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1. Introduction. From the few in-plane crack problems solved in finite elastostatics
a substantial difference emerges with respect to the predictions of the classic linear theory
of elasticity: the nonexistence of antisymmetric asymptotic solutions. In other words,
due to the nonlinearities, the crack-face opening, near the crack-tip, is to be expected
even when the applied loading is antisymmetric about the crack line.

In 1982, Stephenson [1] succeeded in proving this important result for a class of in-
compressible Mooney-Rivlin materials under the plane strain condition. Successively, the
same result was obtained, again under the plane strain condition, by Le for a Hadamard
material (2], by Le and Stumpf for a class of Ogden-Ball rubberlike materials [3], and,
under the plane stress condition, by Geubelle and Knauss for a generalized neo-Hookean
incompressible material [4, 5, 6] and by Tarantino for a compressible neo-Hookean ma-
terial [7].

All the nonlinear crack analyses cited gave the somewhat surprising result that the
near-tip deformation field f is obtained through a mere rigid transformation of the canon-
tcal symmetric asymptotic field £*. At the crack-tip the deformation field then assumes
the following asymptotic representation form:

f=f°+ Qf*, (1.1)

where the rigid translation fO and the rigid rotation Q depend on the far-field loading
conditions (see Fig. 1). If only the dominant order terms are taken into account, the
canonical field f* represents the particular deformation field in which the crack faces
open symmetrically, satisfying the symmetry properties

fi(r,0) = fi(r,=0) and f5(r,0) = —f3(r,-0), (1.2)

just like Mode I in linear elastic fracture mechanics. It is important to note that (1.1)
holds regardless of the type of assigned loading conditions (that is, for Mode I loading,
Mode II loading, or any combination).
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Q* ( current configuration )

- xﬁp

Q ( reference configuration )

Fic. 1. Graphic representation of the relation f = f9 + Qf*

Stephenson’s result shows how the peculiarity of the nonlinear behaviour, for a wide
class of cracked bodies, results mainly in the impossibility of the antisymmetric mode
(or Mode II), so that mixed-mode interaction leading to crack kinking is also impossible.
Given the symmetries of the canonical field and of the material properties, and excluding
the branching, a propagating crack-tip, in the reference configuration, will necessarily
move following the straight path, and this for every type of loading condition.

This particular implication motivates the present work, in which a crack propagation
analysis in the context of finite elastodynamics is performed. More specifically, a straight
crack, that suddenly grows at constant velocity in a thin sheet of compressible neo-
Hookean material, is studied. A similar plane crack problem so far does not scem to have
been treated; while, a steady-state dynamic crack propagation problem, for an elastic-
plastic material under the antiplane deformation condition (Mode III), was investigated
by Achenbach and Nishimura [8, 9].

This paper is organized as follows. The local formulation of the two-dimensional
boundary-initial-value problem is stated in Sec. 2, where the growing crack in the ref-
crence configuration is modelled by a rectilincar increasing line of discontinuity.! The

1Consequently, for this class of problems even the reference configuration is time-dependent.
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equation of motion, the boundary and initial conditions are expressed with respect to a
coordinate system which translates with such a line and whose origin is attached to the
apex. In Sec. 3, an asymptotic analysis is carried out by pursuing the local motion field
around the moving crack-tip. The dynamic version of Stephenson’s result and the related
canonical motion field are discussed in Sec. 4, where the expressions that describe the
asymptotic crack profile during propagation are also obtained. Finally, in Sec. 5, the as-
ymptotic Piola-Kirchhoff and Cauchy stress fields around the moving crack-tip, together
with the related orders of stress singularity and the vector of energy flux, are computed.

2. Local formulation of the nonlinear crack propagation problem. As al-
rcady mentioned, our attention will be confined to thin hyperelastic sheets, under the
plane stress condition, composed of homogeneous, isotropic material, whose stored cnergy
function W has the compressible neo-Hookean form [10]

W(F) = a|F|> + T(detF) for all F € Lin™.? (2.1)
with
IF[? = A2+ 23+ A3,  detF =X\dods =3, (2.2)

where A; are the principal stretches of the deformation gradient F. In (2.1), a denotes
a strictly positive constant and I :]0, co[— R is a convex function, for which we assume
the expression proposed in [11]

['(8) = ¢6? — dLog?,

where ¢ and d are another two strictly positive constants.
From (2.1) the following response function for the Piola-Kirchhoff stress tensor T is
derived:

Tr(F) = 2aF + T 5(86)0F T, (2.3)

where I' 5 = dI'/dé. The mechanical behaviour of the material described by (2.3) is
of a hardening-type, as can be observed by imposing a three-dimensional homogeneous
deformation corresponding to a uni-axial stress and evaluating the stress response in
terms of Cauchy stresses (cf. [12] p. 269). The differences with respect to a classic
incompressible neo-Hookean material are illustrated in [7].

To maintain a state of plane stress, the components of the deformation gradient F are
found to be [13, 14)3

Fag = 9a.8, Fo3 = F3, =0, F33 = 033 = M@, 22,1).1 (2.4)

The last quantity denotes the principal stretch with the x3-axis as the associated principal
axis. To compute A we can use the following plane invariants:

h=tr(Bag) = \J + X3,  i=det(Fap) = Ao,

2Lin* is the multiplicative group of (second-order) tensors, that is, all linear transformations from
the vector space V into V, with positive determinant.

3These components must be considered as their restriction to the middle plane. A modern and
accurate description of the fundamental relations of nonlinear plane stress theory can be found in a
paper by Knowles and Sternberg [12].

4The range of the Greek indices is {1, 2}.
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and successively impose the approximate assumption Tg,, = 0, dictated by the plane
stress condition, obtaining

A= (ﬁ‘lcﬁ)) (2.5)

In view of (2.3) and (2.4), the non-vanishing components of the Piola-Kirchhoff stress
tensor are (Tr,, = TR,; = TRyy) = 0

d
Tk, = 2aFas + [Qic/\2 - —,] €€ Fuv,s (2.6)
1
since F;; = i Y(Cof F)ag = i 'eauep Fuu (the symbol 4, is the two-dimensional
alternator, i.e., €17 = €99 = 0,612 = —&21 = 1). By substituting (2.6) into the equation
of balance of linear momentum, in the absence of body forces,
02
DivTgr = po——0,
W 1lgr = po 12

where pqg is the referential mass density, the following equations in terms of components
of the motion 4 (71, z2,t) are derived:®

2001 = =Y 1022 + VY2021 + poPiu,

2.7)
2aApp =P 1012 — Y211 + PoP2,it

where

. . d
h=@l +@lo+ 051 T30 1=¢11022— Qr2021, ¥ =20\ — = (28)

and A denotes the two-dimensional Laplace operator. The elastodynamic plane stress
problem for a compressible neo-Hookean material is governed by the above quasilinear
system of coupled partial differential equations.

In this paper, as mentioned in the foregoing section, we exploit Stephenson’s result
to formulate a dynamic crack propagation problem for a straight crack that suddenly
begins to grow, following a collinear direction in the reference configuration, at constant
crack speed v. Since the principal interest of the local analysis of a crack propagation
problem is to study how the motion field around the moving tip evolves in time, it is
necessary to express the equations of motion (2.7) with respect to the moving coordinate
system indicated in Fig. 2.

Upon adoption of the Galilean variables #} = z; — vt,x = x2 and t' = t in the
transformation ¢4 (71, x2,t) — Pal(z], 5, t'), equations (2.7) become

Ppr ., 0 _ 000 00 0p , o P

% — pov? 2 S v 92 _

Qa=po) Gz ¥ 20 Gm = "5 am T oal 0x, P ariar TP a2 29)
9ga 0Py 0% Op1 O 9 Ppy 0% '

% — 2 ) — — -2 .

(2a = pov) Gom * 2058 = 507 out, " B 02, PV Balor T PO Gen

By virtue of such a transformation the boundary conditions on the crack surfaces as-
sume a simpler form. Moreover, as usual in fracture mechanics, polar coordinates are

5Differentiation with respect to a variable x; is shown by an index i preceded by a comma.
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F1G. 2. Rectilinear crack propagation through the reference configuration

adopted to express the motion, that is, ¢q(z}, z5,t') — @u(r,0,t"). (In the sequel, the
superscripts of ¢, and of t” will be omitted.) Thus, equations (2.9) are rewritten as

1 1 1 1
2a |:901,rr + ;‘Pl,r + r_2$01,00:| = _;w,r¢2,0 + ;¢,0$02,r

5 2 2sinfcosf sin? @ 2sinf cosf sin? @
+po |v° | p1,rrcOs“ O — T‘Pl,@r + —rg—%,ee + _73—@1’9 + P1,r
sin 6
—2v | p1,rtcOSO — T@l,@t + Pt s (2.10)

1 1 1 1
2 T - r ™ = - - —
a [<P2, + T<P2, + 2 902,00] rw,rcpl,e T¢,0s01,r

2 2 2sinf cos @ sin @ 2sinf cosf sin? @
+po |v* | p2,rrcos” O — f@%er + ©2,00 + —7"2—('02’9 ©2,r

sin 0
—2v(p2,rt cOs 6 — P2,0t) + wz,tt] .

Likewise, the plane invariants transform into

1 1
h= (o}, +¢35,) +t3 (079 + 054), 1= ;(<P1,r902,e — P2,,01,0), (2.11)

and the cartesian components of the Piola-Kirchhoff stress tensor (2.6) become

né cosf
Tr,, = 2a¢; rcosf — 2a—<p1 o + Yo, sinf + zﬁ—soz 0,

0s 6 sin @
TR,, = 2ap;1 rsinf + 2a—<,01 0 — Y2, cosb + 1/)———(,02 0,

59

> (2.12)
Tr,, = 2ap2,r cos — 2a—<pz 9 — Yp1,rsinf — 111—901 6,

0s 6 mé’
02,6 + Y1, cosd — 1/)—801 95

Tr,, = 2ap2,-sin0 + 202
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From (2.12) we can derive the related polar components

Tk, = 2a(p1.-cos0 + oo ,.8in ) + ﬂ(apg,g cos — 1 gsinb),
r

rr

Tr,, = 2a(—¢1.,5in0 4 @3, cos ) + g(—L,oz_‘g sinf — @1 9 cosf),
r (2.13)

2a .

T((pl.g cos B + g psinb) + P(—pa2,cos8 + @1 - sinh),
2a . .

Tg,, = 7(992.9 cos — p1,98inf) + (1, cosf + 2 - sinb).

The local crack propagation problem may now be stated by requiring that the motion
p(r, 0,1t) satisfies the field equations (2.10), the initial conditions

0 .
Plr.0.t0) = @o(r0),  Zo(r6,t0) = o(r.6), (2.14)

where ¢, and ¢, are prescribed vector-valued functions, and that, at least in proximity
of the crack-tip, the surfaces of the crack must be traction-free, namely

TR,.9(7',9.t)|9=i,T =0, TRr,, (7",0,t)|0::}:71— =0,

or, using (2.13),

w w
(-tpl.e - 111992.1-)’ =0, (—wz,e + ¢<P1,r>
r 0=+ r

=0. (2.15)

=x7

3. Asymptotic computations. An asymptotic (or local) analysis gives solutions
which hold exclusively for points close to the crack-tip. To investigate the asymptotic
singularities of the motion field induced by a propagating crack we take the existence of
a solution to the dynamic global problem for granted and assume that such a solution,
near the moving tip, has the following representation form:

0a(r,0,t) = OO (t) + 1M 0a(0; ) fo(t;v) + o(r™)¢  asr — 0, (3.1)

where ! are the components of an unknown twice continuously differentiable vector-
valued function that indicates the position occupied by the moving tip in the current
configuration, and m is an unknown real-valued constant obeying the inequality 0 <
m < 1. The exponent m is positive. It must in fact not be less than zero or the
motion would become infinite as r — 0, while the assumption m < 1 ensures that the
deformation gradient does not remain bounded as r — 0. The most important singularity
of the deformation gradient corresponds to the smallest exponent m € (0, 1) and, through
(2.6), of the Piola-Kirchhoff stress tensor. 9,(0;v) and f,(t;v) are twice continuously
differentiable real-valued unknown functions that fail to vanish identically on [—m, 7]
and on [to,ts), respectively. The functions v, (6;v) describe the angular variation of the
asymptotic motion field, whereas the functions f,(¢;v) show the variation in time. In
both functions, the crack speed v plays the role of an assigned parameter.

We begin asymptotic computations by demanding the validity of asymptotic equalities
resulting from partial differentiations of (3.1). Subsequently, by inserting (3.1) into

60(-) and O(-) denote the Landau order symbols.
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(2.11)2 and (2.5), and into (2.8)3 in order to calculate the derivatives of ¥ with respect
to the polar variables (that appear in the field equations (2.10)), one obtains

i(r,8,8) = M(8, £)r2m=1 4 o(y2(m=D),

d (3.2)

/\2 0,t) = 4(1—m)
(r,0,t) 2(a + c]\,[2(0,t)r4(m—1)) + o(r ),
Wlth M(03 t) - mfl(t; U)f2(t, 'U)[Ul(e; U)v2,9(0; v) — Ul,@ (9’ U)'UQ(G; 'U)], and
= 2cd(m —1)M 4ctd(m — 1) M3 2d(m —1) | s(1-m) 2(1—m)
7‘1/),7' = {(ar4(l—m) + cM?) (ar4(1_m) T 01\12)2 + Vi r + 0(7" )’
= cdMyg 2¢%dM o M* dMg | 2(1-m) 2(1-m)
b= {(ar“““’") Y eM?)  (ari(-m g ep2yz T a2 [T +o(r ).

Operating in the same way, the field equations (2.10) transform into
2af1[vr.00 + m*01]r™ 2 4+ o(r™D) = —[r4) g g fo — M gua fo]r (™
+po[v2(m(m — 1)vy f1 cos® 6 — 2muy g f1 sin @ cos O + vy gg f1 5in° 6 + 20y ¢ f1 sinf cos 6
+muy f15in? 0)r(™2) — 2u(muy f14 cos 0 — v, f1esin)rmTY + 08 vy fr ™),
2afalva,g0 + m*ua]r ™D 4 o(rM V) = —[—r¢p 016 f1 + mi v fi]r
+po[v?(m(m — 1)vy fa cos? 6 — 2muvy g fo sin @ cos 6 + vz gg f2 sin? 6 + 2uq g f2 sin 6 cos 6

+mug fa 8in? 0)r(™ =2 — 2u(muy fo ;s cos O — vg g fo¢ sin §)rmY 4 wgytt + vg fouur™],

(3.3)
and the boundary conditions (2.15) become
[2av1 6 (275 0) f1(t;0) — map(r, £7, t)va(£7;0) fa (t;0)]r™ D 4 o(rm=D) = 0,
(a3 0) alt0) + T, s (s )3 (5} D om0y =0,
with
Ylr £mt) = {ar“(l‘c’(’{f\/{l-(i:]i;?t():tw, n - M(:ir, 5 } P2 o(r2 ).

In the spirit of the asymptotic analysis developed in [7], we divide the field equations
(3.3) by 7(™~2) and the boundary conditions (3.4) by r(™~1) and proceed to the limit as
7 — 0. Since 19,1 ¢ and 9 behave like O(r2(1=™)) as r — 0 and m € (0, 1), one readily
arrives at the following eigenvalue problem:

(1 — 9% sin® 0)va 0o — [0%(1 — m) sin 20]vg ¢ + [Mm? — T*m((m — 2) cos® § + 1)]vy = 0,
Vo,0(£m;9) = 0,
(3.5)

where 92 = pov?/(2a).

Two facts emerge from (3.5): The asymptotic field equations and the related boundary
conditions are uncoupled with respect to the angular functions v, (6;?); the temporal
functions f,(¢; ) do not enter into the asymptotic analysis.



486 ANGELO MARCELLO TARANTINO

The smallest positive eigenvalue and the associated eigenfunctions admitted by the
set of equations (3.5) are [17]

1 ~
m=— and v,(0;9) = A,sgn(f)

: (3.6)

[[1 — 92sin? )12 — cos 0] 12
2 3

where sgn(f) = 1 for 0 < 0 < 7 and sgn(f) = —1 for — < 6 < 0, and A, denote two
arbitrary real constants. For o < 1, the existence of real roots from (3.6) is guaranteed.
The first step of the asymptotic analysis therefore gives the following solution:

fa(t;0)

+o(rl/?) as r—0,

[1 — 9%sin?])'/2 — cos 0] 1z

Yalr,0,t) = wg(t) + 7'1/22& sgn(6) [ 5

that, like the equivalent static problem [7], implies M (6,t) = 0, providing an inadequate
estimate of the determinant of the deformation gradient

§=ix=o(r™) as r—0.
It is hence necessary to refine (3.1) by seeking at lcast a two-term approximation

Pal(r,0,t) = (pg(t) + Tl/27’a (0;0) fa(t; D) + Tm,wa (0;0)ga(t; D) (3.7)

+o(r™) as r—0, '
where m’ > m (= 1/2),w,(0;7) and g,(t; ) are as yet undetermined. As in the forego-
ing computations, w,(0;7) and g4 (t; ) are twice continuously differentiable real-valued
functions that fail to vanish identically on [—, 7| and on [to, ), respectively. By using
the two-term approximation (3.7) of the asymptotic motion field, the above procedure
can be repeated by a parallel argument, yielding

i(r,0,1) = Q(, t)r™ =32 1 M'(9,t)r2™ "1 4 o(r2W 1),
A2(r,0,t)
— d
T 2(a+ eQ2(0,t)rm =3) 4 2cQ(6,t)M'(0, t)rBm =T/2) 4 cM'2(9, t)r4(m' -1))

+ o(r*=m),
(3.8)

where

M'(6,t) = m/g1(t;0)ga2(t; ) [w1(6; D) wa,g(0; 9) — w1 ,0(8; 9)w2(6;9)],

Q(8,t) = f1(t;9)g2(t;0) [%vlw;ﬁ)wz,e(ﬁ; v) — m’vl,e((?;f))wz(@;ﬁ)]

Lt 01 (150) 00205 )un (09) — J0n(05 ) a(019)|.

di,
Z‘2

T = 2eri A2+ derid . + = O(T(B/z_m/)),

d. 7
b = 2¢i g A2 + dcidd g + % — O(r3/2=m)),
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Bearing in mind the results of the first asymptotic iteration, the field equations (2.10)
and the boundary conditions (2.15) provide

2ag; [w1.06 + mw1]r"™ 7D 4 o(r™ D) = —[r1) ,wo g2 — MY gwagy]r™

+po[#2(m/ (m' — 1)w, gy cos® @ — 2m/w) g1 sin B cos O + wy gagy sin? O + 2w g sin O cos
+m'w; ¢y sin? 9)7"("’/'2) — 20(m'wy g1, cos @ — wy ggy ¢ Sin 0)7“(’”/_1) + wlgl,ttrm'],
2aga[ws 09 + m2walr™ =2 + o(r™ =2) = —[—r¢p yw1 691 + MY g1 )™ D)
+po[02(m/ (m — 1)wagy cos? @ — 2m/wy pgo sin @ cos § + wo gago sin? @ + 2wy ggo sin f cos f
+m'wago sin? ())r(ml_z) — 20(m'waga, ¢ cos — ws gga ¢ SIn 0)7'("‘/—1) + 'wggg,ttrm/],
(3.9)
and
[2awy o(£m;0)g1(t; D) (r, £, )wa(E7; 0)ga(t; ﬁ)]r(m’_l) + o(r(m’_l)) =0,
]

—m/y
)+ m'W(r, £, t)wy (£ 0) g1 (5 9))r™ D + o(r™ D) = 0,
(3.10)

[2aws 6 (£7;0)g2(t;

with
W(r, £, t) = O(rB3/2=m)),

We divide Egs. (3.9) by r(™'~2) and Egs. (3.10) by (™ ~1) and proceed to the limit as
r — 0. Under the temporary assumption that m’ < 3/2, the set of equations (3.9) and
(3.10) is asymptotically balanced if

(1 —92sin® O)wa.go — [02(1 — m') sin 20)wa.g + [M? — 92m’ (M’ — 2) cos? @ + 1)]wg = 0,
Wa.9(£m;0) = 0.
(3.11)

Thus, at the second iteration, one obtains an asymptotic eigenvalue problem which has
the same form of the first eigenvalue problem (3.5). In particular, the nonlinear terms
again fail to enter the asymptotic analysis explicitly. The smallest eigenvalue m’ that
satisfies the inequality m’ > 1/2, and the associated eigenfunctions supplied by Egs.
(3.11) are [17)

m' =1 and w,(0) = B, cos®, (3.12)

where B, are two arbitrary constants. For m’ = 1 (and (1 — 92 sin? §) # 0), the influence
of the parameter ¢ disappears.

Finally, with (3.12), the two-term approximation (3.7) of the singular asymptotic
motion field around the moving crack-tip assumes the following form:

[1 - #%sin?6]'/2 — cos @ 1z
2
+ 7By cos0gq (t;7) + o(r) asr — 0.

0al(r,0,1) = @O (t) + r1/2A‘a sgn(6)

fa(t; D) (3.13)
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Such an asymptotic two-term solution implies

M@.t) =0,  i(r0.t)=Q(0.t)r V2 +o(r~1/?),
d . (3.14)
Sar s 0@y o)

From the last two equations we can compute the determinant of the deformation gradient

1/2
5= (ﬁ) > 0. (3.15)

N(r.6.t) =

at the moving crack-tip

2c

showing how the asymptotic motion (3.13), for each ¢ € Z, is now an orientation-
preserving mapping.

To add higher-order terms to the asymptotic solution (3.13) further iterations can be
carried out; these terms, with cigenvalues greater than m’ = 1, arc however inessential
to describe the singular motion field.

Eliminating the time-dependence and sctting

0=0.  fo(t:?) = ga(t:0) = 1.

one immediately obtains from (3.13) the solution of the corresponding static problem [7]:
5 0 ~
al(r0) = o2 + 1Y% A, sin 3 +rBacosf+o(r) asr — 0.

Obviously, the asymptotic solution of the local formulation necessarily contains some
unknown terms. Specifically, in the expression (3.13) of the asymptotic motion field,
the functions @0 (t), fo(t;9) and go(t:9), together with the constants A, and B,, are
undetermined and may be found only after solving the global dynamic crack propagation
problem.

4. Generalization of Stephenson’s result and the crack profile during its
propagation. In this section, Stephenson’s result is extended to the crack propagation
problem treated in this paper. So that, given the solution (3.13), we can retain that the
asymptotic motion field at the moving-tip is obtained by applying a rigid rotation Q(t)
to the canonical field @*(r,6,t) and adding a rigid translation ¢°(t), that is,

(r.0.1) = (1) + Q(1)p" (1.0.1). (4.1)
where Q(t) has the following components:”

Agfo(ti®)  ALfi(E:D)

_ A(t) A(t)
[Q(1)] = _Ah(tD) Asfa(tid) | (42)
A(t) A(t)

with A\(f) = (gfff(ff)) + ﬁ%fﬁf(t;ﬂ))l/? Inverting (4.1), one has
@ (1.0.1) = QO Tp(r.0.1) — ©"(1).

"By virtue of its physical meaning g(t) # 0, so that Q(t) preserves the regularity conditions of the
functions fu(t;0).
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and using (4.2), one readily arrives at the following very special components:

¢1(r,0,t) = Bi(t; 0)w(O)r + o(r), (
4.3
©5(r,0,t) = Ag(t; 9)v(8;9)r /2 4+ By(t; 5)w(0)r + o(r), )

where

Bi(t;0) = [Azglfz(ﬁ@)gl(t;ﬁ) - A\IEZfl(t;6)92“?{7)1/2@)’

Az( 7) = [A3f2(t;0) + A f2(49)] /A1),

t;9) = [A1 By f1(t:0)g1(t; 0) + A2 Ba fo(t; ) g2(t; 9)) /A1),
)=

(0 = cos b,

[1 —9?sin?0]'/2 — cos @ 1z

v(0; 0) = sgn(9) 5

If only the dominant order terms are taken into account, the canonical field (4.3) repre-
sents the special motion field in which the crack-faces open symmetrically, satisfying the
symmetry properties (1.2).

The function As(t;?) in (4.3)2 plays the same role of the Mode I dynamic stress-
intensity factor in classic linear elastic fracture mechanics. On the other hand, an anal-
ogous function of the Mode II (or shearing mode) does not exist, in that our problem
does not admit antisymmetric solutions.

Considering only the dominant order terms in (4.3), the profile of crack surfaces during
the propagation is described by the following two parabolic arcs:

*(rﬂ-t)— _M 1/2A (t~)
PolT, T, - Bl(t,f)) 2{0, V),

* /2
* _ _ _(pl(r’ﬂ-»t) ' 5
it -mt) = - (- AR o),

with o}(r,m,t) < 0, B1(¢;0) > 0 and A,(¢;0) > 0, as r — 0. The two curves join up
at the moving-tip with the same tangent, which is perpendicular to the crack-axis. So
that, at least in proximity of the crack-tip, the crack-faces are found to open smoothly,
without forming cusps.

5. Asymptotic Piola-Kirchhoff and Cauchy stress fields and energy flux.
From (2.13), (2.12) and (4.3), the polar and cartesian components of the asymptotic
Piola-Kirchhoff stress field are readily obtainable:

1
Tz, =2a [gr'l/Qsz siné + (B; cos 6 + By sin 6) cos@] +o(1),

1
T, = 2a [§T—1/2Agv cos@ — (Bysinf — Bs cosf) cos 0] +o(1), (5.1)

Tk, = 2a[r—1/2A2v,9 sinf — (B; cos 6 + B sinf)sin 0] + o(1),
Ty,, = 2a[r™/? Aqv g cos 6 + (By sin§ — By cos ) sin ] + o(1),
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and
T3, = 2aB; +o(1),
Tﬁlz = 0(1)7

Tg,, = 2a [r‘1/2A2 (%v cosf —wvg sinO) + Bg] +0o(1), (5.2)
Tg,, = 2a [r"l/zAg (21)81119 +vgcos6>] + o(1).

Note that the components Ty and T, vanish on the crack surfaces as required by the
boundary conditions (2.15). From (5.2); the physical meaning of the function B (¢;7) is
also evident.

The cartesian components of the plane deformation gradient, in terms of polar vari-
ables, result in

sin @
FYy = ¢} pcos0 — @] y—— = B1 +o(1),

cos 6

Fiy =l sinf+ 9], =o(1),

9 1 (5.3)
F3, = 5, cos8 — @5 esm = Ayr~1/? <§v cosf — v g sin 6’) + Bz + o(1),

6 1
Fy = 5 ,.sinf + o3 GCOS = Ayr~1/? (5” sinf + v ¢ cos 9) +o(1).

With (5.2), (5.3) and using the inverse Piola transform, that is, T = Tg(Cof F)~!, the
components of the Cauchy stress tensor can be computed:

8Ty = 2aB? + o(1),
8T, = 615, = 2a [A2B17‘ 1/2 <2vc080 - vgsm9) + BIBQ] +0(1),
0T5 = 2a [A2 -1 (iv +v9) + 2A,Byr~1/? (21)0030—1)981n0> +B§} +0(1),
(5.4)

where ¢ is specified by (3.15).
To investigate the degree of stress singularity in the current configuration we introduce
the following spatial radius, evaluated along the line # = 0:

p(r,0,t) = [p(r,0,£)% + @3(r,0,t)%]/ = B(t)r, (5.5)

with B(t) = [B?(t) + B2(t)]/?, that substituted into (5.4)s yields

Mb=lw—@ 1), (5.6)

It follows that, like the corresponding nonlinear static crack problem [7], the most singular
component of the Cauchy stress tensor has the asymptotic order r—!.
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The mechanical energy removed from the (entire) body during crack propagation may
be interpreted in terms of energy flur into the tip of the crack:®
1
j= lim [(W + Zpop - g'a) I- FTTR] nrdl, (5.7)
IPe|—0 Jr, 2
where Iy is a curve surrounding the moving tip x,,(t) and nr is the outward unit normal
vector on I';. Expressing the vector of the energy flux (5.7) in terms of the asymptotic
canonical field ¢*, one obtains

. . * ‘ 1 *)\ @ *\ @ * *
= Jm, [(W(F )+ 36+ Qe (¢4 QeT) | T-FIT | e, (55)
t|— T

in that
F=QF", Tr=QTg, and 6=90".

Since the integral (5.8) is path-independent, it may be conveniently computed over a
small circle with dl = rdf, proceeding then to the limit as » — 0. In this way, only
the most singular terms of order r~! help to evaluate the integral (5.8). Substituting
(4.3) into (5.8), one arrives, after some computations, at the following components of the

Jj-vector:
i 1
j1 = aA? / (—sz cos 0 + v% cos b + vu g sin 0) de,

-7

™ 1 (5.9)
jo = aA? / (—sz sin§ + 'U?g sinf — vv g cos 0) de.

-7
The integrand of j; is an even function that, given its form, does not seem to be com-
putable in closed-form; however, its numerical evaluation does not present any difficulty.
In particular, for v =0, j; = aA%% and then decreases as v increases. On the other hand,
the integrand of jo is an odd function, so that we obtain, as expected (by virtue of the
straight path followed by the moving-tip in the reference configuration) and consistently
with the canonical motion field (4.3), j» = 0, for any value of .
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