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Abstract 

In the Industry 4.0 era, Preventive Maintenance (PM) is still an attractive solution to prevent breakdowns and failures and to reduce 
maintenance and failure costs. A PM program is part of both the Total Productive Maintenance (TPM) philosophy and the Reliability Centered 
Maintenance (RCM) process. A prerequisite to carry out effective PM activities is the availability of a reliable estimate of the equipment failure 
rate. Assessing it may be a hard task, as it requires analysing a large set of maintenance data, which includes both quantitative and qualitative 
variables. To this aim, it is possible to exploit advanced data analysis techniques that permit extracting information and knowledge from big 
datasets. This paper presents an ensemble-learning model to estimate the failure rate of equipment subject to different operating conditions. At 
the same time, the method permits to identify the most important working parameters affecting the failure rate. An industrial application is 
considered to show the potentialities and the effectiveness of the proposed method. In particular, a sample of 143 centrifugal pumps installed in 
an oil refinery plant is analysed. 
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1. Introduction 

The Industry 4.0 paradigm and the related technologies are 
currently under the spotlight of both academicians and 
practitioners [1]. The motivation is that the manufacturing 
industry is facing the so-called “data-driven revolution”. The 
digitalization process that converts traditional factories into 
smart factories has given rise to an enormous growth of data 
production [3]. Smart organizations must challenge to record 
and manage such “big data”, to extract meaningful 
information from them by means of appropriate analytical 
techniques and tools. 

In this Industry 4.0 era, preventive maintenance (PM) is a 
still an attractive solution to prevent breakdowns and failures 
and to reduce maintenance and failure costs [4]. A PM 

program is part of both the Total Productive Maintenance 
(TPM) philosophy and the Reliability Centred Maintenance 
(RCM) process [6]. The primary objective of PM is to prevent 
failures before they occur. Comprehensive PM programs 
schedule repairs, lubrication, adjustments and machine 
rebuilds for all critical plant machinery. In order to support 
the work of maintenance experts, good PM practices require 
that all available data regarding failures is recorded into a 
well-organized database. All PM programs assume that 
machines will degrade within a time frame specific of their 
peculiar working conditions. Clearly, a reliable evaluation of 
the equipment failure rate permits to carry out effective PM 
programs. On the other hand, the mode of operation and 
system- or plant-specific variables directly affect the 
operating life of each equipment. This means that the failure 
rate depends on several factors whose identification and 
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quantification is a challenging task [7]. 
As observed by [8], failure rates can be estimated from 

empirical data and formulas available in handbooks, 
manufacturers’ data, industry standards, MIL-standards, and 
so on. If quantitative data are not available, experts can make 
use of their own experience to assess values. However, all 
these methods are characterized by many limits. Failure rate 
formulas provided by handbooks or regulations are complex 
and valid only under very special operating conditions, which 
are seldom satisfied in practice. Suggested failure rates by 
manufacturers may be conservative, which may lead to 
excessive maintenance. Probabilistic approaches to estimating 
the time to failure (e.g., proportional hazards model) appear to 
be too complex to be applied in most practical situations, and 
the required statistical tools and competencies are hardly 
available in industry. 

To overcome these issues, some researchers have proposed 
practical non-parametric approaches for failure rate analysis. 
[9] used the classification and regression tree (CART) 
methodology. [10] developed an approach based on artificial 
neural networks (ANNs). More recently, [11] presented a 
multivariate data classification technique. 

The present work belongs to the same stream of research, 
but it exploits the advances in big data analytics to tackle two 
important tasks required to carry out an effective PM program: 
(i) estimating the failure rate of equipment subject to different 
operating conditions and (ii) identifying the most important 
working parameters affecting the failure rate. These activities 
can evidently take advantage of analytic techniques able to 
treat stream of “big data” as they require analysing a large set 
of maintenance data collected into a computerized 
maintenance management system (CMMS), which includes 
both quantitative and qualitative variables. 

In order to accomplish these tasks, this paper proposes an 
ensemble-learning model that combines prediction results 
from multiple algorithms. Although ensemble-learning 
methods have been used to approach a variety of different 
problems, and the associate literature is rather ample [12], we 
have not found any contribution focused on using this 
technique to estimate the failure rate of equipments subject to 
different operating conditions and to discriminate the working 
parameters affecting the failure rate. Hence, the present work 
aims to fill this gap. Note that we do attempt to develop 
neither a mathematical relation between failure rate and 
operating conditions nor lifetime distributions. Rather, our 
intention is to provide an easy-to-use approach that can be 
implemented in practice by means of a free software. 
Specifically, an industrial application is considered to show 
the potentialities and the effectiveness of the proposed 
method. In particular, a sample of 143 centrifugal pumps 
installed in an oil refinery plant is analysed. 

 

2. Basic Concepts of Ensemble Modelling 

Ensemble modelling refers to the use of multiple learning 
algorithms to obtain better predictive capabilities than those 
obtained from any of the basic, constituting learning methods. 
Ensemble model works better when the original models 

present low correlation [13]. This happens because each one 
of the different algorithms may better contribute with its own 
strengths. Typically, in predictive modelling and in data 
analytics in general, a single model is used on a given data 
sample. The dataset can be large and rich, without missing 
values and errors. However, the model often presents biases, 
high variability and inaccuracies that affect the overall 
reliability of its conclusions. Often, this is because some 
algorithms, though extremely powerful under given 
hypotheses and circumstances, suffer from the presence of 
previously unseen examples within the studied datasets. The 
same effect is introduced by outliers and rare values. On the 
contrary, an ensemble investigates the dataset using all its 
constituent algorithms, allowing each one of them to support 
the others in the case of dubious outcomes. A famous example 
is represented by the random forest of trees [15]. This 
algorithm builds numerous decision trees while training and 
gives, as the output, a single class that is the mode of the 
corresponding classes of the individual trees. Doing so, the 
method avoids the known overfitting behaviour of the original 
trees. 

Building an ensemble requires building different models 
and combining their estimates. The building stage may be 
accomplished, for instance, changing weights, data values, 
control parameters, variable subsets, or partitions of the input 
datasets. Bagging, short for Bootstrap Aggregating model, 
[13] uses the training dataset to build different decision trees 
and, finally, takes the majority vote or the average of their 
estimates. Random Forests [15] add stochastic components to 
increase diversity among the trees being combined. AdaBoost 
[16] builds models iteratively, changing case weights, and 
uses the weighted sum of the estimates. Good ensembles 
should present both accuracy and simplicity. However, to 
reach higher accuracy, models tend to become extremely 
complex. While doing so, they are exposed to the risk of 
overfitting and poor generalization capabilities. 
Regularization techniques have been introduced to reduce the 
complexity of the model fitting procedures and have shown 
over time to allow for extremely effective ensemble models 
[17]. 

3. Case study 

In this section, a case study is presented in order to 
illustrate the creation of the ensemble model proposed in this 
work which is used to estimate the failure rate of a set of 
centrifugal pumps subject to different operating conditions 
and to identify the most important parameters affecting the 
failure rate. 

3.1. Brief overview of the refinery plant 

The industrial application concerns several centrifugal 
pumps installed in an oil refinery plant. The plant performs the 
entire petrochemical cycle: crude oil supply, refinery process, 
and distribution of finished products. The transformation 
process adopts a “medium-high” conversion type, operating 
through the adoption of thermal process. Fig. 1 provides the 
oil refinery-processing scheme. 
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The refinery is characterized by processing and service 
systems which occupy a surface of nearly 650,000 m2 with 
3,000 km of piping. The plant has a storage capacity of more 
than 1,500,000 m3, an annual production capability of about 
390,000 tons of oil, and an oil tanker receiving capability up 
to 400,000 tons displacement. A closed-loop water system 
capable of delivering 700 m3/h of water and a fire system able 
to bring in up to 3,000 m3/h of seawater are included in the 
plant. An integrated combined cycle plant assures the 
necessary power supply capable of about 280 MW, which 
operates by burning a synthesis gas obtained in the refining 
cycle. 

After a primary distillation phase, which is known as 
topping, the materials flow into two separate distillation units: 

• The atmospheric distillation unit (i.e., unifining) treats light 
fractions by separating petrol from liquefied petroleum gas 
(LPG). Then, petrol undergoes two further transformation 
phases (i.e., platforming and isomerization) required to 
increase the octane number and to eliminate aromatic 
compounds. 

• The vacuum unit treats the middle distillation fraction 
(mainly kerosene) and feeds a desulphurization process. 

 
Finally, the heavy fraction and all distillation residuals are 

processed by means of thermal cracking and visbreaking. 
These treatments are required to improve oil conversion rate 
and to increase the overall production of lighter products. 
 

 

Fig. 1. Oil refinery processing scheme. 

3.2. Structure 

The analysis considered 143 centrifugal pumps installed in 
the oil refinery plant described in Section 2.1. These pumps 
were monitored over a period of 18 months. In this period, 
operating time, failures and maintenance tasks were recorded 
in a standard computerized maintenance management system 
(CMMS). Table 1 shows a sample of the records included into 
the CMMS. Within the database, ten potential predictors were 

identified. While the name of some variables is self-
explanatory, some others require a brief description. “Plant 
type” defines the part of the refinery plant where the pump 
operates. “Soot” identifies the solid carbon-based particles 
present in the fluid, which typically have disruptive actions on 
the seals. Finally, we clustered the seal type into four 
categories: single-seal (S), dual-seal (DS), lip-seal (SL), and 
tandem-seal (T). 

The net operating time (NOT) included in Table 1 is 
defined as the cumulated functioning time, from the start up 
until the last observed failure. In formulas, the net operating 
time of the jth pump, , can be expressed as follows: 

  

 
(1
) 

 
where  is the number of observed failures for the jth pump, 

 is the failure time of failure i on pump j,  and  
are the opening time and the closing time, respectively, of the 
maintenance order regarding failure i on pump j. 

The exact values of  were not available in the database. 
Hence, we replaced  with  in the evaluation of the net 
operating time. This approximation can be justified according 
to the following argument. Reactive maintenance is the first 
option, while condition maintenance applies only to the pumps 
that do not operate in active redundancy. However, even in 
this case, when an operating threshold limit is trespassed (e.g., 
excessive vibration and/or leakage) and a maintenance order is 
issued, the remaining useful life of the pump can be 
considered nearly null. Hence, the approximation  
can be assumed reasonable, and the MTBF is finally given by: 

 

 
  
where the net operating time is obtained according to Eq. (1). 

 

3.3. Ensemble model for failures analysis 

To apply ensemble modelling to the pumps’ dataset, the 
stacked generalization and the bagging methods were used. 
One of the most interesting aspects of stacking is that it may 
be used to combine models of different types. The most 
important goal of stacking is, possibly, the reduction of bias. 
To begin with, the algorithm splits the training set into two 
separate subsets and trains several learners on the first subset. 
The remaining data are used to test and validate the model 
but, instead of using a monolithic approach in which the best 
learner becomes the winner, the outcomes of all the models 

 Potential predictors Failure modes and MTBF 

Code 
Plant 
type 

Service/ 
fluid 

Seal 
type Soot 

Nominal 
capacity 
[m3/h] 

Nominal 
head 
[m] 

Nominal 
power 
[kW] 

Fluid 
temp. 
[°C] 

Cinematic 
viscosity 
[cSt] 

Density 
[kg/m3] 

Fluid 
leakages 

Irregular 
working Vibrations 

Mechanical 
failures 

Electrical 
failures 

Total 
number 
of 
failures 

Net 
operating 
time 

MTBF 
[h] 

P1001 TOP1000 Crude oil S No 530 237 394.5 18 42 870 4 2 0 1 3 10 13127 1313 
P1002 TOP1000 Residuum T Yes 231 173.5 127 360 1.17 801 4 0 1 0 0 5 12283 2457 
P1003 TOP1000 Petroleum S No 63 117 22.5 187 0.46 670 8 0 0 0 0 8 15918 1990 
… … … … … … … … … … … … … … … … … … … 

P1010 TOP1000 Condensed 
water S No 7.7 180 27.8 38 0.69 992.6 2 2 0 0 0 4 11560 2890 

P1011 TOP1000 Preheated 
gasoil S No 90 59 16 156 0.88 760 12 0 0 1 0 13 27817 2139 

P1012 TOP1000 Acid water S No 28 190 43.4 16 1.11 998.5 1 0 1 0 2 4 11067 2767 
… … … … … … … … … … … … … … … … … … … 

 

Table 1. Example of data available in the CMMS. 
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are mixed, possibly in a nonlinear fashion, to get the most of 
all the algorithms. The weight used to mix the various models 
are obtained by means of a supplementary algorithm (usually 
a logistic regression process), that compares the outcomes 
with the inputs of all the used models. Therefore, the key 
point lies in the fact that all the models are compared and 
judged on subsets of data that were not used to create them. 

Bagging is primarily used to decrease the variance of the 
prediction/classification. It works generating supplementary 
data for training the models starting from the original dataset. 
To do so, it opportunely combines data with repetitions to 
produce multisets of the same cardinality as the original data. 
Obviously, this method cannot improve the predictive 
capability just increasing the size of the training set, but it 
strongly decreases the variance, narrowly tuning the 
prediction itself. 

The two models have been built by means of the 
educational licensed release of the RapidMiner Studio 9® 
software package. It is a data science software platform that 
provides an integrated environment for data preparation, 
machine learning and predictive analytics. It also supports all 
steps of the learning process (Fig. 2), following the cross-
industry standard process for data mining (CRISP-DM), 
including data preparation, results visualization, model 
validation and optimization within an easy and user-friendly 
graphic interface. 

To begin with, the original data have been saved as a 
comma separated value (CSV) file and have been imported 
into RapidMiner® workbench. The case study and the 
corresponding characteristics and aspects were all well-known 
from previous research activities and therefore, with respect to 
steps 1 and 2 of the CRISP-DM process, no additional 
information was necessary. 

Referring to step 3, namely the data preparation, the dataset 
has been cleansed and some attributes (columns), that resulted 
incomplete or clearly wrong, have been removed from the 
dataset. The only significant modification to the original 
dataset was in the computation of the MTBF, expressed in 
hours. Indeed, some pumps had no failures over relatively 
long time periods. In such cases, it was decided to use a high 
numerical value to correctly represent the infinity. On the 
other hand, some pumps presented no failure at all, but their 
operating time was very short and, therefore, there was a great 
deal of uncertainty on their MTBF value. These pumps have 
been characterized by a MTBF equal to -1 and have been later 
removed from the analysis. 

As a result, it was possible to pass immediately to step 4 
and start to model the whole ensemble process. First, it was 
necessary to change the attribute role of the column “Code” 
from “regular” to “id”, meaning that this field should be 
considered only for identification purposes, without using it 
for classification/prediction. Then, the attribute “MTBF”, has 
been used as the “label” or, in other words, the goal of the 
analysis. These two activities have been performed by means 
of a “Set Role” operator, as shown in Fig. 3. RapidMiner® 
changes the background colours of the corresponding columns 
to visually communicate their new state. 

 

 

Figure 2. The CRISP-DM process. 

 

Figure 3. Setting roles. 

Successively, using the “Select Attributes” operator, a 
subset of the available columns has been chosen for the 
analysis. In particular, the fields “Failures”, ”Failure Rate” 
and “Time” have been removed due to the fact that the 
“MTBF” attribute is clearly given by their combination (Fig. 
4). 

As stated, a filter has been introduced to remove those 
examples that showed a “MTBF” equal to -1. Thus, the dataset 
was reduced to 130 records, with 2 special and 11 regular 
attributes. Additionally, a “Discretize” operator has been 
adopted to arrange the label field (MTBF) into homogeneous 
ranges. Indeed, this operator discretizes the selected numerical 
attributes to nominal attributes. All numerical values are 
mapped to the defined classes according to the values 
specified by the user. Both for comparing purposes and 
because they proved to be representative and coherent, the 
ranges are maintained similar to those already used in the 
previous analyses. Briefly, there are 5 different ranges, as 
summarised in Table 2. 
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Figure 4. Attribute selection. 

Table 2. Example of data available in the CMMS. 

MTBF range Label 

Up to 2500 hours VERY LOW 
2500 to 4500 hours LOW 
4500 to 9000 hours MODERATE 
9000 to 16000 hours HIGH 
Above 16000 hours VERY HIGH 
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“Split validation” algorithm is used to separate the available 
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These datasets are then passed to the actual learner. As 
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returns the optimised model, and a testing structure that 
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The “Stacking” operator is also a nested operator. It 
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learner” is the operator where all the simple learning 
algorithms are trained and evaluated with respect to their 
performance. Then, the “Stacking model learner” decides how 
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The “Base learner” includes three algorithms: k-nearest 
neighbours (k-NN), naïve Bayes, and random forest. The 
“Stacking model learner” makes use of decision trees. All 
these are widely known methods in machine learning [18]: 
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• random forests are an ensemble learning method which 
builds a multitude of decision trees at training time and 
gives as output the class that is (typically) the mode of the 
classes of the individual trees; 

• decision tree is non-parametric method used to go from 
observations about an item to conclusions about the item’s 
target value. 

 
Finally, the ensemble model is used to perform a validation 

cycle.  
This activity involves using those samples (40% of the 

entire dataset) that had been split in a previous step. The 
“Optimise parameter” operator is used to evaluate the optimal 
configuration acting on the parameters reported in Table 3. 

Running the ensemble model yields the following results. 
To begin with, the optimal values for the above-mentioned 
parameters are summarised in Table 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3. Optimization parameters. 

Operator Parameter Range 
Validation Split ratio 0.5 to 0.8 
Random forest Number of trees 10 to 100 
Decision Tree Criterion Gain ratio, Information gain, Gini 

index, Accuracy 
Decision Tree Min. leaf size 2 to 6 
Decision Tree Min. size for split 4 to 12 

Table 4. Optimal values. 

Operator Parameter Range 
Validation Split ratio 0.79 
Random forest Number of trees 40 
Decision Tree Criterion Accuracy 
Decision Tree Min. leaf size 4 
Decision Tree Min. size for split 8 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 

Accuracy: 96.15% 

 True 
VERY LOW 

True 
LOW 

True 
MODERATE 

True 
HIGH 

True 
VERY HIGH Class precision 

Pred. 
VERY LOW 9 0 0 0 0 100% 

Pred. 
LOW 0 5 0 0 0 100% 

Pred. 
MODERATE 0 0 5 0 1 83.33% 

Pred. 
HIGH 0 0 0 3 0 100% 

Pred. 
VERY HIGH 0 0 0 0 3 100% 

Class recall 100% 100% 100% 100% 75%  
 

Table 5. Ensemble model confusion matrix. 

Figure 7. Random forest trees with uncertainty on a LOW label. 
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Applying such parameters, the ensemble model reached a 
significant accuracy value of 96.15%. The corresponding 
confusion matrix is given in Table 5. It clearly shows that only 
one example over 26 within the testing dataset has been 
incorrectly classified, whereas all the other results are exact. 
With the aim of showing the improved capabilities of the 
ensemble model two trees evaluated by the random forest 
algorithm have been reported in Fig. 7, where it is evident that 
the algorithm shows some uncertainty with respect to some 
examples belonging the label LOW.  

On the contrary, the ensemble model is able to overcome 
this doubt and show a very good capability of discriminating 
and correctly classifying the majority of the examples (Fig. 8). 
Even more interestingly, the system evaluates the prediction 
and the confidence for each row, giving the analyst a very 
powerful tool to investigate the outcomes. As an example, in 
Fig. 9, some rows are reported along with the true MTBF 
value, the prediction and its confidence level. 

 

 

Figure 8. Correctly classified examples (by the ensemble model). 

 
 
 
 
 

4. Conclusions 

The paper presented an innovative framework based on 
ensemble learning model that, combining results from 
multiple algorithms, makes it possible to classify items in 
terms of the MTBF. Specifically, the framework is an ex-post 
analysis that, starting from “big data” recorded in a CMMS, 
which includes both quantitative and qualitative variables, 
tries to give a good estimation of the MTBF of installed 
equipments. The novel approach is characterized by several 
peculiar advantages: (i) it exploits the advances in big data 
analytics to estimate the failure rate of equipments subject to  
different operating conditions; (ii) it permits to discriminate 
the working parameters affecting the failure rate; and (iii) it 
obtains better predictive capabilities than those obtained from 
any of the basic, constituting learning methods. Finally, the 
effectiveness and the usefulness of the novel analysis have 
been demonstrated using an industrial case study about 143 
centrifugal pumps installed in an oil refinery plant. As proven 
by the results, the ensemble reached a significant accuracy 
value of 96.15%, giving the analyst a very powerful tool to 
investigate the true MTBF value. Clearly, due to the extreme 
variability in the operating conditions, results are site specific, 
unless they are used exclusively to identify the most critical 
factors in the failure mechanisms of specific equipment. This 
means that the model, though effective and able to provide 
extremely good results, cannot be used “as-is” to estimate the 
MTBF of the equipment installed in a different industrial 
context. Indeed, it must be reconfigured every time, according 
to the novel industrial setting in which it is applied. In brief, it 
requires a new dataset, large and rich enough, possibly 
without missing values and errors, that will be use during the 
training stage. If this is the case, thanks to the large number of 
available algorithms that can be used within the ensemble 
model, a configuration will be certainly found that provides a 
good degree of generalization and that is therefore able to 
correctly estimate the MTBF. 

Figure 9. Results of the analysis (example). 
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