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Abstract: Designing antennas suitable for generating highly directive electromagnetic signals
has become a fundamental task. This is particularly relevant for the development of efficient and
sustainable point-to-point communication channels, and for energy transfer. Indeed, these are
nowadays expanding areas of research. In order to deal with said particular wave phenomena,
an extension of the electrodynamics equations is taken into account, where exact solitonic type
solutions are admitted. These waves may have compact support and travel along a straight line,
without dissipation, at the speed of light. The result suggests the design of biconic type antennas
having specific properties that are numerically examined in this paper. The cones, supplied with
an oscillating source, are embedded in a dielectric material of suitable shape, with the purpose
of driving the signal in the proper direction. The computations based on the extended model are
aimed toward simulating the possibility of generating peculiar wave behaviors, in view of practical
implementations in the framework of point-to-point communications or wireless power transmission.

Keywords: biconic antenna; directive antenna; point-to-point transmission; wireless power transmission;
model equations

1. Introduction

Highly directive electromagnetic fields involved in point-to-point (P2P) communications represent
a desired aspect of information/energy transmission, in those applications where not being intercepted
is important. This aspect is not only required for securing a private communication channel, but also to
increase the efficiency in energy transfer, thereby limiting the release of a great amount of wasted energy
in neighboring media. Typical commercial solutions involve the beaming of microwaves through
parabolic reflectors, laser beams carrying encoded data and short distance Wi-Fi communication
systems. Free space optical (FSO) communications are used for short distance, high bandwidth
transmissions. They typically rely on coherent sources, but suffer from atmospheric fluctuations
in the moisture content (particularly fog), severely affecting the link. Therefore, more promising
applications of FSOs are found inside chips [1]. Radio Frequency (RF) links are preferred to secure
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higher bandwidths over longer distances and for extended periods of time. Nevertheless, their energy
efficiency is lower in comparison to FSOs, and this aspect justifies our research.

Nowadays we may cite the ThoR consortium, active in Europe and Japan, working with
state-of-the-art chip sets and modems operating in the standardized 60 and 70–80 GHz bands.
Very recent applications (see [2]) allow one to build RF wireless P2P links featuring >100 Gbps
over 1 km at 300 GHz. The quest for high bandwidth links has increased the center frequency,
so currently radar bands [3] and millimeter waves (THz) [4] are studied as possible extensions of 5G
and beyond technologies, further strengthening the importance of establishing directive links. It has to
be noted that, as the energy increases with center frequency, so does the concern for impacts on human
health—controversial results have been found [5]. Another aspect of relevance is wireless power
transmission (WPT), fueled by the escalation of Internet-of-Things (IoT) (see [6,7]). Here, a crowd
of sensor nodes dispersed in a physical environment requires either a distributed energy harvesting
capability, or the wireless transmission of energy from a central harvesting unit. In WPT applications,
three approaches have been developed: (i) near-field coupling of inductive or capacitive loads in
resonant or non-resonant mode; (ii) far-field directive power beaming; (iii) far-field non-directive
power transfer. Item (i) is used for extremely small scale environments; (ii), which is our aim, is used
for intentional power transfer from nodes in a broader network and implements radio frequencies or
microwave means; (iii) is used for electromagnetic energy harvesting of sources nonintentionally
conceived for the scope (see, e.g., [8]). The benefits of using directional antennas instead of
omni-directional ones in wireless sensor networks (WSNs) have been pointed out, e.g., in [9], in order to
significantly reduce interference between network components. Several models of directional antenna
in the framework of WSNs are compared in [10]. There are currently two categories of commercial
directive radio antennas: On one hand are the traditional ones, including helix, log periodic array
antennas, aperture horn antennas, reflectors and patch antennas. On the other hand are smart antennas,
each consisting of an array of elements that can offer adaptive transmission. Depending on the specific
application, shapes, sizes and designs of directional antennas can be quite different. The signal pattern
from a directional antenna consists of a cigar-shaped great lobe, usually surrounded by smaller side
lobes. For a survey on radiation patterns of these devices and an application on wireless networks,
we mention, for instance, [11,12].

2. Motivation

Our aim was to design special antennas able to convey the electromagnetic signal along patterns
characterized by extremely high directivity, ameliorated in comparison to existing commercial solutions.
The basic structure we sought is that of biconic antennas, although other geometries might be taken
into account. The goal was to predict the possibility of generating peculiar waves that can be employed
in P2P communications or WPT applications in a much more energy efficient way. The cones, supplied
with an oscillating source of the proper frequency, are embedded in a dielectric material. The shape of
this medium is designed in order to drive the signal in a specified direction by respecting the classical
rules of geometrical optics. Recent similar results on this subject are provided for instance in [13],
although the functioning principles of those devices are rather different from the ones considered here.

3. Contributions

In [14,15], an original extension of the equations ruling electromagnetic phenomena has been
introduced in order to allow for the existence of solitonic type solutions. That extension features
important properties, such as the existence of a Lagrangian, the possibility to prove Lorenz’s invariance
(in the case of the so called free-waves; see Section 5) and the possibility to write the equations in
covariant form. Note that all the classical Maxwellian solutions are included in the new model.
In addition, other waves, whose explicit expression is known in many circumstances, may exist: they
display concentrated support and travel along straight paths at the speed of light. This is the most
significant contribution we gave to the field of electromagnetic transmissions, enabling the analysis
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of new exciting phenomena. Hypothetically, a directivity factor equal to infinity could be achieved,
although we think that in practice one should stay on more realistic ground. Our computations,
based on finite difference techniques, actually show the ability to simulate signals having excellent
directional properties. Some preliminary laboratory tests (not documented here) anticipate the project
feasibility. These practical results are expected to be published in the near future.

4. An Extended Formulation for Electrodynamics

In order to fix the notation, we start by writing the set of Maxwell equations in SI unit convention:

∇ · D = ρs (1)

∇× H − ∂D
∂t

= Js (2)

∇× E +
∂B
∂t

= 0 (3)

∇ · B = 0 (4)

where, as usual, D is the displacement field, ρs represents the charge sources in the medium, H is
the magnetic strength field, Js is the current source in the medium, E is the electric field and B
is the magnetic induction field. In a vacuum and in the absence of field sources, the right hand
sides of Equations (1) and (2) are set to zero. In many relevant cases, these equations are coupled
with some constitutive relations—for instance: D = ε0E + P (P being the polarization density) and
H = B/µ0 −M (M being the magnetization). As is customary, ε0 and µ0 denote the dielectric constant
and the magnetic permeability in a vacuum, respectively. To complete the set, it is customary to add
the equation expressing the Lorentz’s force on a given charge q traveling in an electromagnetic field
with velocity v; i.e.,

F = q(E + v× B) (5)

We now introduce the extensions of the equations as proposed in [14,15], wherein the possibility
to have nonzero divergence (∇ · E 6= 0) for the electric field in a vacuum, even in the absence of
sources, was postulated. This assumption produces an extra current term in the Ampère’s law. As a
consequence of this revision, two new variables and two new unknowns were added to the standard
system. The main motivation for this extension was the possibility to expand the set of possible
solutions. The reviewed model has the advantage of incorporating solitary signal-packets with
compact support (solitons) within the framework of a differential theory. The term "soliton" commonly
refers to solutions of certain nonlinear equations that are initially localized in space and evolve while
maintaining their shape (see, e.g., [16]). In our case, these will be smooth electromagnetic waves
with compact support traveling (in the simplest situation) along a straight trajectory at the speed of
light. Note that these entities are not available in the solution space of the classical Maxwell equations.
In suitable circumstances, these solitons may be assimilated to “photons”, as those emanated or
absorbed by matter upon proper solicitations. With this interpretation, the photon is not the “carrier”
of the electromagnetic field anymore, but becomes a pure wave, carrying along electric and magnetic
components. In the present paper, we do not want to stress the reader with these aspects. More insights
on these issues can be found in [15].

For the time being, let us suppose we are working in a vacuum. According to [14], by letting the
divergence of the electric field be different from zero, we arrive at the following formulation:

∂E
∂t

= c2∇× B − ρ V (6)

∂B
∂t

= −∇× E (7)
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∇ · B = 0 (8)

∂p
∂t

= µ̂ ρ E · V (9)

ρ

[
DV
Dt

+ µ̂
(
E + V × B

)]
= −∇p (10)

where, by definition, ρ = ∇ · E is the divergence of the electric field. This nonlinear system counts
ten unknowns, namely, the three components of the electric field E, the three components of the
magnetic induction B, the three components of the wave velocity field V and the scalar function p.
Basically, here we are only considering the case of a linear homogeneous medium, corresponding to
D = ε0E and B = H/µ0, so that there is room for further extensions that for the moment are not taken
into account.

The first Equation (6) is Ampère’s law where the additional term ρV has to be interpreted as
a free flow of immaterial current with density ρ, associated with the evolution of an electromagnetic
phenomenon. In principle, this latter term can be summed up to the classical one (not present in (6)),
due to the flow of current along a conductive medium that may interact with the wave. The complete
version of such a revised equation is reported in [15], Section 2. By taking in to account these additional
contributions, it is possible to model the mutual interactions between wave and guides, as studied
later in this paper.

Equation (10) is basically the Euler’s equation for non-viscous fluids. On the left-hand side we
find the divergence of the electric field, multiplied by the sum of two terms: the first one is the total

derivative
DV
Dt

:=
∂V
∂t

+ (V · ∇)V ; the second one, E + V × B, recalls the Lorentz’s law. The constant
µ̂ appearing in (10) has the dimension of a charge divided by a mass and has been estimated to be
approximately equal to 2.85× 1011 Coulomb/Kg (see [15], Appendix G). On the right-hand side, there is
the gradient of a potential p, which analogously to the Euler’s equation, plays the role of pressure.
We may actually treat the potential p as a kind of pressure term that can assume both positive and
negative values, and has dimensions equal to velocity over a time squared. Indeed, from a dimensional
analysis it turns out that ε0 p/µ̂ is a force per unity of surface. Equation (9) follows from energy
conservation arguments. This suggests the possibility of inducing pressure effects as a consequence
of a lack of orthogonality between E and V (see [17], where the model equations have been used to
simulate some electromagnetic tweezer effects). It is crucial to observe that, when ρ, DV/Dt and p are
identically zero, one recovers the usual Maxwell Equations (1)–(4) in a vacuum. Therefore, the revised
model is actually an extension of the classical one.

Equations of the type of (10), coupled with Maxwell’s ones, are usually found in some plasma
physics models—for instance, those related to magnetohydrodynamics (see, for instance, [18] or [19]).
In such examples, a number of charged particles evolve as a real fluid. In this fashion, V takes the
meaning of a fluid flow velocity and p is a proper pressure. Moreover, a mass density ρm and a charge
density ρq appear in the equations. In the present model, massive charged particles are not necessarily
involved. As a consequence, V , p and ρ assume different meanings.

As in the case of Maxwell’s equations, by multiplying the first two equations by E and B
respectively, and summing up, we get an energy balance relation:

1
2

∂

∂t

(
|E|2 + c2|B|2 + 2

µ̂
p
)
= −c2 ∇ ·

(
E× B

)
(11)

Finally, by taking the divergence of Equation (6), one finds the continuity equation:

∂ρ

∂t
= −∇ ·

(
ρV
)

(12)

which appears as an automatic consequence of the model equations.
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In view of operating in cylindrical coordinates, we propose a suitable simplification based on
symmetry arguments. This reduces the starting problem from three to two dimensions. We use the
referring system (r, ϕ, z), where the corresponding functions do not depend on ϕ. We set E = (Er, 0, Ez),
B = (0, Bϕ, 0) and V = (Vr, 0, Vz). In this way, the divergence operator in cylindrical coordinates,
applied to the electric field, takes the form:

ρ =
1
r

∂(rEr)

∂r
+

∂Ez

∂z
(13)

The other meaningful equations are:

∂Er

∂t
= −c2 ∂Bϕ

∂z
− ρ Vr (14)

∂Ez

∂t
=

c2

r
∂(rBϕ)

∂r
− ρ Vz (15)

∂Bϕ

∂t
= −∂Er

∂z
+

∂Ez

∂r
(16)

∂p
∂t

= µ̂ ρ
(

Er Vr + Ez Vz

)
(17)

ρ

[
∂Vr

∂t
+ Vr

∂Vr

∂r
+ Vz

∂Vr

∂z
+ µ̂

(
Er − Vz Bϕ

)]
= −∂p

∂r
(18)

ρ

[
∂Vz

∂t
+ Vr

∂Vz

∂r
+ Vz

∂Vz

∂z
+ µ̂

(
Ez + Vr Bϕ

)]
= −∂p

∂z
(19)

5. Free-Waves

An interesting subset of solutions is obtained when DV/Dt and p are vanishing, though ρ will be
allowed to remain different from zero. These will be called free-waves, and in general they have the
property that the triplet (V , E, B) is orthogonal with the additional conditions |E| = |cB| and |V | = c.
In this case, Equation (10) reduces to:

ρ
(
E + V × B

)
= 0 (20)

from which one could easily deduce the orthogonality of the couple E and B, and that of the couple E
and V . As it is shown in Chapter 2 in [14], the reduced system of equations is invariant under Lorentz’s
transformations and contains several interesting solutions not available in the Maxwellian context.
We are going to introduce those that are more relevant in this discussion.

In the three dimensional cylindrical coordinate system (r, ϕ, z), we set:

E = (Er, 0, Ez) =
(

g(r) f (ct− z), 0 , 0
)

B = (0, Bϕ, 0) =
(

0 , g(r) f (ct− z) , 0
)

V = (Vr, 0, Vz) = (0, 0, c) (21)

Here g and f are arbitrary functions (g is only required to tend to zero as r goes to zero). Waves of
this kind solve the whole set of Equations (6)–(10). The solution travels in the direction of the z-axis at
speed c (see Figure 1, left). By choosing both f and g with compact support, we are able to describe
solitonic solutions similar in their behavior to “photons” of any size. Some plane waves of infinite
extension trivially belong to this typology. The expressions in (21) are at the foundation of the research
carried out in this paper. As a matter of fact, the device proposed in Section 9 is finalized to generate
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this type of signal, starting from the assumption that the revised model actually predicts the possibility
of such focused compact waves.

A more general situation (see again Figure 1) is obtained by defining, for a given angle α:

(Vr, 0, Vz) =
( cr

R
cos α, 0,

cz
R

sin α
)

(22)

where R =
√
(r cos α)2 + (z sin α)2. The choice α = π/2, corresponds to the case examined above.

In particular, later we will be interested in the case where α = π/4. Here below, we just mention the
case α = 0, where the three Equations (14)–(16) reduce to:

0 = −c2 ∂Bϕ

∂z
− c

∂Ez

∂z
∂Ez

∂t
=

c2

r
∂(rBϕ)

∂r
∂Bϕ

∂t
=

∂Ez

∂r
(23)

One of the advantages of the extended model is the possibility of handling situations where Ez

and Bϕ actually depend on z (on the contrary, the first equation in (23) would be trivially satisfied).
Nevertheless, even by neglecting the dependence on z, the construction of exact solutions is rather
complicated. The problem has been approached by various authors. In [20,21], efforts were made to
come out with families of solutions that are successively generalized in view of applications involving
waves in nonlinear media. The expressions found are nonlinear and couple the unknowns Ez and
Bϕ in such a way that each one is a function of the other. Alternatively, expansions in terms of
Bessel’s functions are available. The consequence of those studies is that the setting proposed in (22)
is just a simplification. Indeed, we guess that V itself nonlinearly evolves in time depending on the
behavior of the electromagnetic fields. We did not pursue this analysis further. We instead performed
some numerical computations based on (22), since we believed that such a setting would not alter
significantly our outcomes, at least if we were suitably far away from r = 0.

Figure 1. Different wave case studies occurring in a cylindrical environment. For α = π/2 and z > 0
(left), we can get solitons with propagation fronts shifting unperturbed in the direction of the vertical
axis. For α = 0 (right), the fields belong to a torus that expands radially as time passes. The intensity
of the signal decreases with the distance r. For α = π/4 (middle), we have an intermediate situation
where the ring increases in magnitude escaping from the origin. In all cases the magnetic field B has
zero divergence and turns around the z-axis, as specified in figure.

We end this section by providing some exact solutions in the spherical context. Thus, we work
with a spherical system of coordinates (R, ϑ, ϕ). An electromagnetic wave displaying perfect
axial-symmetric spherical fronts can be expressed by the following triplet:

E =
(

0,
c
R

g(ϑ) f (ct− R), 0
)

V =
(

c, 0 , 0
)

B =
(

0, 0,
1
R

g(ϑ) f (ct− R)
)

(24)
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where f and g are arbitrary smooth functions. These are genuine free waves, according to our definition.
Note that the electric and magnetic fields have no component along the radial direction. Moreover:
E · B = 0. Since g does not depend on ϕ, the behavior is similar to that generated by an infinitesimal
oscillating dipole lined up with the z-axis. This family of solutions moves along the radial direction
with velocity c, and they are modulated by the function f . The wave-fronts are the surfaces of spheres
centered at the origin. By explicitly computing the divergence of the electric field, we get:

∇ · E =
c

R2 sin ϑ

∂
(

g sin ϑ
)

∂ϑ
f (ct− R) (25)

It turns out that there are no possibilities to impose the free divergence condition required from
Equation (1) in a vacuum, unless one chooses a g value proportional to 1/ sin ϑ (which implies the
existence of singularities at the poles). Therefore, waves with spherical fronts cannot be of Maxwellian
type. Note that the well-known spherical Hertz’s solution for an infinitesimal dipole solves the entire
set of Maxwell’s equations, including ∇ · E = 0. Nevertheless, its wave-fronts (i.e., the surfaces
enveloping the electromagnetic field) are not spherical and E is not orthogonal to the propagation
direction. More comments on this delicate subject are provided in Appendix D in [15].

Let us also observe that the field V in (24) has a nonvanishing divergence; i.e., ∇ · V = 2cR−1.
Note that this is also true for the field in (22). This aspect reveals that the model equation are not
directly related to classical fluid dynamics, where the condition ∇ · V = 0 implies conservation of
mass. No masses are involved in our case—instead, purely electromagnetic propagation in a vacuum.
We are assuming however that there may be regions where ∇ · E is different from zero.

We can further observe that, for R tending to infinity, ∇ · E decreases faster than E. This shows
that the non-linearity of the equations becomes weaker as the fields are evaluated far from the source.
Note that the superposition principle does not hold. Nevertheless, it may be recovered for sufficiently
large values of R. This agrees with the fact that the superposition principle is true in many applications
involving wave propagation—for instance, in constructive and destructive interference.

6. Numerical Methods

This section is devoted to brief descriptions of the numerical methods used to approximate the system
(14)–(19). Other techniques for similar problems were employed in [17,22]. Preliminary computations
based on this specific cylindrical setting were tried in [23]. Our approach sticks to the framework
of low-order finite difference schemes. More accurate numerical methods may be applied in future
developments. For the reasons we are going to describe, we soon discarded the idea of applying the
popular Yee scheme (see, e.g., [24,25]).

Consider the two Maxwell equations ∂E/∂t = c2∇× B and ∂B/∂t = −∇× E relative to a
region of the void space in absence of sources of any kind. Let us place ourselves in a Cartesian
reference frame (x, y, z). Yee’s algorithm does not explicitly implement the equations ∇ · E = 0 and
∇ · B = 0. Indeed, the space grids are structured in such a way to reproduce only the action of the curl
operator. As a consequence of this choice, the divergence-free conditions are implicitly satisfied.

In a simplified context, we may assume that the fields are of the form E = (Ex, Ey, 0), B = (0, 0, Bz)

and do not depend on the variable z. The scheme uses a system of two staggered grids of step h.
The fields are approximated on such grids, in order to ensure that every E component is surrounded by
four B components, and vice versa. Time discretization is performed by fractional steps, by alternating
the evaluation of E and B. In Cartesian coordinates with grid points (xi, yj), the procedure reads
as follows:

(Bz)
k+ 1

2
i− 1

2 ,j+ 1
2
= (Bz)

k− 1
2

i− 1
2 ,j+ 1

2
+

∆t
h

(
(Ex)

k
i− 1

2 ,j+1 − (Ex)
k
i− 1

2 ,j − (Ey)
k
i,j+ 1

2
+ (Ey)

k
i−1,j+ 1

2

)

(Ex)
k
i− 1

2 ,j = (Ex)
k−1
i− 1

2 ,j +
c2∆t

h

(
(Bz)

k− 1
2

i− 1
2 ,j+ 1

2
− (Bz)

k− 1
2

i− 1
2 ,j− 1

2

)
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(Ey)
k
i,j+ 1

2
= (Ey)

k−1
i,j+ 1

2
− c2∆t

h

(
(Bz)

k− 1
2

i+ 1
2 ,j+ 1

2
− (Bz)

k− 1
2

i− 1
2 ,j+ 1

2

)
(26)

where the index k refers to time. The numerical divergence of the electric field is calculated as follows:

ρk
i,j =

1
h

(
(Ex)

k
i+ 1

2 ,j − (Ex)
k
i− 1

2 ,j + (Ey)
k
i,j+ 1

2
− (Ey)

k
i,j− 1

2

)
. (27)

It is easy to check that ρk
i,j = ρk−1

i,j , for any k ≥ 1, which means that such a quantity is preserved
during the time iterations. Many approximation schemes for the electrodynamics equations trust
the fact that the divergences will not be modified during the evolution. Unfortunately, this may be
true only for isolated regions of space. When any wave interacts with other objects, for example,
incompatibilities grow by putting together the evolution equations, the divergence-free conditions
and the boundary constraints. This fact has been made evident in [26,27], where it is shown that these
restrictions are too many, so that they cannot hold together at the same time. By allowing ∇ · E to
be different from zero we can come out from this dead end, thereby justifying the adoption of the
consistent model we are examining in this paper. At this point, it should be clear that Yee’s scheme
and similar ones are not appropriate for our study.

We then adopt a classical explicit (first-order) Euler method for advancing in time. The space
derivatives in (14)–(16) are approximated by centered (second-order) differences. In cylindrical
coordinates, we end up with the scheme at the grid point (ri, zj):

(Bϕ)
k+1
i,j = (Bϕ)

k
i,j +

∆t
2h

(
− (Er)

k
i,j+1 + (Er)

k
i,j−1 + (Ez)

k
i+1,j − (Ez)

k
i−1,j

)
(Er)

k+1
i,j = (Er)

k
i,j +

c2∆t
2h

(
−(Bϕ)

k
i,j+1 + (Bϕ)

k
i,j−1

)
− ∆tρk

i,jVr

(Ez)
k+1
i,j = (Ez)

k
i,j +

c2∆t
2h

(
(Bϕ)

k
i+1,j − (Bϕ)

k
i−1,j

)
+

c2∆t
ri

(Bϕ)
k
i,j − ∆tρk

i,jVz (28)

For the computation of the divergence of the electric field, we used the following approximation
of (13), valid in cylindrical coordinates:

ρk
i,j =

(Er)
k
i,j

ri
+

(Er)
k
i+1,j − (Er)

k
i−1,j

2h
+

(Ez)
k
i,j+1 − (Ez)

k
i,j−1

2h
(29)

To ensure stability we must require a Courant–Friedrichs–Lewy (CFL) type condition—i.e., that
the time-step ∆t is proportional to the space discretization parameter h. Such a condition is not
particularly restrictive for our purposes.

Equations (9) and (10) contain the time derivatives ∂p/∂t, ∂V/∂t. It is quite simple to come out
with appropriate numerical schemes for their discretization. However, in this paper we are mainly
concerned with the case of free-waves (see Section 5), so that p and the total derivative DV/Dt will be
set to zero at any time. Since, in practice, E and V will stay orthogonal, Equation (9) becomes trivial,
whereas (10) is substituted by (20). In the particular setting we are interested in, the vectors of the
triplet (E, B, V) will constitute an orthogonal frame and satisfy |E| = |cB| and |V | = c. What we just
wrote is always true with the exception of some transition regions that will be described later on.

Let us notice that the approximation of (10) in its general form is far from being trivial. First of
all, there is no viscous term, a property that makes the theoretical analysis and the numerical
implementation quite hard. Secondly, as already pointed out in the examples of Section 5, we also
have ∇ · V 6= 0. This means that many numerical schemes available for the discretization of the
equations of fluid dynamics may turn out to be unsuitable. Finally, we observe that there may be
points in the computational domain where ρ = ∇ · E is zero (or relatively small). This is usually
true in correspondence with points where ∇p is also zero. As a consequence, the unreliability of the



Appl. Sci. 2020, 10, 8828 9 of 18

ratio ∇p/ρ may give origins to severe instability problems in the treatment of (10). As mentioned
above, here we will stay away from these situations; nevertheless, such problems exist and should be
appropriately pondered within the general context.

Later in this paper, we will study the transmission of an electromagnetic wave across the interface
separating media displaying different conductive properties. We describe what happens inside each
medium with the help of the equations relative to free-waves. In the instant of transition, the wave
is not of free type, so that suitable corrections on V are taken into account. For simplicity, we will
continue however to neglect the role of the potential p.

7. Design of the Directional Antenna

The geometry we are willing to test is shown in Figure 2. The antenna device is constituted
by two conductive cones separated by a little gap. These are supplied by an alternating current via
a coaxial cable (not shown in figure), carrying a frequency whose wave-length, in most applications,
is of the order of the magnitude of the conductive support size. Each cone features an angle of π/2
at the vertex. The need for a gap, possibly very small, between the cones is dictated by the size of
the wire connecting to the electrical source. We presume that a gap of approximately 5% of the entire
size should not produce significant negative effects, but, of course, this also depends on the degree of
directivity we would like to achieve.

Figure 2. A biconic antenna (upper and lower blue cones) is surrounded by a dielectric of a suitable
shape (pink ellipsoid-like body). The aim is to get an output signal where the Poynting vectors are
aligned horizontally. The black arrows are initially omnidirectional, but they emerge from the dielectric
with zero components along the z-axis.

We consider here the case where the entire antenna is immersed in a region occupied by a linear
homogeneous medium Ω, having phase velocity of the electromagnetic radiation lower than the
speed of light in vacuum. Such a medium is characterized by a permittivity coefficient εrε0 > ε0

and features non-magnetic properties, so that the magnetic permeability coefficient will remain µ0.
In Figure 2, the shape is designed depending on some refraction properties that we are going to
describe here below.

Our aim is to have a signal emerging from the antenna perfectly horizontally. In this way,
the electromagnetic field follows the behavior of Figure 1 (central picture), while it remains in Ω.
After the transition to the outside medium (vacuum or air, in this case), the message follows instead
the behavior of the right-hand side picture of Figure 1. In terms of the velocity vector V , we have the
following situation. Inside Ω, the magnitude of V is: |V | = 1/

√
εrε0µ0 = c/

√
εr. In the open space,
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we have as usual: |V | = c. At the interface between the two media, we enforce the rules of geometrical
optics. We denote by ∂Ω the border of Ω, i.e., the interface between the dielectric and the outside
vacuum. The determination of the surface ∂Ω follows from the solution of a differential problem as
explained hereafter.

As shown in Figure 3, in the Cartesian framework (r, z), ∂Ω corresponds to the graph of a function
z = s(r) defined through the following constraints. First of all, the curve passes through the point
(a, b). We have a = b when the cones have the vertex angle equal to π/2 (here we are neglecting the
gap between the cones). A light ray comes from the origin with an angle α. As we said, the curve s
must be designed in such a way that the emerging ray is horizontal. To proceed with the determination
of s we need to recall Snell’s law (see [28], p. 38). In Figure 3, ϑ1 denotes the difference between α

and the angle determined by the direction normal to ∂Ω. Similarly, ϑ2 denotes the angle between the
normal direction and the abscissa. In this particular situation, Snell’s law says that:

√
εr sin ϑ1 = sin ϑ2 (30)

(a,b)

a

q

q2

q

1

1

Figure 3. Inverse problem to be solved for the determination of the surface ∂Ω . After refraction, a ray
coming from the origin with a certain angle α must emerge perfectly horizontal.

We can translate in formulas the above settings by writing:

tan(ϑ2) = −
1

s′(r)
tan(α) =

s(r)
r

tan(ϑ1) = tan(ϑ2 − α) =
r + s(r) s′(r)
s(r) − r s′(r)

(31)

where the prime denotes the derivative with respect to the variable r. Using the trigonometric identity
sin ϑ = tan ϑ/

√
1 + tan2 ϑ, we get:√

1
εr

=
tan(ϑ1)

tan(ϑ2)

√
1 + tan2(ϑ2)

1 + tan2(ϑ1)
=

r + s(r) s′(r)√
r2 + s2(r)

. (32)

By recovering s′ we finally arrive at the nonlinear differential problem:
s′(r) = − 1

s(r)

−r +

√
r2 + s2(r)

εr


s(a) = b

(33)
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The above differential equation may be easily solved numerically, thereby obtaining, for different
values of the parameter εr, the curves of Figure 4. One has just to pay attention to the fact that the
derivative of s at the intersection with the r-axis is equal to infinity.

Figure 4. Shapes of ∂Ω for different values of the relative permittivity coefficient: from left to right,
εr = 2, 3, 4, 5, 6, 7.

8. Numerical Simulations

This section is dedicated to the presentation of some numerical simulations, obtained by applying
the schemes described in Section 6. The computational domain is the square Q = [0, 2L]× [−L, L],
where L > 0 is a parameter. We chose by default L = 1. The first variable is related to r and the second
one to z, so that we are actually operating on a cylinder with a vertical axis. In Q, we consider a squared
grid, spaced by h := 1/N, where N is an integer. The total number of nodes is then proportional to N2.
The speed of light in a vacuum is normalized to 1. The development of the process is studied in the
time interval [0, T], for a certain T > 0. In order to guarantee stability, the time-step ∆t will be chosen
to be suitably small.

We set up in advance the velocity field V in order to have |V | = 1/
√

εr < 1 inside the dielectric,
where we suppose that the vectors are emanating from the origin. We have |V | = 1 on the remaining
part of the domain where the vectors are horizontal (perpendicular to the z-axis). The deployment of
the velocity field is displayed in Figure 5, for the cases when the dielectric is missing (left) and when it
is present (right). In a more rigorous framework, |V | should not be fixed in advance, but computed as
time evolves according to Equations (18) and (19). As we specified in Section 6, this approach is not
easily implementable from the numerical viewpoint, especially when the time advancing procedure is
the trivial Euler method. Numerical solutions, in this circumstance, are too much affected by viscosity,
so that the results are not reliable. Since the development of more sophisticated techniques is outside
of the goals of this paper, we do not insist further on these generalizations. For the above reasons,
we decided to assume that |V | is known a priori.

As we are interested in the evolution within the region determined by the two cones of the
antenna, suitable constraints are placed in the computational domain. For simplicity, we assume
that these guides are perfect conductors, though the situation might be not realistic. Additionally,
we should distinguish between the nodes inside the dielectric and those outside. In the transition
between the two media the fields are updated by enforcing that B remains continuous, whereas E has a
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jump (these are consequences of the Fresnel’s conditions; see, e.g., [28], p. 40). In practice, we truncate
to zero the longitudinal component Er at the first node just outside the dielectric.

Figure 5. Displacement of the vector field V within the computational domain for N = 40. The antenna
boundaries are represented by the solid lines. The plot on the left-hand side shows V when the dielectric
is absent. In this case we have |V | = 1. On the right-hand side, V is radial with |V | = 1/

√
εr inside the

dielectric, and horizontal with |V | = 1 outside. The situation is referred to the choice εr ≈ 2 (see the
left-most curve in Figure 4), so that 1/

√
εr ≈ 0.7.

As an initial guess, we take a portion of spherical wave. Based on (24), we set g(ϑ) = (sin ϑ)2 for
π/4 ≤ ϑ ≤ 3π/4. This modulates the displacement along the transverse direction. Concerning the
longitudinal direction, we take f (R) = (cos ωR)2 with ω = 7 and π/2ω ≤ R ≤ 3π/2ω. The resulting
electric field is shown in Figure 6 (left). The corresponding shapes of |E| can be seen in the very first plot
of Figures 7 and 8. Note that this displacement has non-zero divergence (ρ 6= 0). The corresponding
initial magnetic field is orthogonal to the plane of the figure and we have |B| = |E|. Successively,
the wave evolves according to the model equations. The single initial bump displays a wave-length
comparable to the dimensions of the antenna. Of course, one may also consider a train of pulses lined
up one after the other. This option provides however results perfectly similar to those pertaining to the
single pulse.

The boundaries are placed at a 45 degrees angle; thus, the imposition of the constraints comes
very naturally. Neumann boundary conditions for the electric field are imposed on the antenna guide.
This is done by respecting the perfect conductivity relation. Again referring to Figure 6 (right), at each
time-step, the (red) vector of components (Er, Ez) in proximity of the boundary is projected onto the
direction normal to the surface, giving birth to the (green) vector 1

2 (Er − Ez, Ez − Er). This last vector
is successively shifted up to the corresponding boundary grid point.

The parameters relative to the numerical tests are provided in the figure captions. As far as
Figure 7 is concerned, the simulations rely on the field V given in the first plot of Figure 5. At the
grid points where V is not defined, we are actually solving the system (6) and (7) with V = 0. At the
end of the guide the solution turns out to be discontinuous, thereby producing sensible numerical
instabilities. The general behavior of the wave is however reasonably well reproduced.

Concerning Figure 8, this is obtained from the field V as given in the second plot of Figure 5.
Again we set V = 0 at the remaining grid points. The solution is clearly focused in the
horizontal direction. The approximation suffers from the discontinuity across the dielectric boundary.
Improvements could be obtained through the adoption of a more accurate discretization scheme.
Anyway, our purpose here was to show that numerical simulations are feasible and produce
a consistent prediction.
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Figure 6. (Left) displacement of the initial vector field E for N = 40 and ω = 7. (Right) how Neumann
type boundary conditions are imposed on the perfectly conducting antenna guide.

Finally, in Figure 9, we show the results when V is totally eliminated. We are not, however, enforcing
the condition ρ = ∇ · E = 0. Since the initial guess itself does not satisfy ρ = 0, we cannot claim that we
are actually solving the full set of Maxwell’s equations in a vacuum. We are not even solving the classical
wave equation, since we can just deduce that: ∂2E/∂t2 = −c2∇× (∇× E) = c2(∆E−∇ρ). On the other
hand, there are very few initial data recoverable from (24) such that ρ = 0. This is true, for instance,
for g = 1/ sin ϑ, which does not correspond with a consistent choice for a signal emerging from an
antenna (see the discussion in [14], Chapter 1).

The behavior of the solution shown in Figure 9, especially regarding the second plot (to be
compared with the second plot of Figure 7), is very inefficient. As far as the successive plots are
concerned, some of the energy remains concentrated at the endpoints of the guide. Noticeably, in most
of the computational code available on the market, the checking of the zero divergence condition in
vacuum is disregarded. This means that, if ρ at a certain time starts assuming nonvanishing values
(because of imposing some boundary constraints deriving for example from a scattering object),
the problem is not approached in the proper way. This is true, for instance, in the case of Yee’s scheme,
mentioned in Section 6, whose implementation strictly trusts the fact that ρ must remain zero for all
times. The real trouble is that Maxwell’s equations are too restrictive. In short, the solution of the
vector wave equation, in a given domain with generic boundary conditions, has no chance to have its
divergence be zero. That is why we adopted the extended model in our simulations.

We end this section with a few remarks. We placed our initial guess at a distance from the real
source (the gap between the two cones). In truth, we do not exactly know how the signal is actually
created (by going backwards the initial guess degenerates into a singularity). This uncertainty is
a consequence of the fact that the mechanism of antenna emission is still not completely clear. First of
all, the guides should not be assumed to be perfect conductors, a property that involves a nontrivial
discussions about boundary conditions and the way they should be approximated (see, e.g., [29–31]).
Such more complicated situations activate the whole set of modeling equations. In fact, we start with
missing the orthogonality between E and V . This generates values of the potential p different from zero,
influencing in this way all the other variables. Secondly, there is a resonance process (depending on the
size and shape of the device) that allows for the propagation of waves only if they are above a certain
frequency. These issues are just sketched in this paper and are often underestimated in the design
of a device. A transmitting antenna is an object transforming a certain signal by conferring to it the
capability to travel in free space without further help from the source (see the final comments in the
preliminary paper [32]). We believe that applied physics necessitates a better theoretical understanding
of the mechanism of antenna emissions. Indeed, more accurate computations cannot neglect this
crucial aspect.
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Figure 7. Evolution of |E| when the dielectric is not present. Simulation parameters: L = 1, N = 120,
T = 1.2 and ∆t = 1/1800. The propagation velocity is c = 1.

Figure 8. Evolution of |E| in presence of the dielectric. Simulation parameters: L = 1, N = 120, T = 1.4
and ∆t = 1/1800. The propagation velocity is c = 0.7 in the dielectric and c = 1 outside.
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Figure 9. Evolution of |E| by following the classical Maxwell model. Simulation parameters: L = 1,
N = 120, T = 1.2 and ∆t = 1/1800. The propagation velocity is c = 1.

9. Highly Directional Emissions

The computations of Section 8 have been realized for a relative permittivity coefficient εr ≈ 2,
corresponding, for instance, with polyethylene. This is in fact the material that we would like to use in
laboratory experiments, due to the possibility of shaping the dielectric through a 3D printing process.

A further conical metal reflector can be added to the device of Figure 2, obtaining the final antenna
schematically represented in Figure 10. The angle at the vertex of the reflector is again π/2. In this way,
the horizontally spreading signal is driven in the vertical direction. Referring to Figure 1, during the
whole process, an annular wave starts inside the dielectric following a path like that shown in the
central picture. When exiting the dielectric, the new Poynting vectors are lined up to the vectors V ,
as depicted in the picture on the right-hand side of Figure 1. Finally, after the last reflection, the signal
is converted into a highly directional beam, such as that of the picture on the left-hand side of Figure 1.

During all these transitions there is no breaking of the stream lines of the magnetic field,
which remain closed curves encircling the z-axis. After projection on the plane orthogonal to the
z-axis, the evolution of the wave displays a central symmetry. This peculiar property is not commonly
shared by other devices—for example, parabolic reflectors (when the source is represented by a classical
dipole) or horn antennas. These devices actually need to break their initial symmetries in order to
radiate [33].

Preliminary experiments without the presence of the dielectric showed that the signal emerging
from the reflector has an annular shape. The fields are thus polarized in a sort of a circular fashion.
The signal is absent nearby the z-axis. The global shape of the emitted wave is that of a torus.
The directivity is relatively good, but, due to the lack of the dielectric lens correction, the toroidal wave
grows with distance from the source, following a conical pattern. In those tests, the cones were replaced
by two conductors having a complicated shape, in order to skip the construction of the dielectric
medium Ω. The outcome was interesting but still far from the directional signal we would like to
achieve. The above experiments are however quite crucial in confirming some theoretical predictions.
Waves as those just described do not exist in the Maxwellian framework. Indeed, the request that
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the divergence of the electric field must be always zero in a vacuum does not allow the inclusion of
such special waves in the solution space. This means that the adoption of the revised model is rather
important in the description of antennas already existing, opening the path to the design of a new
generation of sustainable, efficient and performant devices.

Figure 10. Antenna completed with a conical reflector. The final output signal has parallel Poynting’s
vectors. The magnetic field envelopes closed circles around the z-axis. The solitonic wave is expected
to travel by carrying its associated information without dissipation.

It finally has to be noted that, if perfect directional signals exist, where the rays are all parallel,
the natural receiver for this kind of antenna is the antenna itself. Indeed, as in a mirror image,
the parallel rays are converted back and concentrated at the gap of the cones. There, they can be finally
transformed in potentials.

10. Conclusions

We guessed the possibility of generating electromagnetic waves with extremely high directivity.
This prediction is suggested by an extension of Maxwell’s equations in a vacuum aimed to simulate
compact signals, traveling unperturbed at the speed of light. The enlargement of the solutions space
relies on the fact that the divergence of the electric field may assume values different from zero also in
the absence of charges associated with physical particles—for instance, electrons. This requirement
is indeed able to explain many electromagnetic phenomena, as documented in [15]. In addition,
the revised model provides the exact link between electrodynamics equations and the rules of
geometrical optics, a property that the standard Maxwellian approach is not able to reproduce,
unless one accepts a sequence of rough simplifications (see, e.g., [28], Section 3.1).

The waves belonging to the category we studied in this paper display a toroidal topology, with the
magnetic field distributed along closed lines following the toroidal axis. With the help of simple
devices, it is actually possible to create waves having a similar topology and developing along conical
patterns. These emanations cannot be described by the classical Maxwell equation, so that the adoption
of the extended model becomes a necessity dictated by reality.

The theory predicts that antennas with infinite directivity could possibly be built. Reality is
a different issue, so reasonable quantitative confirmations will only be made as the results of the first
experiments are made available. Once it is demonstrated that such a project is feasible, generating these
waves becomes only matter of technical effort. The reader can of course understand the importance
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of this achievement. In this paper, we indicated a way to fabricate antennas devoted to this purpose.
These are obtained by filling the space delimited by a biconic antenna with a dielectric medium
placed in contact with the cones, and such that the boundary between the medium and the external
vacuum is designed following a suitable curvature. The specific signals produced are expected to
reach a prescribed target without dissipating their energy along the path. Moreover, since most
of the theoretical passages are based on the rules of geometrical optics, we argue that the role of
frequency might not be so crucial, thereby allowing transmissions ranging within a rather broad band.
All these properties should guarantee a number of positive outcomes in terms of sustainable operation,
safe energy transfer and secure information beaming.
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