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Abstract

Continual Learning (CL) has emerged as a paramount
area in Artificial Intelligence (AI) because of its ability to
learn multiple tasks sequentially without significant perfor-
mance degradation. Despite the growing interest in CL
frameworks, a critical aspect must be addressed: the in-
herent biases within training data. In this work, we show
that, if overlooked, these biases can significantly impair the
efficacy of continual learning models by inducing reliance
on suboptimal shortcuts during data stream and memory re-
tention, exacerbating catastrophic forgetting. In response,
we present Learning without Shortcuts (LwS), which sets
forth two primary objectives: (i) to identify and mitigate
the exploitation of spurious correlations within the data
stream and (ii) to develop a novel mechanism that con-
structs a fair memory buffer used in replay-based CL strate-
gies. Our buffer construction strategy exploits the model
confidence in a given example to balance the portion of
samples per class, hence their contribution when replay ac-
tivates. Unlike existing methods, LwS is agnostic to pro-
tected attributes, and results highlight that the proposed
solution is indeed resilient to spurious correlations in CL
settings. Code is available at https://github.com/
aimagelab/mammoth

1. Introduction
The implications of biases in Artificial Intelligence (AI)

are profound, raising significant practical concerns. As such
systems are increasingly integrated into society, they can
exacerbate societal stereotypes, leading to significant ethi-
cal challenges. Notably, recent studies demonstrate how al-
gorithms can exhibit racial bias and lead to disparities in pa-
tient care and treatment outcomes [17, 41]. Beyond health-
care, biases in AI can also affect other critical areas, such as
criminal justice, financial services, and employment, where
algorithms might reinforce existing inequalities [39].

Moreover, modern AI systems are trained on an ever-

increasing volume of data, much of which may not be avail-
able during the initial training phase, e.g. new tasks or
classes can be discovered as the system evolves. For this
purpose, Continual Learning (CL) has become a promi-
nent paradigm, especially when privacy concerns or limited
resources constrain access to previous data. In CL, mod-
els learn tasks sequentially, facing the challenge of mitigat-
ing catastrophic forgetting [35,42], where the model forgets
previously acquired knowledge while learning new tasks.
In this respect, numerous CL methods exploit a rehearsal
mechanism to protect against forgetting [2,5,8,9,33]. These
methods utilize a small memory buffer to store past data
and alternate training between the current task and the ex-
amples stored within the buffer. The sampling strategy typi-
cally employed to add or remove examples is reservoir sam-
pling [47,58], a stochastic method that ensures equal repre-
sentation of previous tasks within the buffer.

Due to its broad applicability, the intersection between
bias-related issues and CL has been recently studied in [24].
We build on this research line, arguing that rehearsal meth-
ods have significant limitations when applied to tasks influ-
enced by bias and spurious correlations. Since the memory
buffer holds only a small random subset of past examples,
it will likely be dominated by instances that exhibit spuri-
ous correlations, which may lead to the under-represented
groups being unfairly penalized. As the samples from the
buffer offer the only source of wisdom regarding past tasks,
a buffer poisoned with spurious correlation could further
amplify existing biases, creating a compounding effect.

To illustrate the issue, we direct the attention of the
reader to Fig. 2. In CelebA [32], attributes like Wear-
ing Necklace exhibit strong correlations with latent vari-
ables like Gender, i.e. wearing a necklace is more common
among women. As a result, the model is prone to learning
shortcuts [20], associating the presence of a necklace with
female traits and its absence with male traits. Such a short-
cut can lead the model to predict a necklace on a woman
even when she is not wearing one, or, conversely, fail to
recognize a necklace on a man who is. To avoid shortcuts,
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Figure 1. Overview of the proposed framework called Learning without Shortcuts (LwS). Left: during training, LwS employs tailored
optimization objectives to relieve both forgetting and shortcut learning. Specifically, LwS couples the standard cross-entropy loss on labels
Y with an auxiliary self-supervised term (i.e., cluster loss). Importantly, the training loss for each example is dynamically adjusted to
amplify the contribution of under-represented groups (e.g., women who do not wear a necklace) during training. Right: a visual of the loss-
based criterion used by LwS to insert new elements within the memory buffer. The loss values serve as an effective proxy for distinguishing
between bias-aligned and unaligned examples, a feature we leverage to achieve balanced representation across groups.
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Figure 2. Attention heatmaps for Wearing Necklace, Receding
Hairline, and Wearing Hat attributes in CelebA, using Empiri-
cal Risk Minimization (ERM) and ClusterFix [12]. ERM models
often concentrate on irrelevant areas, exploiting shortcuts. Con-
versely, CFIX shows focused attention on more pertinent features.

current debiasing methods [49] exploit expensive auxiliary
annotated metadata (e.g., gender or ethnicity), or training
paradigms whose outputs are invariant to biases [30]. How-
ever, none of these approaches were designed to handle a
continuous stream of evolving and potentially biased tasks.

In light of these intuitions, we propose a novel approach
—Learning without Shortcuts (LwS), see Fig. 1— to mit-
igate the effect of spurious correlations in CL without rely-
ing on latent variables supervision. LwS introduces i) an
unsupervised objective against shortcuts while training on
the current task, and ii) a loss-based sampling algorithm to
ensure a fair representation across the groups in the buffer
population. We conducted experiments on three bench-
marks and achieved a notable improvement in average and
worst-group accuracy, with our results even sometimes sur-
passing methods that employ latent variable supervision.

2. Related Works

2.1. Learning without Spurious Correlations

The field of debiasing has attracted significant attention,
as it is crucial for ensuring fairness and robustness in ma-

chine learning models. The primary focus of debiasing
methods is to mitigate the impact of spurious correlations,
which can lead to biased predictions. Traditional methods
like Distributionally Robust Optimization (DRO) [45] and
Group Distributionally Robust Optimization (GDRO) [49]
aim to optimize performance across varying data distribu-
tions. However, discovering which attributes cause bias-
related issues often presents practical challenges in real-
world scenarios. Consequently, there has been a shift to-
wards unsupervised methods, which do not need protected-
group labels, offering a more pragmatic approach for di-
verse application scenarios [29, 38, 40].

Unsupervised Debiasing Techniques. Recent research
trends have focused on unsupervised methods for scenarios
where access to protected group labels is lacking. Other
debiasing approaches employ cluster-based assignments as
a proxy of sensitive attribute supervision [53,55]. Following
this intuition, ClusterFix [12] integrates cluster-based DRO
and a re-weighting sample importance strategy. Based on
this, we introduce a novel loss-based buffer management
approach, tackling a crucial shortfall of these models, which
were not originally designed for incremental environments.

2.2. Continual Learning

Continual Learning (CL) is a research field focused on
enabling models to learn from continuous streams of non-
i.i.d. data. To do this without incurring the catastrophic for-
getting [35] phenomenon, many methods adopt a rehearsal
strategy, in which a subset of the incoming data is stored and
replayed during the training of the model [2, 8, 11, 23, 46].

Rehearsal has proven successful in many CL scenarios,
due to its effectiveness [13, 15] and flexibility in complex



scenarios, such as those with annotation noise [4, 26, 37],
partial lack of supervision [7,25], or absence of task bound-
aries [8, 14]. Other methods, such as regularization-based
approaches [1,27,44,63], or architectural solutions [34,48],
have also been proposed, but they are generally less effec-
tive [8, 57]. One notable mention is the recently introduced
prompt-based methods [36, 54, 59, 60], which have shown
effectiveness in mitigating forgetting. However, their appli-
cability remains limited by the need for a huge initial pre-
training and Transformer-based architectures.

The CL literature can be broadly categorized into three
primary scenarios [57], based on whether the model has ac-
cess to task identifiers during inference (Task-Incremental
and Class-Incremental) or the presence of domain shifts in
the input distribution (Domain-Incremental). Among these,
the Class-Incremental (Class-IL) scenario is by far the most
widely adopted [6, 23, 61], as it is usually regarded as the
most challenging and realistic setting for real-world appli-
cations [2, 15, 57]. In Class-IL, the model is trained on a
sequence of tasks, each containing a separate set of classes,
and is evaluated on all the sequences.

Debiasing Continual Learning. Despite the recent ad-
vances, CL methods are known to be sensitive to spurious
correlations. In particular, preliminary works [28, 51] have
shown that the problem of transfer bias is exacerbated in
CL, with the former influencing both future and past tasks.
Since the current literature regarding the issue of CL under
spurious correlations is still in its infancy, methods currently
employed to mitigate this issue build upon well-established
rehearsal CL. Notably, [28] introduces a group-aware Bal-
anced Greedy Sampler (BGS) technique to adjust the last
classification layer of the model after the end of each task.
However, this method serves as an effective proof of con-
cept but relies on the availability of group labels, often a
limitation due to the need for privileged and costly infor-
mation. Differently, LwP [24] separates the feature extrac-
tor from the classification network, with the latter trained
from data obtained by a generative model. However, the ef-
fectiveness of such a strategy is still limited in CL, as recent
works [18,43,56] have highlighted the difficulty of training
a generative model from a changing data stream.

3. Problem Definition

Spurious Correlations. AI methods often focus on the
interaction between an input space, represented as X (e.g.
an image), and its associated output space, Y (e.g., ground
truth label). In this context, we introduce the notion of a
latent variable, referred to as z. This variable captures a
unique attribute of an element x ∈ X , ranging from broader
aspects like the presence of artifacts to more detailed image
features such as the green grass in the background. To de-
fine this concept precisely, we can describe an element x

with a set of binary attributes A = {z1, z2, . . . , zn}.
Even though these attributes may correlate with Y , they

do not necessarily correspond to an attribute of interest. For
example, the presence of a cow (Y ) might be correlated
with a background of green grass, where z = 0 indicates
no green grass and z = 1 indicates the presence of green
grass. While this correlation exists, relying on it can lead
to harmful shortcuts in learning: recognizing the presence
of grass may be easier, but it does not indicate the presence
of a cow. Hence, relying solely on this correlation could
lead to misinterpretation. This discrepancy is often referred
to as spurious correlations [19]: associations in the data do
not imply a causal relationship with the outcome.

Continual Learning with Spurious Correlations. In an
incremental setup, the model is trained sequentially on dif-
ferent datasets D1, . . . , DT , where each Dt = (Xt, Yt) rep-
resents a supervised classification task. Each dataset intro-
duces some variation compared to the others, making the
tasks distinct from one another. For example, each task
could involve classifying a different visual attribute. The
objective is to develop a function f : Xt → Yt that ef-
fectively integrates new knowledge from successive tasks
without losing performance on previously learned ones.

Within this context, each dataset Dt may be influenced
by different biases. Consequently, the presence of spurious
correlations has a detrimental effect on CL, especially on
those methods that build upon a memory buffer, like replay-
based approaches. Indeed, their effectiveness relies heavily
on the quality of samples stored in the buffer, with signifi-
cant degradation as it becomes contaminated by bias.

4. Method

We herein present Learning without Shortcuts (LwS),
a continual debiasing approach that relieves the harmful
effect of bias on learning from a data stream while pre-
venting catastrophic forgetting. In particular, we exploit
an auxiliary self-supervised approach to reduce the inci-
dence of bias. This approach is popular in offline set-
tings [12, 53, 55, 62] and exploits pseudo-labeling to reg-
ularize the latent representation of the model. Specifically,
the pseudo-labels are obtained by clustering the latent space
with k-means. Notably, this strategy poses technical chal-
lenges in continual learning due to the emergence of new
tasks and associated cluster sets. To overcome these issues,
we introduce the following two modules.

Data Stream. We start by extracting cluster assignments
for the samples of the current task. These will be used
throughout the task to ensure alignment with the initial rep-
resentation. Here, the primary goal is to minimize the dis-
tance among samples that belong to the same inferred group
(cluster) yet share the same class, thereby reducing the mu-
tual information between spurious correlations and target



labels within the data stream [53, 55]. This auxiliary task
has also been shown to enhance the smoothness of the latent
space [62], a property that facilitates the reuse and transfer
of features across tasks [5, 16, 52].
Memory Buffer. To address the shortcomings of tradi-
tional replay-based methods, we propose a loss-based strat-
egy to update the memory buffer. Specifically, the magni-
tude of the loss value is utilized to select which examples to
store in the buffer. Secondly, we build upon knowledge dis-
tillation [22] to form the replay regularization objective. In
contrast to common techniques, our method uses the output
of the cluster classifier as the teaching signal for knowledge
preservation. By doing so, we can maintain cluster coher-
ence across current and future tasks, thereby mitigating for-
getting and enriching transfer capabilities.

4.1. Data Stream Objective

Cluster Assignment. At the start of each task t, our
approach assigns a cluster c to every element within the
dataset Dt. This step involves partitioning Dt based on tar-
get labels y and performing k-means for each partition with
features from a pre-trained frozen model Fpre : X → Rd.
Notably, the model Fpre remains the same across all tasks.
Debiased Training. From the samples of the data stream,
our model is given a twofold objective. Firstly, it solves the
binary classification problem of the task t, where y repre-
sents the ground truth label. Secondly, it adheres to a spe-
cific objective that constrains the feature space. This objec-
tive requires the model to remain consistent with the origi-
nal cluster assignments c.

To ensure that minority groups are not overlooked, we
modify the optimization objective to re-weigh the impor-
tance of each example. In practice, we assign a weight, wc

in Eq. (3), proportional to the average error and the cardi-
nality of its cluster. The error considers the original and
pseudo labels y and c.

Formally, let F : X → Rd be the feature extractor and
let Tt : Rd → R1 and Ct : R

d → RC indicate, respectively,
the task head and the cluster classifiers. The latter are two
linear projections; while the first outputs the logits of the
classes of the t-th task, the second is instead relevant for
the auxiliary self-supervised objective. The parameters of
the feature extractor F and the task head Ct are updated
continuously across tasks. Differently, the parameters of
the cluster classifier Tt are optimized only during task t.
Formally, the clustering-structural loss is defined as follows:

Lcluster = LCE(Ct ◦ F (x), c) (1)

The main objective of the optimization process is learning
to classify y, which is achieved through a task-weighted
classification loss. Indeed, the loss is weighted by a factor
wc, which reflects the “importance” of the cluster to which

the sample belongs. Finally, the task-weighted classifica-
tion loss is defined as follows:

Ltarget = wcLBCE(Tt ◦ F (x), y) (2)

where wc is:
1

Nc
E(x,y)∼Pc

[LBCE(Tt ◦ F (x), y) + γLCE(Ct ◦ F (x), c)]

(3)
Then, the overall stream objective:

Lstream = Lcluster + Ltarget (4)

4.2. Memory Buffer Objective

We now present our approach to managing the memory
buffer. During the execution of task t ∈ {1, 2, . . . , T}, the
buffer memory serves as a temporary storage area. Its ca-
pacity, denoted as M, sets the maximum number of ele-
ments it can hold at any given time. Further, we can allocate
a maximum number of elements for each task, known as the
budget of the task B. To select which example from the cur-
rent task to insert, our insertion strategy considers the loss
value – defined as LBCE(xi) – for the target label y. After-
wards, we use a set of intervals, called bins, to categorize
these loss values into distinct ranges. An example within
the memory buffer is hence associated with a specific bin,
determined by the interval in which its loss value falls.
Buffer Management. As we initiate a task t, the bud-
get allocation for the task is determined as B = M

t , taking
considering the total capacity M and the task index t. The
allocation for each bin is then defined as B

n , which ensures
a proportional distribution of memory resources across the
predefined number of n bins. For each instance of data
xi in the training set Dt, a loss value lx = LBCE(Tt ◦
F (x), y) is calculated and stored, after a warm-up of a few
epochs. This follows [38], which shows that the gap be-
tween bias-aligned and bias-not-aligned emerges during the
initial training epochs. Thus, we choose to compute the loss
value after 5 epochs to take advantage of a more significant
gap. These values range from a minimum Lmin to a maxi-
mum Lmax, which establishes the scope of the bins. The al-
location of loss ranges to specific bins is determined based
on their relative position within this range Lmax − Lmin, di-
vided into n equal intervals.
Buffer Population. To determine whether to include an
instance x in the buffer, we first check the current number
of elements in its corresponding bin. If this number is be-
low the allocated budget B

N , the instance is included. This
method ensures a fair representation of instances within the
buffer, including both low and high loss values. This way,
we ensure that the memory buffer always contains examples
that are both aligned and not aligned with spurious correla-
tions. Indeed, there is a significant empirical correlation be-
tween the value of the loss and potential biases (see Fig. 3).
We leverage this correlation to maintain a balanced buffer.
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Figure 3. The AUC trend using binary cross-entropy loss to dis-
tinguish between the ‘bias-aligned’ and ‘non-bias-aligned’ groups.
Notably, a higher AUC indicates that the loss is more effective at
separating examples aligned with spurious correlations from those
that are not. This result supports our strategy of achieving a bal-
anced representation of bias-aligned and non-aligned groups, pro-
moting fairer and more equitable sampling.

Knowledge Distillation from Buffer Memory. Our im-
plementation of knowledge distillation involves classifying
samples stored in a buffer and comparing the cluster logits
values saved to those computed for the current model. Let
y′ = Tt◦F (x) represent the model output for task t (current
or past), and h′ = Ct ◦ F (x) represent the cluster classifier
logits as well. We define two distinct terms:

Lbuf = LBCE(y
′, y) + LBCE(h

′, c), (5)

The loss function Lbuf combines the target and cluster clas-
sification loss. Additionally, we define the knowledge dis-
tillation objective for the buffer as:

KDbuf = E(x,h̄)∼M

[∥∥h̄− h′∥∥2
2

]
, (6)

KDbuf stands for the expected euclidean distance between
stored logits h̄ and the computed current logits h′ over the
distribution of samples (x, h̄) drawn from the buffer mem-
ory M. Finally, the overall objective function combines the
stream, buffer, and knowledge distillation objectives:

L = Lstream + Lbuf +KDbuf (7)

5. Experiments

Assessing debiasing methods in an environment affected
by spurious correlations is challenging. Many works use
synthetic datasets or custom splits to regulate a latent at-
tribute z in a controlled scenario [38, 53, 55, 64]. In our
continual setting, we face a similar challenge as in [24, 28].
Here, we deal with a sequence of tasks occurring succes-
sively, each influenced by a certain degree of bias. We ex-
tend the setting [28] by increasing the number of tasks.

To comply with standard metrics used in literature about
debiasing [12,30,50,53,55,64], we used the worst-case ac-
curacy (not employed in [24]). Namely, we compute the
average and worst accuracies across groups, where a group
is defined as g = (y, z). The group-specific accuracy is de-
noted as accg(fT , Dtestt), representing the accuracy of the
final model fT on group g in the t-th task. The metrics for

average and worst-group accuracies are defined as follows:

Accavg(fT , Dtest) =
1
T

∑T
t=1

1
|G|

∑
g∈G accg(fT , Dtestt)

(8)
Accworst(fT , Dtest) =

1
T

∑T
t=1 ming∈G accg(fT , Dtestt)

(9)
where G represents the set of all groups across tasks. No-
tably, each task t comes with its test unbiased dataset
Dtestt , employed for evaluation.

Implementation Details. All reported results are the av-
erage of three runs. We use ResNet-18 [21] pre-trained on
ImageNet-1K; for fairness, we apply this backbone to all
tested methods. Each task was trained for 25 epochs using
Stochastic Gradient Descent (SGD), with a learning rate of
1× 10−3. We performed k-means with k = 8 for all exper-
iments. More details are provided in the supplementary.

5.1. Experimental Setup and Benchmarks

To model the presence of spurious correlations, we use
CelebA [31] and Camelyon17 [3] from the WILDS bench-
mark [50]. We split the datasets into tasks such that a latent
attribute z correlates with a target attribute, quantified by
a given factor pcorr. We set pcorr to 0.95, indicating that
95% of images with a specific attribute y (e.g., a necklace)
are of a particular latent attribute z (e.g., gender). In the
supplementary materials, we provide an extensive graphical
analysis illustrating the correlation factor between the vari-
ables y and z within our experimental settings. During the
training process, we do not have access to latent variables
z, using them only for evaluation.

Biased CelebA. The CelebA dataset [31] was divided into
eight separate tasks for our study. These tasks focus on
the binary classification of various target attributes y. We
made two variants: B-Celeba1 includes {Heavy Makeup,
Blond Hair, Receding Hairline, Young, Wearing Necklace,
Bags Under Eyes, Smiling, Eyeglasses} while B-Celeba2
includes {Chubby, Pale Skin, Bald, Gray Hair, Wearing
Necktie, Wearing Hat, Arched Eyebrows, Mouth Slightly
Open}. Each task contains 4 480 images in the training set,
evenly distributed in terms of y. The latent attribute z is
the gender label as in [12, 38, 53]. Each task has a test data
Dtestt with 100 samples per group (there are 4 groups for
each task) to assess model debiasing performance.

Biased Camelyon. This dataset is derived from the Came-
lyon17 dataset [3]. It consists of 4 tasks, each involving
binary classification of tumors. The hidden variable z rep-
resents the hospital from which the images were sourced.
The presence of a tumor is indeed correlated with the hos-
pital where the images were taken, thereby creating a spu-
rious correlation between the two variables. The training
phase includes 4 hospitals, while the test phase includes a
fifth hospital not present in the training data. Each task con-



Table 1. Comparison between unbiasing and CL methods, in terms of worst-group accuracy [↑] and average accuracy [↑]. The symbol †

recalls that BGS uses auxiliary data during training, i.e. the label groups annotations.

B-CelebA1 B-CelebA2 B-Camelyon

Method Accworst[%] Accavg[%] Accworst[%] Accavg[%] Accworst[%] Accavg[%]

Random 50.00 50.00 50.00 50.00 50.00 50.00
SGD 14.87 ± 1.56 60.12 ± 0.68 8.12 ± 0.57 56.06 ± 0.09 48.53 ± 6.47 85.8 ± 1.51

Debiasing
BPA 15.08 ± 1.56 61.69 ± 0.47 9.16 ± 0.47 56.33 ± 0.53 62.13 ± 2.73 88.06 ± 1.11
CFIX 18.00 ± 2.04 64.00 ± 1.25 17.65 ± 1.97 61.26 ± 0.96 59.56 ± 0.83 87.88 ± 0.57

Replay (1024)
BGS† 55.68 ± 2.92 74.64 ± 0.34 56.56 ± 2.74 76.45 ± 0.51 77.55 ± 0.07 91.89 ± 0.41
ER-ACE 16.37 ± 1.76 60.75 ± 0.77 13.12 ± 1.10 59.03 ± 0.59 56.80 ± 1.70 88.48 ± 0.08
DER++ 21.79 ± 1.06 61.34 ± 0.54 18.03 ± 1.37 60.87 ± 0.36 53.40 ± 1 41 82.56 ± 0.57
BPA + replay 16.04 ± 0.90 60.92 ± 0.51 11.37 ± 0.43 58.19 ± 0.66 65.33 ± 1 02 88.88 ± 0.52
CFIX + replay 17.80 ± 0.04 61.57 ± 0.39 19.79 ± 0.75 62.62 ± 0.58 55.93 ± 0.34 86.48 ± 0.58
LwP 19.40 ± 0.91 62.33 ± 1.31 13.44 ± 3.94 57.47 ± 1.47 54.40 ± 9.54 86.39 ± 4.24
LwS (ours) 58.84 ± 2.42 71.43 ± 1.67 50.91 ± 3.52 70.73 ± 0.65 80.40 ± 1.74 92.47 ± 0.21

tains 4,096 images, and the test sets are balanced for tumor
presence and hospital origin, with 500 images per hospital.

5.2. Baseline and Competing Methods

Rehearsal Methods. While SGD does not incorporate
measures against forgetting, ER-ACE [10] enhances tra-
ditional Experience Replay (ER) by applying distinct loss
functions for the stream (considering the logits of incoming
data) and the buffer. DER++ [8] adopts self-distillation by
encouraging consistency in the model’s output, minimizing
the L2 norm between the logits of current and past itera-
tions. However, they do not consider the potential contam-
ination of the buffer by spurious correlations, which could
affect future knowledge retention and subsequent tasks.

Continual Debiasing Methods. To mitigate spurious cor-
relations in both the stream and buffer, several methods
have been proposed. LwP [24] aims to prevent spurious
correlations by using self-supervised learning with feature-
level augmentation. BGS† [28] constructs the buffer to store
group-class balanced examples across all encountered tasks.
In this context, BGS acts as an oracle by leveraging latent
variable z supervision to structure the buffer.

Offline Debiasing Methods. We also assessed standard
debiasing algorithms such as BPA [53], which employs a
per-sample re-weighting strategy. CFIX [12] optimizes a
dual objective to re-weight sample importance, using clus-
ter classification as an additional regularization to smooth
the latent space. Since these methods do not natively sup-
port the arrival of new tasks, we also introduce BPA + re-
play and CFIX + replay, which refer to our adaptations
that incorporate buffer reservoir sampling.

5.3. Experimental Results

Tab. 1 summarize the key findings of our work. LwS
boosts average and worst-group accuracy metrics, outper-
forming rehearsal methods across various scenarios. A no-
table feature is the gain in worst-group accuracy, highlight-
ing its effectiveness against spurious correlations. Also, the
results prove how our mechanism to update the memory
buffer allows the retention of unbiased past knowledge.
Baselines. Regarding debiasing methods, CFIX [12] and
BPA [53] have effectively improved worst-case accuracy
with respect to fine-tuning on the new task (SGD). How-
ever, their gains are relatively small compared to LwS, in-
dicating the need for a buffer strategy to avoid forgetting.
In this context, offline debiasing algorithms serve as more
reliable baselines than naive fine-tuning (SGD).
Rehearsal Methods. Their results are reported in Tab. 1;
we refer the reader to Fig. 4 for a in-depth comparison
with DER++ [8], one of the most simple yet effective ap-
proaches. As can be observed, replay methods surpass their
baselines, highlighting the advantage of memory replay.
However, the table reveals a crucial issue. If the buffer con-
tains mostly biased elements, it can amplify the bias within
new tasks when samples are retained from the buffer. This
underscores the limitation of traditional rehearsal methods,
which can easily fall into the trap of shortcut learning.
Continual Debiasing Methods. From our results, LwS
outperforms a continual debiasing model like LwP [24] and
pairs the performance of BGS [28], which presents our up-
per bound. Indeed, it constructs the buffer using the latent
attribute z supervision to balance the number of elements
for each group in the memory, which is preferable but less
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Figure 4. Comparative analysis across tasks, showcasing worst-
group accuracy and average accuracy for each dataset.

realistic. Indeed, to identify the group labels, one must i)
discover the variable z that determines the spurious correla-
tion; ii) annotate the training set accordingly. This process
is expensive and requires a thorough analysis of the dataset.
Furthermore, it becomes even more challenging in contin-
ual learning where tasks arrive continuously. While anno-
tating attributes like gender may be easy, it becomes unprac-
tical when the attribute z is hard to inspect (e.g. metadata
protected by privacy laws or hidden artifacts in images). In
such cases, a framework like ours, which avoids relying on
group labels, is advantageous.

6. Ablation Studies

Reservoir Sampling Fails with Spurious Correlations.
Tab. 2 illustrates the impact of memory buffer size (M) and
buffer handling strategies on LwS. The results reveal that
the loss-based approach consistently outperforms the reser-
voir method in terms of worst-group and average accuracy
across all datasets and buffer sizes (256, 512, 1024). This
outcome supports our hypothesis that random strategies like
reservoir may unintentionally amplify spurious correlations
in scenarios with minimal buffer capacity due to the limited

Table 2. LwS performance in terms of worst [↑] and average accu-
racy [↑] across different buffer sizes and management strategies.

M Strategy Accworst[%] Accavg[%]

B
-C

el
eb

A
1 256

reservoir 14.14 58.21
loss-based 36.29 66.73

512
reservoir 18.50 61.08
loss-based 52.12 71.17

1024
reservoir 17.87 62.16
loss-based 56.98 72.57

B
-C

el
eb

A
2 256

reservoir 18.71 61.10
loss-based 51.62 72.06

512
reservoir 19.37 62.43
loss-based 48.50 69.46

1024
reservoir 20.50 63.06
loss-based 53.37 71.40

B
-C

am
el

yo
n 256

reservoir 41.40 81.92
loss-based 79.40 91.84

512
reservoir 36.80 81.92
loss-based 79.60 92.42

1024
reservoir 55.80 86.50
loss-based 80.40 92.84

Table 3. LwS performance comparison varying number of bins
and usage of knowledge distillation (KD).

B-CelebA1 B-CelebA2 B-Camelyon

# bins Accw Accavg Accw Accavg Accw Accavg

2 58.23 72.71 55.12 75.40 76.40 90.88
4 61.55 73.24 53.37 71.40 81.20 92.72
8 53.12 70.79 51.25 70.68 81.40 92.40
16 55.61 71.83 52.00 71.72 80.40 92.84
32 50.37 70.82 51.00 71.34 79.60 93.04

no KD 58.80 73.40 50.50 70.18 80.40 92.84
w. KD 61.55 73.24 53.37 71.40 81.20 92.72

representation of non-aligned elements.

Varying the Correlation Factor pcorr. We analyze how
the model learns as the correlation factor changes and eval-
uate the effectiveness of different strategies. On the left
side of Fig. 5, the relationship between the loss value and
alignment with spurious signals (AUC) is shown as pcorr
varies. After the warm-up phase, we compute the loss for
all training elements of task t, which is then used in the
buffer update described in Sec. 4. We observe a gradual
decrease in AUC after buffer insertion, which is the de-
sired outcome. As depicted on the right, joint training and
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Figure 5. The figure displays AUC curves (left), which show the correlation between the loss value and alignment with spurious signals
varying levels of pcorr . The shaded regions on the curves show the warm-up phase, followed by target loss computation for all training
samples of each task. Loss values are utilized by the buffer insertion strategy, explained in Sec. 4. The right side of the figure presents a
comparative accuracy analysis under different pcorr values for joint training, DER++, and LwS methods.

Table 4. LwS with adaptive weights wc and fixed wc = 1.

Dataset wc Accworst Accavg

B-CelebA1 adaptive 58.84 ± 2.42 71.43 ± 1.67
fixed 52.83 ± 1.59 70.90 ± 0.99

B-CelebA2 adaptive 50.91 ± 3.52 70.73 ± 0.65
fixed 47.29 ± 1.43 70.74 ± 0.68

B-Camelyon adaptive 80.40 ± 1.74 92.47 ± 0.21
fixed 78.20 ± 1.60 91.85 ± 0.37

DER++ are more susceptible to spurious correlations. As
pcorr increases, both methods suffer a drop in average and
worst-case accuracy while our approach performs robustly
across different pcorr values.

On the Number of Bins. We investigate the effect of
varying the number of bins for the buffer population. As
the number of bins increases, we observe a slight decline
in worst-case accuracy, as shown in Tab. 3. This trend can
be attributed to the fixed buffer size; a greater number of
bins entails a reduced allocation budget per bin, potentially
leading to an under-representation of elements that diverge
from the bias within each bin. Despite this, our strategy
maintains competitive performance, even with a higher bin
count, as shown for B-Camelyon.

Knowledge Distillation using Cluster Logits. We ana-
lyzed the impact of the KDbuf term introduced in Eq. (6).
Our findings demonstrate that knowledge distillation offers
significant advantages in smoothing the feature landscape
and facilitating knowledge transfer across future tasks. In
particular, Tab. 3 shows that utilizing cluster prediction log-
its improves the worst-case accuracy performance without
negatively affecting the average accuracy.

On the Effect of w. Fixing wc = 1 in Eq. (3) wors-
ened model performance as shown in Tab. 4, demonstrating
the effectiveness of our adaptive weighting strategy. As ex-
pected, the decrease with wc = 1 was not severe thanks to
the buffer population, which serves as a regularization term.

Table 5. LwS results on B-CelebA1 using difference values of γ.

Metric γ = .0 γ = .2 γ = .5 γ = .8 γ = 1

Accworst 47.61 51.92 55.62 54.85 58.25

Accavg 69.46 70.16 70.91 70.83 72.12

Sensitivity of γ. Tab. 5 shows how increasing the value of
γ in Eq. (3) leads to better results. The scalar γ multiplies
Lcluster term, which indicates heterogeneity within a clus-
ter c, where individuals share the same target label y (e.g.,
blond hair) but differ in attribute z (e.g., gender). There-
fore, we assign a higher weight wc to a cluster with a high
expected error for Ltarget or Lcluster.

7. Conclusion

The challenge of shortcut learning in neural networks
is a complex and relatively unexplored area. This issue is
further exacerbated in Continual Learning, particularly in
methods based on rehearsal. Our approach, Learning with-
out Shortcuts (LwS), tackles this by integrating a debiasing
strategy within the data-stream and a sampling mechanism
designed to mitigate spurious correlations. Our study lays a
solid groundwork for promoting worst-case generalization
and algorithmic fairness in online settings.

8. Acknowledgments

This work was partially supported by the Italian Minis-
terial grants PRIN 2022: “B-Fair: Bias-Free Artificial Intel-
ligence Methods for Automated Visual Recognition” (CUP
E53D23008010006) and “AIDA: explAinable multImodal
Deep learning for personAlized oncology” (Project Code
20228MZFAA). We acknowledge the CINECA award un-
der the ISCRA initiative for providing high-performance
computing resources. This research was also supported
by the University of Modena and Reggio Emilia and Fon-
dazione di Modena through the FAR 2023 and FARD-2024
funds (Fondo di Ateneo per la Ricerca).



References
[1] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny,

Marcus Rohrbach, and Tinne Tuytelaars. Memory aware
synapses: Learning what (not) to forget. In ECCV, 2018.
3

[2] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Ben-
gio. Gradient based sample selection for online continual
learning. Advances in neural information processing sys-
tems, 32, 2019. 1, 2, 3

[3] Peter Bandi, Oscar Geessink, Quirine Manson, Mar-
cory Van Dijk, Maschenka Balkenhol, Meyke Hermsen,
Babak Ehteshami Bejnordi, Byungjae Lee, Kyunghyun
Paeng, Aoxiao Zhong, et al. From detection of individual
metastases to classification of lymph node status at the pa-
tient level: the camelyon17 challenge. IEEE Transactions
on Medical Imaging, 2018. 5

[4] Jihwan Bang, Hyunseo Koh, Seulki Park, Hwanjun Song,
Jung-Woo Ha, and Jonghyun Choi. Online continual learn-
ing on a contaminated data stream with blurry task bound-
aries. In CVPR, 2022. 3

[5] Lorenzo Bonicelli, Matteo Boschini, Angelo Porrello, Con-
cetto Spampinato, and Simone Calderara. On the effec-
tiveness of lipschitz-driven rehearsal in continual learn-
ing. Advances in Neural Information Processing Systems,
35:31886–31901, 2022. 1, 4

[6] Matteo Boschini, Lorenzo Bonicelli, Pietro Buzzega, Angelo
Porrello, and Simone Calderara. Class-incremental continual
learning into the extended der-verse. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2022. 3

[7] Matteo Boschini, Pietro Buzzega, Lorenzo Bonicelli, Angelo
Porrello, and Simone Calderara. Continual semi-supervised
learning through contrastive interpolation consistency. Pat-
tern Recognition Letters, 2022. 3

[8] Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide
Abati, and Simone Calderara. Dark experience for gen-
eral continual learning: a strong, simple baseline. Advances
in neural information processing systems, 33:15920–15930,
2020. 1, 2, 3, 6

[9] Pietro Buzzega, Matteo Boschini, Angelo Porrello, and Si-
mone Calderara. Rethinking experience replay: a bag of
tricks for continual learning. In 2020 25th International Con-
ference on Pattern Recognition (ICPR), pages 2180–2187.
IEEE, 2021. 1

[10] Lucas Caccia, Rahaf Aljundi, Nader Asadi, Tinne Tuyte-
laars, Joelle Pineau, and Eugene Belilovsky. New insights
on reducing abrupt representation change in online continual
learning. arXiv preprint arXiv:2104.05025, 2021. 6

[11] Lucas Caccia, Rahaf Aljundi, Nader Asadi, Tinne Tuyte-
laars, Joelle Pineau, and Eugene Belilovsky. New Insights
on Reducing Abrupt Representation Change in Online Con-
tinual Learning. In ICLR, 2022. 2

[12] Giacomo Capitani, Federico Bolelli, Angelo Porrello, Si-
mone Calderara, and Elisa Ficarra. Clusterfix: A cluster-
based debiasing approach without protected-group supervi-
sion. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pages 4870–4879, 2024. 2,
3, 5, 6

[13] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny,
Thalaiyasingam Ajanthan, Puneet K Dokania, Philip HS
Torr, and Marc’Aurelio Ranzato. On tiny episodic memo-
ries in continual learning. In International Conference on
Machine Learning Workshop, 2019. 2

[14] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah
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