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In recent years, tremendous advances have been made in the use of gene editing to pre-
cisely engineer the genome. This technology relies on the activity of a wide range of
nuclease platforms — such as zinc-finger nucleases, transcription activator-like effector
nucleases, and the CRISPR–Cas system — that can cleave and repair specific DNA
regions, providing a unique and flexible tool to study gene function and correct disease-
causing mutations. Preclinical studies using gene editing to tackle genetic and infectious
diseases have highlighted the therapeutic potential of this technology. This review sum-
marizes the progresses made towards the development of gene editing tools for the
treatment of haematological disorders and the hurdles that need to be overcome to
achieve clinical success.

Introduction
Genome engineering has endowed the scientific community with the ability to artificially modify
genetic information, unlocking the potential of traditional medicine to new therapeutic approaches.
Gene editing represents a platform in which programmable DNA nucleases specifically recognize a
target genomic sequence where they introduce permanent genetic modifications. Four major classes of
targeted nucleases have been described so far: meganucleases, zinc-finger nucleases (ZFNs), transcrip-
tion activator-like effector nucleases (TALENs), and the CRISPR/Cas9 system (reviewed in [1]). These
nucleases are designed to create double-strand breaks (DSBs) into target DNA sequences, triggering
the activation of two major endogenous cellular repair mechanisms: non-homologous end joining
(NHEJ) and homologous recombination (HR) [2]. NHEJ is efficient but error-prone, thus repair of
the break site results in small DNA insertions or deletions (indels) [3]. Indels can disrupt target genes
by shifting the reading frame or introducing stop codons, with consequent production of non-
functional proteins. In contrast, HR results in accurate repair through the use of an undamaged DNA
template with homology to the sequence flanking the DSB. Each of these pathways — NHEJ or HR —
could potentially be exploited for therapeutic purposes. CRISPR/Cas9-based genome editing has been
widely used in proof-of-principle preclinical studies holding great promise for further clinical applica-
tions. This review will focus on the application of precise editing to treat monogenic disorders affect-
ing the haematopoietic system and on the factors that will determine its success in the clinical setting.

Therapeutic genome editing
For many haematological conditions, such as primary immunodeficiencies and haemoglobinopathies,
the only curative treatment is histocompatibility leukocyte antigen (HLA)-matched allogeneic haemato-
poietic stem cell transplantation (HSCT), which replaces defective haematopoietic lineages with func-
tional cells. The limitations of this procedure include donor availability with the consequent risk of graft
rejection, incomplete immune reconstitution, graft-versus-host disease, death and/or long-term dysfunc-
tion arising from the conditioning regimen [4,5]. Transplantation of autologous, genetically modified
stem cells could represent an alternative to allogeneic HSCT, and many groups have worked over the
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last few decades toward achieving efficient and safe gene transfer to haematopoietic stem cells (HSCs). In order
for gene therapy to be a viable and potentially life-long treatment, it is necessary to (1) correct a sufficient
amount of long-term repopulating HSCs, (2) achieve a stable and regulated expression of the therapeutic gene,
and (3) ensure that the process is safe. Pioneering gene therapy approaches for severe combined immunodefi-
ciency disorders (SCID) using retroviral vectors have demonstrated the applicability of the technology to treat
rare genetic diseases affecting the haematopoietic system [6]. However, viral vectors carry a potential risk of geno-
toxicity due to their semi-random integration pattern and to unregulated transgene expression in target cells
[7,8].Using autologous genetically modified haematopoietic stem and progenitor cells (HSPCs), gene editing
could represent an alternative to conventional gene therapy and overcome some of its limitations. Engineered
endonucleases that introduce DSBs at specific sequences in the genome offer much more control over viral vector
site integration; moreover, the site-specific insertion of DNA or correction of a disease-causing mutation in situ
guarantees that physiologically regulated gene expression is preserved. There are different gene editing applications
based on the two main repair mechanisms utilized by the target cells to correct the DSB. HDR (homology-
directed repair) can be used to either insert a gene into a specific ‘safe harbour’, into its own locus or to specific-
ally repair small or point mutations in the defective gene. In contrast, if NHEJ takes place, the generated indels
could abolish the expression of the protein, or the function of a regulatory region, and thus this repair pathway
can be utilized to treat those diseases for which mutating a genetic element may result in clinical benefit [9].

HDR-mediated genome editing
Site-specific gene correction
Site-specific correction of disease-causing mutations represents the most straightforward approach to repair a
faulty gene responsible for a monogenic disorder. In situ correction has the advantage of preserving endogenous
regulatory regions and physiological gene expression, which would be particularly advantageous when targeting
tightly regulated genes. Conditions for which a single or predominant mutation underlies the disease would seem
to be the most amenable to this approach (Figure 1). An example is sickle cell disease (SCD). SCD is an auto-
somal recessive disorder affecting millions of people worldwide and is caused by an A-to-T point mutation in the
sixth codon of the β-globin gene (HBB), resulting in the production of a defective globin that confers a hook/
sickle shape to red blood cells [10]. ZFNs and CRISPR/Cas9 together with a donor template delivered via
integration-defective lentiviral vectors (IDLV) or single-stranded DNA oligonucleotides (ssODN) have been exten-
sively used to correct the SCD-causing mutation in different cell types [11–14]. In clinically relevant cells such as
HSPCs, ZFN-mediated correction of the SCD mutation was achieved in up to 40% of the cells [15–17]. However,
the frequency of correction dropped when cells were transplanted into immunodeficient mice, with only ∼0.2–
2.3% of engrafted long-term repopulating HSPCs harbouring a corrected copy of the HBB gene at more than 12
weeks after transplantation, thus achieving rates of editing far below the level of therapeutic relevance. To over-
come this limitation, Dever et al. deployed a strategy that allows the enrichment of edited HSPCs, by including a
selectable marker into the HDR donor cassette delivered via a serotype 6 adeno-associated viral vectors (AAV6).
Using this approach, the authors showed that >97% of cells engrafted into immunodeficient mice were gene tar-
geted, a significant increase compared with mice transplanted with unselected gene-edited HSPCs (∼3%). Despite
the increase in HDR rate, selection of targeted HSPCs before transplantation yielded an overall lower engraftment
rate and recovery of fewer cells compared with standard protocols, indicating that further improvements in the
selection technique and cell culture conditions are required before translating this strategy into the clinics.
Site-specific genome editing has also been attempted by the group of Harry Malech for the treatment of

chronic granulomatous disease (CGD). CGD is a life-threatening disease caused by mutations in any of the five
subunits (gp91phox, p22phox, p40, p47phox, p67phox) that comprise the phagocyte nicotinamide adenine
dinucleotide phosphate oxidase (NADPH) complex. Apart from gp91phox, which is encoded by the CYBB gene
located on the X chromosome, the remaining mutated subunits lead to an autosomal recessive form of the
disease. While mutations are scattered across the genes for all other CGD patient phox genes, >80% of
p47phox-CGD patients are homozygous for a two-nucleotide deletion in exon 2 of the NCF1 gene, resulting in
a codon frameshift and abrogation of p47phox expression [18]. Interestingly, the same mutation is found in the
NCF1 pseudogenes NCF1B and NCF1C. By delivering ZFNs and an AAV6 containing a correct exon 2
sequence as a template for HDR, Merling et al. replaced the mutated exon in the NCF1 locus as well as in its
pseudogenes, restoring oxidase function in 6% of myeloid cells differentiated from patient’s derived p47-CGD
HSPCs and showing, for the first time, that rescue of a pseudogene function can correct a monogenic disorder
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[19]. In parallel, De Ravin et al. developed a CRISPR–Cas9 system to repair a point mutation in the CYBB
gene, which is responsible for 6% of the cases of X-linked CGD (X-CGD), using a ssODN as a template to
promote HDR-mediated gene repair. Seamless repair of the missense mutation restored gp91phox protein
expression and function in X-CGD HSPC-derived myeloid cells, and the amount of corrected cells decreased
by <50% after transplant into immunodeficient mice [20].

Site-specific gene insertion
One potential issue with site-specific gene correction is that the majority of genetic diseases are caused by muta-
tions spanning across the genes, thus requiring tailoring of gene editing reagents for each individual patient. A
more universal and attractive strategy would be to target an entire gene cassette to the desired locus so that, once
integrated, the transgene would functionally correct all disease-causing mutations. To this aim, a whole expression
cassette, including regulatory elements, can be inserted into a ‘safe harbour’, defined as a genomic region that is
able to accommodate the expression of newly integrated DNA without adverse effects on the host cell or organism

Figure 1. HDR-mediated genome editing.

HDR is a cellular pathway that can be exploited to modify genomic sequences via site-specific gene correction of mutations

(green box) or insertion of a correct gene (orange box). Mutations in the β-globin locus cause SCD and/or β-thalassemia.

Abnormal β-globin (βs phenotype) is caused by an A-to-T point mutation; therefore, site-specific correction of the mutation

could revert the disease phenotype. The same holds true for some forms of CGD, where the presence of mutation hotspots in

the CYBB and NFC1A genes make this disease amenable to site-specific correction through gene editing. β-globin loss (β0

phenotype) in β-thalassemia or absence of the common gamma chain of IL-2 receptor in SCID-X1 is caused by mutations

scattered around the respective genes. Healthy phenotypes in β-thalassemia (red box) or SCID-X1 (orange box) patients can be

reconstituted via insertion of a correct gene in its own endogenous locus or in a ‘safe harbour’ genomic region.
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[21], such as the adeno-associated virus integration site 1 (AAVS1) locus. Once a set of safe harbour site-specific
nucleases has been designed, the same toolbox could be potentially used to treat many different genetic disorders.
Alternatively, it is possible to knock in the functional transgene into its own locus, allowing expression of the gene
through its own endogenous regulatory elements. Although this strategy is specific for each single gene/disease, it
could be particularly amenable for conditions in which endogenous gene regulation is essential (Figure 1).
Pioneering work by Urnov et al. showed that it is possible to correct a mutation responsible for the X-linked

severe combined immune deficiency (SCID-X1) in primary cells using ZFNs directed against the IL-2 receptor
common gamma-chain gene (IL2RG). By designing a donor template DNA carrying an exon 5 fragment of
IL2RG, the authors reported up to 5% of HDR-mediated editing in primary T cells, paving the way for poten-
tial gene correction applications, aimed to treat SCID-X1 [22]. However, the modest rates of editing achieved in
primary cells highlighted the limitation of plasmid transfection to deliver the nucleases and the HDR template,
in particular when applied to cells sensitive to genetic manipulations such as HSPCs. Lombardi and colleagues
first addressed this issue and managed to successfully insert a donor cassette downstream of the IL2RG pro-
moter or in the safe harbour CCR5 locus, using an IDLV to deliver ZFNs and the HDR template to lympho-
blastoid primary cells, embryonic stem cells and HSPCs. While this represented an improvement of the editing
protocol for primary cells, knock-in rates, especially in therapeutically relevant HSPCs, were extremely low
[23]. To overcome the poor integration level observed in repopulating stem cells, the same group then opti-
mized various culture conditions, timing and delivery route of the reagents to enhance the insertion of an
IL2RG cDNA cassette into the AAVS1 or the IL2RG locus in HSPCs derived from healthy or SCID-X1 donors,
achieving up to 11% of gene targeting [24]. More recently, two preclinical studies have shown significant
advancement in the correction of the IL2RG locus, by knocking in a full-length IL2RG cDNA delivered by an
AAV6 donor vector using either the ZFN or CRISPR/Cas9 system [25,26]. Both groups were able to reach
therapeutic levels of IL2RG expression in wild-type and SCID-X1 HSPCs, as well as in the more primitive
population of HSCs, with in vitro and in vivo rescue of multi-lineage developmental potential from corrected
cells. SCID-X1 represents an ideal target for proof-of-concept gene editing studies, as the tremendous selective
advantage that functionally corrected cells have over mutated ones in a SCID setting [27] can compensate for
the relatively low rate of HDR-mediated correction in HSPCs. Additional protocol optimization may be
required to increase the percentage of gene correction in long-term repopulating stem cells to revert the disease
phenotype in blood disorders where such a strong selective advantage is missing.

NHEJ-mediated genome editing
Although gene correction might seem the most immediate approach to therapeutic genome editing, the first
clinical trial using targeted nucleases in human patients has relied on NHEJ-based genetic disruption. One
advantage of this strategy is that NHEJ tends to be a more active repair pathway compared with HDR, particu-
larly in quiescent stem cells [28]. Another benefit of NHEJ over HDR is that it relies solely on targeting
nucleases with no need for designing and producing a donor template, thus making the whole process less
laborious and more efficient for a potential clinical application. The first-in-human genome editing trial
(NCT01044654) used ZFNs in autologous T cells to target the HIV co-receptor CCR5 [29], with the aim to
mimic naturally occurring mutations that abolish its expression and engender resistance to HIV infection [30].
The clinical outcome indicated that this NHEJ-based approach was safe for patients and able to confer a sur-
vival advantage in vivo against HIV. Preclinical in vitro and in vivo studies demonstrated the feasibility and
safety of ZFN-based CCR5 disruption also in HSPCs, providing a potentially life-long treatment to
HIV-infected patients [31]. The technology is currently being evaluated in an ongoing clinical trial
(NCT02500849) as a collaboration between City of Hope Medical Center and Sangamo Therapeutics.
The indels generated by NHEJ repair may be useful for disrupting not only coding sequences but also non-

coding regulatory elements. For example, mutation of the erythroid-specific enhancer of BCL11A has been
shown to increase fetal haemoglobin (HbF) expression and treat haemoglobinopathies. From the observations
of new-born babies with β-globin defects [32], it is clear that by maintaining HbF expression it is possible to
reduce or totally abolish the symptoms related to SCD or β-thalassemia [33–35]. BCL11A plays a crucial role
in HbF transcriptional repression [36,37], in accordance with the rescue of therapeutically relevant levels of
HbF expression in BCL11A knock-out murine models [38,39]. By using different gene editing platforms, many
groups have shown that knock-out of BCL11A erythroid-specific enhancer restores high HbF levels, without
compromising cell viability or function [38,40,41] (Figure 2). Preclinical studies made by Sangamo
Therapeutics using ZFNs to target this region have demonstrated the therapeutic and clinical potential of the
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approach, obtaining engraftment of modified long-term HSCs in vivo and persisting production of high levels
of HbF in animals [42–44]. At the beginning of the year, a Phase 1/2 clinical trial has started to evaluate the
safety of their product in six β-thalassemia patients (NCT03432364); in parallel, CRISPR Therapeutics and
Vertex Pharmaceuticals have opened a Phase 1/2 clinical trial on twelve SCD-affected subjects to test the safety
of their CRISPR–Cas9 platform targeting the BCL11A enhancer in HSPCs (NCT03745287).
Apart from BCL11A, several other modulators of HBB expression have been identified as potential targets of

NHEJ-based gene disruption approaches (Figure 2). In particular, it has been shown that CRISPR/Cas9-mediated
knock-out of the lymphoma/leukemia-related factor (LRF), an HbF silencer [45], can increase more than five
times the level of HbF expression. However, the involvement of LRF in other haematopoietic functions may
impair the translation of this approach into the clinic and therefore it requires further investigation [46]. The
presence of high levels of HbF in patients affected by the hereditary persistence of fetal haemoglobin (HPFH)
benign condition has led several research groups to focus on genome editing strategies that could reproduce large
deletions in the β-globin gene cluster and mutations in the γ-globin promoter region [47–49]. It has been shown
that the disruption of HGB1 and HGB2 (γ-globin) gene promoter region inhibits the repression of HbF mediated
by BCL11A or LRF reversing the globin switching [50,51]. Furthermore, natural HPFH-associated deletions and
point mutations have been precisely generated in vitro in HSPCs through a CRISPR/Cas9 multiplex strategy
[52,53], or a microhomology-mediated end joining microdeletion approach [54]. However, the reactivation of
HbF expression at clinically beneficial levels has not been achieved so far, leaving open questions regarding the
efficacy [55] and potential side effects in vivo [55] of the γ-globin silencer as a therapeutic target for gene editing.

Epigenome and base editing
The great versatility and flexibility of the CRISPR/Cas9 platform and the ability of Cas9 to bind DNA inde-
pendently from its nuclease activity led to the development of novel tools that could overcome some of the lim-
itations of current gene editing approaches. Indeed, a ‘dead’ catalytically inactive Cas9 endonuclease (dCas9)

Figure 2. NHEJ-mediated genome editing.

Genome editing can re-equilibrate the lost balance in the haemoglobin structure caused by the presence of defective subunits

(pink and yellow boxes). The excess of one kind of haemoglobin chain — either α- or β-globin — can be reduced via NHEJ

gene disruption (green box). Potential target sites to restore β-globin expression using an NHEJ-based approach are fetal

haemoglobin (HbF) silencers (2, purple box), genomic regions regulating the expression of these silencers (1, purple box) or

sites that can reproduce the HPFH phenotype (3, purple box).
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has been engineered to tether different enzymatic activities to specific DNA sequences for a variety of applica-
tions, including transcriptional regulation and epigenetic modification.
Epigenetic marks and effectors have a crucial impact on chromatin organization and gene expression over time.

For example, the effects of these modifications are clearly visible in the γ-to-β haemoglobin switching. Epigenome
manipulation of the β-globin gene cluster, such as artificially driven changes that block epigenetic HbF gene silen-
cing, offers a challenging alternative to the permanent alteration of the coding sequence that is achieved with ‘trad-
itional’ genome engineering. Epigenome modifiers, composed of the LSD1 histone demethylase and ZFN [56,57] or
TAL effector domains [58], were developed to target the globin locus control region (LCR), force the β-globin
looping and restore HbF expression. One of these studies has shown that using this approach it is possible to induce
a ∼2.5-fold increment in γ-globin expression in different donors [57]. Because LSD1 is essential for erythroid differ-
entiation [59], the long-range precise control of the chromatin structure offers a potentially safer option for thera-
peutic purposes compared with the LSD1 knock-down or knock-out approach. Other potential epigenetic targets of
interest for haemoglobinopathies are represented by the genes involved in the β-globin looping interactions such as
methyl cytosine-binding domain proteins and the Mi2β chromatin remodelling ATPase [60,61], whose manipula-
tion could be used to increase γ-globin gene expression without impairing erythroid differentiation.
As discussed above, the efficiency of HDR is very low due to the higher amount of DSBs being preferentially

repaired by NHEJ. To introduce point mutations without using HDR, different platforms based on dCas9 fused
to DNA deaminases have been developed for base editing technologies. Since 2016, four generations of base
editors (BEs) have been developed from apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like
(APOBECs) or activation-induced cytidine deaminases combined with either the CRISPR–Cas9 or the CRISPR–
Cpf1 system (reviewed in [62]). BEs could be therapeutically relevant to correct disease-causing point mutations
or to induce site-specific mutations to disrupt genomic sequences. Although still in their early stage, few reports
have shown the applicability of such technologies to treat haemoglobinopathies. Liu et al. [63] showed that
plasmid delivery of an adenine BE was able to install a mutation known to confer HPFH and enable HbF pro-
duction in HEK293T cells. Other two studies reported correction of a mutant HBB allele in β-thalassemia
patient-derived erythroid precursors [64] and primary fibroblasts [65]. Despite being promising tools, BEs
activity and editing efficiency in primary cells must be improved before moving from bench to clinic.

Challenges of therapeutic genome editing
Site-specific genome editing has transformed the research field of biology and medicine. Not only can this tech-
nique allow the functional study of a particular gene, but it is also amenable to correction of a
disease-associated mutation. Despite this exciting prospect, there remain major barriers associated with the
editing-based therapeutic treatment of blood disorders that must be addressed to advance clinical applications
that rely on genome editing. Some of these challenges include (1) the delivery of the editing machinery ex vivo
and in vivo, (2) the ability to preserve the stemness and achieve high levels of engraftment of HSCs in vivo, (3)
the identification and reduction in genome-wide off-target effects induced by the nucleases.
The main objective when delivering gene editing reagents is to promote a hit-and-run activity of the nucleases,

to allow for the generation of DSBs in a short period of time, while limiting toxicity and off-target activity. For
HDR-based gene addition approaches, it is also necessary to deliver the DNA donor template in a transient way,
to avoid unwanted integration into non-specific regions of the genome. For decades, various delivery methods,
such as electroporation, nanoparticles and viral vectors, have been used to introduce the editing reagents into cells
for ex vivo or in vivo approaches. For ex vivo applications, transfection of plasmid DNA is nowadays the least
used technique to target primary cells, as reports indicate induction of high toxicity, off-target insertion and host
immune response [66,67]. These unwanted effects are observed minimally when delivering nucleases as mRNA
or, in the case of Cas9 and the gRNA, in the form of a ribonucleoprotein complex [16,68–70]. Unlike electropor-
ation, viral vectors, such as recombinant AAV and IDLV, have been applied in both ex vivo and in vivo preclinical
studies. In addition to the delivery of editing reagents, their non-integrative properties allow them to be used to
provide the donor template for HDR-based gene correction. The relatively low toxicity and non-integrative nature
of AAV, together with its ability to achieve high recombination frequencies with small homology regions, have
made them desirable genetic tools for efficient human HSPC gene editing [25,71–73]. Despite being safe, one of
the drawbacks of AAV is their limited cargo capacity of 4.5 kb that restricts the expression of large transgenes,
although it has been recently reported the integration of a cassette with up to 6.5 kb in size using a multiplexing
strategy [74]. Delivery through lipid- and gold-based nanoparticles is considered safer in vivo compared with the
use of viral vectors, but the targeting efficiency is still below therapeutic levels [75,76].
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As outlined at the beginning of this review, long-term repopulating HSCs are the ideal target for gene
editing of various types of inherited haematological conditions [16]. The therapeutic benefit of gene-corrected
HSCs depends on their capacity to engraft and provide long-term production of healthy blood lineage progeni-
tors while maintaining renewable stem cells in transplanted patients. One of the hurdles associated with HSC
editing is the low rate of HDR than can be achieved, mainly due to the fact that NHEJ is preferentially utilized
to correct DSBs in non-dividing cells. To overcome this problem, various groups have tried either pharmaco-
logical or genetic inhibition of NHEJ [77–80], strategies to increase the rates of HDR [81,82] and synchroniza-
tion of the cell cycle [83], as well as optimization of delivery conditions to enhance knock-in efficiencies.
Moreover, strategies to in vitro expand primitive HSC while preserving their stem cell qualities have been put
in place, with the final aim to advance efforts at HSC modification, engraftment and long-term repopulation in
in vivo xenotransplantation models [24,72,84].
The intrinsic specificity of the editing machinery permits researchers to modify their chosen gene of interest at a

particular locus; however, unintended off-target cleavage at different genomic sites might occur. Being a permanent
genetic modification, off-target cleavage could introduce unwanted mutations which may ultimately lead to cancer,
posing a huge risk for clinical therapeutic applications involving engineered nucleases. Therefore, evaluation of off-
target mutagenesis is an important preclinical criterion that must be taken into account before starting clinical
studies. Several off-target detection methods have been developed to assess the safety of gene editing reagents. Early
developed approaches have used computational predictions to identify a limited set of genomic regions that show
homology with the target site, which can be then examined for a-specific cleavage by deep sequencing [85]. More
recently, unbiased methods have been proposed that allow for genome-wide assessment of off-target mutagenesis,
and in certain cases can also identify gross chromosomal rearrangements [86–89]. However, these methods do not
always reliably pinpoint all potential off-targets and often show a limited sensitivity. To complicate the scenario, one
must take into account the baseline level of mutagenesis that exists in normal somatic tissues or that can be caused
by cell expansion during the manufacturing process. Dosage and expression pattern of the nucleases, as well as cell
number, cell type and features of the genomic target site, may also affect editing specificity. It is difficult to predict
the impact that modifications at different genomic sites may have on cell fitness, considering that most likely the
vast majority of off-target edits would be functionally neutral. Interpreting the effects of genomic perturbations is
challenging and requires the identification and development of functional readouts of safety that must be tailored to
the therapeutic cell type of interest. There have been several efforts to increase the specificity of genome-editing
systems, such as the development of shorter gRNAs [85], nickase mutants of Cas9, Cas9–FokI fusion protein
[90,91], and high-fidelity Cas9 variants [69,92]. The continued improvements of the efficiency and safety of these
reagents will be essential to ensure the success of gene editing applications to treat genetic haematological disorders.

Conclusion
During the last few years, gene editing has emerged as a powerful tool for genomic functional studies and thera-
peutic correction of monogenic disease. Gene editing platforms, such as CRISPR/Cas9 and TALEN, have shown
great promise in proof-of-principle preclinical studies to treat haematological disorders, and clinical trials using
these tools are now underway. Nonetheless, there remain important challenges that need to be addressed, such as
the efficiency and specificity of the editing system, especially when considering targeting of primary stem cells.

Summary
• Genome editing is a rapidly evolving technology that has particular relevance for the treatment

of haematological disorders and infectious diseases.

• Blood disorders can be tackled by taking advantage of two main endogenous cell repair
mechanisms — NHEJ and HDR — which lead to either disruption of genes and regulatory ele-
ments or insertion of a correct gene in a site-specific fashion.

• Despite the tremendous progress, several issues need to be addressed to make genome
editing a safer and more effective therapeutic tool.
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