorded a very low volatility, acting as a safe haven during the EU debt crisis. Second, the 

VSTOXX index is strongly related to the French and German volatility indices during the entire 

sample period, proving to be a good measure of volatility for these countries. In contrast, the 

relationship between the VSTOXX index and the volatility measures in other countries highly 

depends on the specific period under investigation (especially for the peripheral ones), thus casting 

doubt on the ability of the VSTOXX index to measure risk for these countries correctly. Third, the 

results of the fitting exercise show that the VSTOXX index acts more like an OR-like measure than 

as an AND-like measure of volatility for the EU stock markets. More specifically, the VSTOXX 

index is higher than the average of the volatility indices; in fact, it is sufficient that a few volatility 

indices reach a high value for the index to spike. On the other hand, we find that the VSTOXX index 

acts more as an average (orness around 0.5) during periods of extreme volatility.  

The remainder of this paper is structured as follows. Section 2 introduces the dataset and the 

methodology adopted in our study. Section 3 investigates the properties of the VSTOXX index and 

the volatility indices obtained for the nine countries. In Section 4, we exploit the OWA operator to 

assess how the information content of the nine volatility indices is embedded into the VSTOXX 

index. Finally, Section 5 draws some conclusions and provides policy implications. 

2. Data and Methodology 

This section introduces our dataset and the methodology used to obtain the volatility indices for the 

nine EU countries. The data set consists of daily closing prices of index options of nine different 

countries,4 recorded from 2 January 2007 to 29 December 2017. The options data set, the dividend 

yield, and the Euribor rates are obtained from OptionMetrics (IvyDB Europe). The underlying assets, 

the time series of the underlying assets, and the daily closing values of the VSTOXX index are 

 
4 The choice of the countries is motivated by the availability of option prices in the IvyDB Europe dataset, which includes 

the most liquid and traded options market in Europe. 
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obtained from Bloomberg. Following Muzzioli et al. (2018, 2020), if the underlying of the option 

series (
tS ) is an asset that pays a dividend yield 

t , we compute its adjusted value ( ˆ
tS ) as: 

      ˆ t t

t tS S e
− 

=      (1) 

where t  is the time to maturity of the option. Euribor rates with maturities of one week, one month, 

two months, and three months are used as a proxy for the risk-free rate. The appropriate yield to 

maturity is computed by linear interpolation. 

In line with previous studies (see, e.g., Elyasiani et al., 2018), we applied several filters to the 

options dataset to remove arbitrage opportunities and other irregularities in the prices and to be 

consistent with the computational method of other listed indices. More specifically, we eliminate 

options with a time to maturity of less than eight days that may suffer from pricing anomalies that 

might occur close to expiration. Also, in-the-money options are removed because they are 

infrequently traded compared to the other options and can be affected by illiquidity problems. In 

particular, we retain only out-, and at-the-money option contracts, i.e., put options with moneyness 

values lower than 1.03 (K/S < 1.03), and call options with moneyness values higher than 0.97 (K/S > 

0.97), where K is the strike price and S is the index value. Moreover, we eliminate option prices 

violating the standard no-arbitrage constraints. Finally, to have a one-to-one correspondence between 

strikes and implied volatilities, we average the implied volatilities of options that correspond to the 

same strike price.  

The standard approach used to compute an option-implied volatility index is the one 

introduced by the Chicago Board Options Exchange (CBOE) for the VIX index, the measure of 30-

day volatility of the S&P 500 index. Many market volatility indices have been quoted in European 

markets based on the same formula, such as the VSTOXX index, VDAX, and the Italian volatility 

index (IVI MIB), among others.5 Given the market prices of at- and out-of-the-money options for a 

single option series, the volatility index can be computed as the square root of the model-free implied 

variance, which is estimated by using the following equation by Britten-Jones and Neuberger (2000): 

  
( ) ( )

2

0 0

2

0 0

, max , 0
  2

rTT

Q t

t

C T Ke S KdS
E dK

S K

  − − 
  = 
   
    (2) 

where Q represents the expectation under the risk-neutral probability, 
tS  is the underlying asset price 

at time 0,...,t T= , and ( )0 ,C T K is a call option price at t = 0, with maturity T and strike price K; r 

is the risk-free rate.  

 
5 Although the VIX is calculated from 2014 using weekly options, we excluded these options due to their lower liquidity 

in the EU market. 
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Since Eq. (2) requires as input a continuum of strike prices ranging from zero to infinity, and 

in the market only a discrete and limited number of strike prices is available, the CBOE computes the 

VIX index using a subset of quoted option prices (see, e.g., Muzzioli et al., 2018, for a detailed 

discussion). Consequently, truncation and discretization errors could occur due to a finite range of 

strike prices and a discrete summation instead of the integral in Eq. (2). While this assumption is 

mitigated for the US market by the high number of option prices traded (more than 100 per day), 

truncation and discretization errors can impact the estimation of volatility for peripheral European 

markets, which are characterized by a limited number of strike prices traded (Elyasiani et al., 2021). 

To mitigate both truncation and discretization errors, Jiang and Tian (2005) propose an 

interpolation-extrapolation method based on an interpolation among implied volatilities of available 

option prices with cubic splines and an extrapolation procedure outside the domain of quoted option 

prices using a constant volatility function. To cope with different numbers of strike prices traded, we 

adopt a country-specific procedure to make truncation and discretization errors negligible and 

significantly improve the precision of the volatility estimate. For each country, the procedure takes 

the following steps. First, we create a table of available strike prices and implied volatilities, which 

serves as our initial input. Second, following Jiang and Tian (2005), implied volatilities are 

interpolated between two adjacent knots using cubic splines to keep the function smooth at the knots. 

Volatility is assumed to be constant for strike prices higher (resp. lower) than the maximum (resp. 

minimum) strike price available. More specifically, for strikes below (resp. above) the minimum 

(resp. maximum) value, implied volatility is equal to the volatility of the minimum (resp. maximum) 

strike price available to avoid negative implied volatilities (Muzzioli et al., 2018). To mitigate the 

occurrence of truncation errors, a fixed parameter value of u equal to 2 for all countries is used to 

extend the integration domain by computing a matrix of strike prices and implied volatility in the 

interval ( ) ( )/ 1 1S u K S u+   + , where S  is the underlying asset value. Finally, a country-specific 

spacing between strike prices (details are reported in Table 1) is adopted to ensure insignificant 

discretization errors and compute missing implied volatility and strike prices from the interpolated-

extrapolated smile.  

The implied volatilities obtained are finally converted into option prices and used to compute 

model-free variance through the approximated Britten-Jones and Neuberger (2000) formula: 

  
( ) ( )

( ) ( )
0 0

12
10

, max , 0
 2   , ,  

rT m

i i

i

C T Ke S K
dK g T K g T K K

K



−

=

− −
 +     (3) 

where ( ) ( ) ( ) 2

0 0, , max 0, /i i i ig T K C T K F K K= − −   , ( )0 , iC T K  is the price of a call option with strike 

price Ki and time to maturity T, ( )  /max minK K K m = − , m is the number of abscissas; 
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, 0i minK K i K i m= +    , Kmin and Kmax are the minimum and the maximum strike prices, 

respectively.6 

Moreover, to obtain constant 30-day measures of implied volatility that can be directly 

compared with the VSTOXX index, the daily estimate of volatility is computed by linear 

interpolation, using the same formula adopted for the VIX index. In particular, two values of risk-

neutral variance obtained from Eq. (3) with different time-to-maturity (i.e., one for each of the two-

option series considered, given a first option series with a maturity of less than 30 days and a second 

one with time to maturity greater than 30 days) are used: 

  
2 1

2 1 2 1

2 2

1 1 2 2

30 30 365
 VIX 100   

30

T T

T T T T

N N
T T

N N N N
 

    − −  
=  +          − −       

  (4) 

where 
1T  and 

2T  are the time-to-maturity of the first and the second option series used, respectively, 

and 2

1 and 2

2 the estimated variances. 
1TN and 

2TN are the time-to-maturity of the near-term and next-

term options, respectively. All computations were done in Matlab R2021a. 

3. Properties of the European volatility indices 

This section presents the basic statistics and the properties of the nine country-specific volatility 

indices obtained by applying our approach to the dataset described in Section 2. As a result, we obtain 

2869 daily closing values for each of the nine volatility indices, spanning from January 2, 2007, to 

December 28, 2017.  

 

3.1 Basic descriptive statistics 

The descriptive statistics of the country-specific volatility indices and the VSTOXX index are 

reported in Table 2. Several considerations are in order. First, the average volatility for most of the 

countries is around 20. Higher values are recorded for the VSTOXX index and for volatility indices 

measured in peripheral countries (Spain, Italy), which suffered the most from the European debt 

crisis. On the other hand, volatility is relatively low for Switzerland and the UK, which act as a safe 

haven during the European debt crisis. Second, the volatility range is the largest for Switzerland (SMI) 

and the UK (FTSE), while it is the smallest for highly volatile countries such as Italy and Spain. The 

different behavior of volatility indices could also be affected by different institutional features in the 

European markets in this study, such as dissimilarity in sectoral diversification and market depth. 

Third, all the volatility indices show a positive skewness. The right tail is long compared to the left 

 
6 In order to obtain the risk-neutral variance in Eq. (3), the trapezoidal rule for numerical integration is used. 
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tail since extreme volatility values are recorded for limited periods during crises. Consequently, the 

normal distribution hypothesis is strongly rejected for all the series. 

 

3.2 Correlation between the volatility indices 

In Table 3, which reports the Pearson correlation coefficients between the series under 

investigation, shows a high degree of association between all the variables. The correlation between 

the volatility indices of France (CAC) and Germany (DAX) and the VSTOXX index are close to 1. 

On the other hand, the Italian volatility index (MIB) shows the lowest correlation with the other 

variables, followed by the Spanish volatility index (IBEX). The correlation between these two indices 

(MIB and IBEX) is very high, suggesting that the European debt crisis may have influenced their 

behavior to the same extent.  

In Figure 1 (resp. Figure 2) we present the scatterplots of the correlation between the 

VSTOXX index and each country-specific index depending on the level of the VSTOXX index (resp. 

sample period). The dashed grey line represents the case of a volatility index that is perfectly 

correlated with the VSTOXX index in terms of daily levels: the more the observations deviate from 

the grey line, the less the volatility index under investigation is correlated with the VSTOXX index. 

From Figure 1, we can see that the relation between the VSTOXX index and the other volatility 

indices is strong for very low values of the VSTOXX index (in red) or very high levels of the 

VSTOXX index (in blue). On the other hand, the relationship tends to weaken when the VSTOXX 

index ranges between 20 and 40, especially for peripheral EU countries in our dataset (Italy and 

Spain). A similar pattern could also be discerned for BEL, FTSE, and SMI.  

Similarly, the relationship between the VSTOXX index and the country-specific volatility 

indices varies across different sample periods, as highlighted in Figure 2. The association is strong at 

the beginning and the end of the sample period (represented in green and in yellow, respectively), 

while it changes in shape during the 2010-2012 European debt crisis (in red), especially for the 

countries that are most affected by the latter. We can conclude that the VSTOXX index has not fully 

captured the different levels of risks during the 2010-2012 period. In particular, while the VSTOXX 

index was experiencing intermediate levels of volatility, consistent with the market conditions of 

Germany and France, some other countries experienced very high levels of volatility and stressful 

market conditions.  

3.3 Ranking of the volatility indices 

The analysis of volatility indices in terms of levels and their evolution over time can provide further 

insights into the EU markets’ uncertainty. The value of a volatility index is closely linked to the 
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possible of return of the underlying index in the next time period. More specifically, claiming that a 

volatility index is equal to 10 means that there is about a 68% chance that the underlying market’s 

return is expected to stay within a ±10% range over 1 year, or ± 2.89% over the next 30 days.7 

Therefore, accounting for the level of volatility is important and the ranking of volatility indices over 

time can provide insightful information about each market's relative risk and uncertainty compared 

to the others. To investigate the ranking of the volatility indices and its evolution during the sample 

period (2007-2017), each day, we rank the nine volatility indices plus the VSTOXX index from the 

highest (1) to the lowest (10). Since the ranking over time is highly volatile, we compute for each 

volatility index its 5-day moving average to enhance the readability of the plots, and we display the 

results in Figure 3. Several observations are in order. First, the ranking of the country-specific 

volatility indices is highly volatile and changes significantly over the sample period. Changes in the 

ranking are observed particularly in crises and market turbulence, such as the 2007-2009 financial 

crisis and the European debt crisis in 2010-2012. Second, both SMI and FTSE, which show high 

ranks during the 2007-2009 financial crises (probably attributable to the central role of these financial 

markets in the transmission of the financial crisis and to large banking groups listed on the Zurich 

and London stock exchanges), show low average ranks in the last part of the sample period. This 

result is probably due to the non-belonging of these two countries to the Euro area, thus allowing 

them to act as a safe haven for investors during the European debt crisis. A rare exception is the peak 

at the beginning of 2015 for the Swiss market due to the unexpected end of peg between the Swiss 

franc and the Euro.8 Third, the IBEX and MIB volatility indices, characterized by low ranks at the 

beginning of the sample period, change significantly after the global financial crisis and during the 

EU sovereign debt crisis, remaining among the highest until the end of the sample period. Fourth, the 

remaining indices are characterized by a fairly volatile ranking, with the AEX and BEL showing a 

slightly lower ranking than CAC and DAX. Last, despite the high correlation level with CAC and 

DAX shown in Table 2, the VSTOXX index has maintained one of the top ranks (around the third 

position) during most of the sample period, being in many occurrences higher than both the CAC and 

the DAX volatility indices. In particular, the average VSTOXX index is higher than the average of 

the nine volatility indices. The composition of the VSTOXX in terms of the country-specific volatility 

indices will be closely investigated in the next section. 

 

 
7 The value of 2.89% is obtained as 10 / 12 , where 10 is the index value and √12 is the factor that allows us to move 

from the annualized index (obtained using Eq. (3)) to that on a monthly basis. Further details are available at: 

https://www.cboe.com/tradable_products/vix/faqs/ 
8 https://www.cnbc.com/2015/01/15/swiss-franc-sours-stocks-tank-as-euro-peg-scrapped.html 
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4. Fitting exercise 

The results obtained in Section 3 reveal that the VSTOXX index is in general higher than the average 

volatility of the nine EU markets in our dataset. In this section, we propose to use the OWA operator 

in order to investigate how the country-specific volatility indices are represented in the VSTOXX 

index. In Subsection 4.1, we theoretically introduce the analysis of the composition of the VSTOXX 

based on the OWA operator, while in Subsection 4.2 we detail the application of the OWA operator 

to our dataset. 

 

4.1 The analysis of the composition of the VSTOXX based on the OWA operator 

Investigating the behavior of the VSTOXX index is important for investors who monitor this index 

as a measure of volatility for all European markets. Moreover, we aim at understanding whether its 

behavior has been fairly homogeneous over time, or whether on the contrary, it has been determined 

by the market phase. As far we know, there are currently no studies in the literature evaluating the 

effectiveness of the VSTOXX index for representing risk and uncertainty in different EU markets. 

To fill this gap, we propose an approach based on the Ordered Weighted Averaging aggregation 

operator (hereafter, OWA operator), introduced in Yager (1988), and successfully adopted in many 

fields, including volatility forecasting (Flores-Sosa et al., 2021), multi-criteria and group decision 

making (Wang and Parkan, 2005; Wang, 2021), multi-attribute decision making (Reimann et al., 

2017), forecasting (Yager, 2008), data mining and data smoothing (Torra, 2004), financial decision 

making (Merigó and Casanovas, 2011). The OWA operator covers aggregation procedures ranging 

between the minimum and the maximum. An advantage of the OWA operator compared to standard 

aggregation procedures adopted in financial market applications (mainly the average and weighted 

average) is the possibility of weighting the values relying on their ordering. In this way, if we order 

a set of indicators from the highest to the lowest, we can give more importance to a subset of the input 

values in this ordering than to another subset. This characteristic is at the basis of the choice of the 

OWA operator for our analysis. Exploiting the OWA operator, we can better understand how the 

VSTOXX index reacts to high and low values in the country-specific volatility indices, independently 

of the country in which they originated.  

Given w, a weighting vector of dimension N, Yager (1988) and Yager and Kacprzyk (1997) define a 

mapping OWA : N →w  as an Ordered Weighting Averaging (OWA) operator of dimension N as 

follows: 

    
1 ( )1

OWA ( ,..., ) , 
N

N i ii
a a w a=

=w
    (5) 
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where ( )(1),..., ( )N   is a permutation of ( )1,..., N such that ( 1) ( )i ia a −  for all 2,...,i N= , i.e. ( )ia

is the i-th largest element in the input vector a, and the weights satisfy the properties  0,1iw   and 

1ii
w = .  

According to Xu (2005), the aggregation by means of an OWA operator can be synthesized according 

to the following three steps: 

1) Ordering the input arguments in descending order; 

2) Determine the weight associated with the OWA operator by using a proper method; 

3) Use the OWA weights to aggregate the reordered input arguments. 

The choice of the OWA weights is of crucial importance, and has thus attracted a broad strand of 

literature, and several methods have been proposed for determining the weights (see, e.g., Xu, 2005 

for a detailed discussion). The possible range of the OWA outcome varies from the minimum to the 

maximum value. For instance, the minimum, arithmetic average, and maximum operations can be 

generated using the following three weighting vectors: 

1 2

1 2

1 2 .

  (0,0,0, ...,0,1) , OWA ( , , ..., ) min ,

1 1 1 1 1 1
, , , ..., , , OWA ( , , ..., ) ,

(1,0,0, ...,0,0) , OWA ( , , ..., ) max

T

n j j

T

n j

n

T

n j j

a a a a

a a a a
n n n n n n

a a a a

= =

 
= = 
 

= =



w

w

w

w

w

w

   (6) 

Therefore, the OWA operator is similar to the weighted mean, while departing from the latter in the 

ordering step, thus producing a different interpretation. While in the weighted mean, the weights are 

attached to the information sources, in the OWA operator, the weights are attached to the data 

regarding their relative position. In this way, the decision-maker can give more importance to a subset 

of the input values in this ordering than to another subset (i.e., weights allow the decision-maker to 

attribute more importance to, e.g., low values, central values, or high values), allowing for a degree 

of compensation. The degree of compensation in the OWA operator is measured with the orness 

degree. Orness is a measure that gauges to what extent the outcome of the aggregation is near to the 

maximum of the data being aggregated, i.e., it indicates the position of the OWA operator on a 

continuum between the AND (i.e. min) and OR (i.e. max) operations. The larger the outcome, the 

larger the orness and the larger the compensation, i.e., the orness measures to what extent the outcome 

of an operator tends to be similar to the OR. The orness measure for the OWA operator introduced 

by Yager (1988) is defined as: 

1

 
1

( ) ( )
1

N

i

i

o
n

rn n iess w
=

= −
−
w .   (7) 

The OWA operator allow us to model any desired degree of orness between 0 (corresponding to the 
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AND operator) and 1 (corresponding to the OR operator), by means of an appropriate selection of 

parameters, the so-called OWA weights. Some notable examples are the following: 

(0,0,0,...,0,1) 0 orness =  

5
1 1 1 1 1

  , , ,.. , 0., .orness
n n n n n


 


=



   (8) 

(1,0,0,...,0,0) 1 orness = . 

Symmetrically, the measure of andness can be defined as ( ) 1 ( )andness orness= −w w .  

Another important quantity associated with the weighting vector is its dispersion, also known as 

entropy. For a given weighting vector w, Yager (1988) defined its measure of dispersion (entropy) 

as:  

     
1

l disp( ) og
N

i i

i

w w
=

= −w ,    (9) 

with the convention 0 log0 0 = . The measure of dispersion (entropy) aims to represent the degree 

to which an aggregation operator considers all inputs. In particular, weights are often required to have 

a maximum dispersion (given a set of constraints, e.g., an appropriate level of orness). Such 

maximum dispersion is desirable because it is inappropriate to assign too much weight or importance 

to a single source of information. Also, a normalized measure of dispersion could be obtained as: 

    
1g

 
1

ndisp( ) log
lo

N

i i

i

w w
n =

= − w .    (10) 

4.2 Application of the OWA operator to the VSTOXX index 

Several ways of determining the weighting vector of an OWA operator have been proposed in the 

literature (Xu, 2005). Most of these methods rely on supervised approaches translating expert 

opinions into a weighting vector (Dominguez-Catena et al., 2021). On the contrary, few works have 

explored ways to determine the weighting vector from data (see, e.g., Beliakov, 2003). We adopt the 

latter approach and derive the weighting vector from the information embedded in the VSTOXX 

index.  

To better understand the properties of the VSTOXX index and compute its orness over the 

sample period, we take the following steps. First, we collect the daily values of the nine country-

specific volatility indices and the VSTOXX index. Second, we group them over different time 

windows (one-, three-, and six-month horizons). Therefore, for each time window, we have M daily 

realizations that depend on how many trading days are present in the one-month, three-month and 

six-month time period (approximately 21, 63, and 121 trading days, respectively). Third, for each 

time window, the series of daily values of the nine country-specific volatility indices sorted in 
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descending order are used as input for the OWA operator. We estimate the weighting vector for the 

OWA operator by solving the following optimization problem:  

2

11
arg min (OWA ( ,..., ) )

M j j j

Nj
a a b

=
− w

w

 

 subject to:  
1

1, 0 1, 1,2,...,
N

i i

i

w w i N
=

=   =    (11) 

where ( )1 ,...,j j

Na a is the vector of volatility indices at day j, and jb is the target of the optimization 

problem, represented by the VSTOXX index at the same date. The weights 
1( ,..., )Nw w=w  are the 

ones that minimize the sum of squared differences between the OWA operator values and the 

VSTOXX index values for the different time windows, or equivalently, the ones that minimize the 

Root Mean Square Error (RMSE):  

    

2

11
 

(OWA ( ,..., ) )
RMSE

M j j j

Nj
a a b

M

=
−

=
 w

.   (12) 

As the last step, we move the estimation window forward to the next period.  

To evaluate the robustness of the window choice, we perform the proposed methodology 

using both overlapping and non-overlapping windows. In the first case (with overlapping windows), 

our estimation window considers 21, 63, and 121 trading days as a proxy for 1-month, 3-month, and 

6-month time horizons. At each step, we move the window one week forward. One drawback of the 

proposed approach is that important market events such as the annual rebalancing of the EURO 

STOXX 50 index9 can occur within the estimation window. Therefore, to evaluate the robustness of 

the results with respect to the choice of the estimation windows, we use non-overlapping windows 

based on calendar months with lengths equal to one, three, and six months. Shorter periods are not 

taken into account due to the existence of differences in the number of trading days on a weekly basis, 

especially during the Easter and Christmas periods. Moreover, for the three- and six-month estimation 

windows, we start the estimation from March 2007 instead of January to correctly match the index 

rebalancing date in September. The analysis was performed using Matlab R2021a. The results for the 

overlapping (resp. non-overlapping) exercise are reported in Table 4, Panel A (resp. Panel B), where 

we display for each estimation window the average weights, orness, and entropy (computed according 

to Eq. (10)), and the average RMSE.  

Several observations can be made. First, the choice of the estimation window has a limited 

effect on the weighting vector. More specifically, the weights are focused mainly on the third (around 

30%), the second and the fourth inputs (both around 20%), followed by the first one (usually between 

 
9 The EURO STOXX 50 composition is reviewed annually in September. 
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10% and 20%). Therefore, the VSTOXX index acts more like an OR-like measure than as an AND-

like measure of volatility for the EU stock markets during the 2007-2017 period. This result is also 

confirmed by the average orness, which is slightly higher than 0.7. An average orness value of 0.7 

indicates that the VSTOXX index signals high risk when four out of the nine country-specific 

volatility indices are high. Therefore, the VSTOXX index can detect a risky situation when a group 

of countries experiences a high level of volatility, but could fail to capture risky situations related to 

a single or a small group of countries such as peripheral ones. 

Second, the sum of the weights associated with the indices ranging from the fifth to the ninth 

position is always lower than 20% and their relative weight tends to decrease as the length of the time 

window considered increases.  

Third, the average RMSE increases with an increasing time window size, suggesting that 

optimal weights frequently vary over time. This intuition is supported by Figures 4-6, where we depict 

the evolution of weights estimated in Table 4, Panel A, along with the evolution of RMSE, orness, 

and entropy. Although the estimated weights are highly time-varying, the changes occur mainly 

among the first five indices, confirming that the VSTOXX index acted more like the maximum 

operation than as the minimum operation. In some cases, we can see non-zero weights on the right 

side of the figure (focused mainly on the seventh input), especially in the period characterized by the 

2007-2009 financial crisis. The graphical representation of orness over time provides further insights 

into the VSTOXX index behavior. In particular, the index has always been above the 0.5 threshold 

except for one or two drops (depending on the estimation window used) during the 2007-2009 

financial crisis. This means that the VSTOXX index is higher than the average of the volatility 

indices, except than during periods of extreme volatility where it acts like an average (orness = 0.5). 

On the other hand, looking at the 1-month estimation window, the VSTOXX index can be 

obtained as the maximum three times during our sample period. However, this pattern occurs during 

periods of low (in the first part of 2007), medium (January 2010), and high (autumn 2015) values of 

the VSTOXX index, thus suggesting the absence of a clear relationship between the VSTOXX index 

behavior and volatility levels. We empirically checked this hypothesis by computing the correlation 

coefficients between the VSTOXX index level and the orness estimates, which turned out to be very 

close to zero. Therefore, the VSTOXX index changed its behavior during the sample period, and the 

changes were not related to an increased or decreased volatility risk. This result casts doubt on the 

suitability of the VSTOXX index as a measure of market volatility for all the EU countries. 

Last, the entropy is also highly time-varying, indicating that depending on the time window 

considered, it was necessary to account for a different number of inputs to obtain the optimal fit. We 

do not detect a strong relationship between entropy and volatility, except during the 2007-2009 
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subprime crisis in which higher levels of the VSTOXX index are associated with a higher value of 

entropy. 

 

5.  Conclusions  

The VSTOXX index is the only option-implied index intended to monitor the risk of the EU financial 

market as a whole. While it represents the equivalent of the VIX index for the European markets 

(Kalyvas et al., 2020), the VSTOXX index has not gained the same outstanding reputation as the 

VIX, and has received some criticism in the literature regarding its representativeness of the EU 

market (see, e.g., López and Esparcia, 2020; Peterburgsky, 2021). Despite the crucial role of the 

VSTOXX index as a measure of risk for the EU stock market, there are no studies investigating its 

behavior and the relationships between the VSTOXX index and the country-specific volatility 

indices. To fill this gap, we computed model-free implied volatility indices for nine index options 

markets in the EU during the 2007-2017 period, and we inspected and contrasted the properties of 

the VSTOXX index under various market conditions. 

We found several results. First, the VSTOXX index attains an average value higher than the 

average of the country-specific volatility indices. The volatility indices of Spain and Italy were high 

during the sample period, while the volatility indices of Switzerland and the UK were the lowest on 

average, indicating that these markets acted as a safe haven during the European debt crises. Second, 

the VSTOXX index is strongly related to the French and German volatility indices during the entire 

sample period, given the high weight of these countries in the EURO STOXX 50 index. On the other 

hand, the relationship between the VSTOXX index and volatility measures in other countries depends 

on the specific period under investigation. Moreover, peripheral country volatility indices in our 

dataset (Italy, Spain) are the least correlated with the VSTOXX index, especially in the 2010-2012 

period, thus casting doubt on the ability of the VSTOXX index to measure risk for these countries 

correctly.  

Third, the OWA analysis shows that the VSTOXX index acts more like an OR-like measure 

than as an AND-like measure of volatility for the EU stock markets during the 2007-2017 period. 

since the average orness is slightly higher than 0.7. In particular, the index has always been above the 

0.5 threshold except for one or two peaks (depending on the estimation window used) during the 

2007-2009 financial crisis. This means that the VSTOXX index is higher than the average of the 

volatility indices, except than during periods of extreme volatility where it acts like an average (orness 

= 0.5). The fact that the behavior of the VSTOXX index changes during the sample period casts 

further doubts on the suitability of the VSTOXX index as a measure of market volatility for all the 
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EU countries. Moreover, an average orness level of about 0.7 indicates that the VSTOXX index 

signals high risk when 4 out of the 9 country-specific volatility indices are high. Therefore, the 

VSTOXX index can detect a risky situation when a group of countries experiences a high level of 

volatility. On the other hand, the VSTOXX index could fail to capture risky situations related to a 

single or a small group of countries such as peripheral ones. This result calls for new measures of risk 

that can complement the information provided by the VSTOXX index and capture the complexity 

and heterogeneity of the EU markets.  
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Table 1 – Options market characteristics in the nine European countries in our dataset  

Index (Country) (i) (ii) (iii) (iv) 

AEX (Netherlands) 72 37 0.25 4500 

BEL (Belgium) 37 23 2.00 4300 

CAC (France) 71 22 2.50 4800 

DAX (Germany) 172 53 5.00 4500 

FTSE (UK) 119 37 2.50 6600 

IBEX (Spain) 93 23 5.00 5500 

MIB (Italy) 60 27 1.00 6000 

OMX (Sweden) 64 38 0.50 6600 

SMI (Switzerland) 145 81 5.00 4200 

The table reports: 

i) The average number of strike prices available before filtering; 

ii) The average number of strike prices available after filtering; 

iii) The country-specific parameter ∆K chosen to make discretization errors negligible; 

iv) The average number of strike prices (after the interpolation-extrapolation procedure) used to plug-in 

formulas in Eq. (3). 

 

 

Table 2 - Descriptive statistics 

Index Average Median Min Max Std. dev. Skewness Kurtosis Jarque-Bera 

AEX  22.12 19.23 8.97 93.20 10.38 2.29 10.44 9126.54*** 

BEL 20.77 18.30 7.14 88.71 8.77 2.40 12.02 12479.42*** 

CAC 23.33 21.24 5.73 86.76 9.18 2.04 9.42 6915.80*** 

DAX  22.99 20.61 10.20 93.82 9.24 2.35 11.35 10969.81*** 

FTSE  19.82 17.39 8.67 95.91 9.18 2.41 12.06 12608.51*** 

IBEX  26.05 24.16 8.11 81.21 9.24 1.69 7.48 3767.30*** 

MIB  26.70 24.57 10.99 81.20 9.29 1.49 6.34 2396.32*** 

OMX  21.37 19.22 7.05 88.75 8.86 2.32 11.23 10661.36*** 

SMI  18.99 16.59 6.94 97.66 8.45 2.86 15.12 21463.75*** 

VSTOXX 24.28 22.23 10.68 87.51 9.14 1.95 8.78 5820.29*** 

The table reports, for each EU country under investigation plus the VSTOXX, the descriptive statistics of the risk-neutral 

volatility measure. The abbreviations for the nine countries (the most left-hand side column) are described in Table 1.  
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Table 3 –Pearson correlation coefficients 

 

 

Table 4 – Fitting exercise: OWA weight results and statistics 

Window 

length: 
1 2 3 4 5 6 7 8 9 RMSE orness entropy 

Panel A: overlapping estimation 

1-month 16.65% 18.90% 30.42% 17.25% 7.50% 2.66% 3.01% 1.93% 1.68% 0.481 0.725 0.436 

3-month 12.36% 20.41% 30.93% 21.96% 6.82% 1.92% 2.50% 1.16% 1.94% 0.649 0.720 0.485 

6-month 10.54% 22.84% 29.82% 23.59% 5.87% 1.83% 2.44% 1.56% 1.52% 0.739 0.721 0.501 

Panel B: non-overlapping estimation 

1-month 15.76% 18.99% 31.71% 16.71% 8.46% 2.46% 2.80% 1.97% 1.14% 0.482 0.727 0.430 

3-month 13.50% 20.51% 30.60% 22.16% 5.96% 1.37% 2.90% 1.36% 1.65% 0.652 0.726 0.463 

6-month 11.20% 21.73% 30.78% 23.06% 6.62% 1.48% 1.42% 1.88% 1.84% 0.751 0.722 0.482 

We report in the table the results for the fitting exercise proposed in Section 4. For each time window reported in the first 

column, the series of daily values of the nine country-specific indices (sorted in descending order) are used as input for 

the OWA operator, whose weights are computed by solving the optimization problem described by Eq. (11). The results 

for the overlapping (resp. non-overlapping) exercise are reported in Panel A (resp. Panel B), where we display for each 

estimation window the average values of weights, root mean square error (RMSE), orness, and entropy. For a definition 

of the measures, see Section 4. 

 

 AEX BEL CAC DAX FTSE IBEX MIB OMX SMI VSTOXX 

AEX  1.000          

BEL 0.969 1.000         

CAC 0.970 0.962 1.000        

DAX  0.969 0.951 0.979 1.000       

FTSE  0.972 0.969 0.961 0.953 1.000      

IBEX  0.867 0.886 0.921 0.881 0.865 1.000     

MIB  0.845 0.843 0.906 0.884 0.813 0.918 1.000    

OMX  0.960 0.978 0.968 0.960 0.966 0.899 0.863 1.000   

SMI  0.958 0.953 0.939 0.946 0.969 0.823 0.788 0.946 1.000  

VSTOXX 0.969 0.958 0.992 0.980 0.957 0.932 0.916 0.964 0.931 1.000 
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Figure 1 – Relation between the VSTOXX index and country-specific volatility indices for different 

levels of the VSTOXX index. 
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Figure 2 – Relation between the VSTOXX index and country-specific volatility indices during 

different sample periods. 
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Figure 3 – Ranking of the volatility indices over the sample period (2007-2017) 

 

We rank each of the nine volatility indices plus the VSTOXX index from the highest (1) to the lowest (10) and we report 

the evolution over time of the 5-day average of the ranking. 
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Figure 4 – OWA estimation results for the 1-month estimation window (non-overlapping) 

 
We report the evolution over time of the estimated weights, root mean square error (RMSE), orness, and entropy measures 

obtained for the fitting exercise proposed in Section 4. Shaded areas refer to different levels of volatility measured by the 

VSTOXX and used to contrast the results of the optimization exercise during different market conditions:  

• green: VSTOXX < 20; 

• orange: 20 < VSTOXX < 30; 

• red: VSTOXX > 30.



25 
 

Figure 5 - OWA estimation results for the 3-month estimation window (non-overlapping) 

 

We report the evolution over time of the estimated weights, root mean square error (RMSE), orness, and entropy measures 

obtained for the fitting exercise proposed in Section 4. Shaded areas refer to different levels of volatility measured by the 

VSTOXX index and used to contrast the results of the optimization exercise during different market conditions:  

• green: VSTOXX < 20; 

• orange: 20 < VSTOXX < 30; 

• red: VSTOXX > 30.
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Figure 6 - OWA estimation results for the 6-month estimation window (non-overlapping) 

 

We report the evolution over time of the estimated weights, root mean square error (RMSE), orness, and entropy measures 

obtained for the fitting exercise proposed in Section 4. Shaded areas refer to different levels of volatility measured by the 

VSTOXX index and used to contrast the results of the optimization exercise procedure during different market conditions:  

• green: VSTOXX < 20; 

• orange: 20 < VSTOXX < 30; 

• red: VSTOXX > 30. 
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