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Abstract. The possibility to significantly reduce the X-ray radiation dose and shorten the
scanning time is particularly appealing, especially for the medical imaging community. Region-
of-interest Computed Tomography (ROI CT) has this potential and, for this reason, is currently
receiving increasing attention. Due to the truncation of projection images, ROI CT is a rather
challenging problem. Indeed, the ROI reconstruction problem is severely ill-posed in general
and naive local reconstruction algorithms tend to be very unstable. To obtain a stable and
reliable reconstruction, under suitable noise circumstances, we formulate the ROI CT problem
as a convex optimization problem with a regularization term based on shearlets, and possibly
nonsmooth. For the solution, we propose and analyze an iterative approach based on the variable
metric inexact line-search algorithm (VMILA). The reconstruction performance of VMILA is
compared against different regularization conditions, in the case of fan-beam CT simulated
data. The numerical tests show that our approach is insensitive to the location of the ROI and
remains very stable also when the ROI size is rather small.

1. Introduction
Region-of-interest Computed Tomography (ROI CT) is an X-ray based incomplete data imaging
acquisition modality [1]. Since X-ray radiation exposure comes with health hazards for patients,
the possibility to reconstruct only a small ROI using truncated projection data is particularly
appealing, especially in biomedical application, due to its potential to lower the X-ray radiation
dose and reduce the scanning time. However, reconstructing a density function from its
projections is an ill-posed problem, with the ill-posedness becoming more severe when projections
are truncated, as in the case of ROI CT. Therefore, traditional approaches, like Filtered Back-
Projection, in general produce unacceptable visual artifacts and are unstable to noise.

To address the problem of ROI reconstruction from truncated projections, a variety of ad hoc
methods, both analytic and algebraic, were proposed in the last years (see [2] and the references
therein), but usually require restrictive hypothesis on the ROI or are rather sensitive to noise.

To overcome these drawbacks, we formulate ROI CT as a convex optimization problem with
a regularized objective function, possibly nonsmooth, and based on a very recently introduced
multiscale method called shearlets [3]. The use of less recent multiscale methods is not new
in CT application, even combined with analytic approaches [4]. The approach we present
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partially relies on the setup in [5]. However, our approach differs in the objective function,
which considers shearlets instead of wavelets, and in the aim, since our goal is to compare
the different regularization terms proposed to identify the model which better provides the
desired features of the image to reconstruct. Moreover, for the solution of the minimization
problems we exploit a very recently proposed algorithm belonging to the class of proximal-
gradient techniques, the variable metric inexact line-search algorithm (VMILA) [6], in place
of a (split) augmented Lagrangian. VMILA is a proximal-gradient method, which enables the
inexact computation of the proximal point defining the descent direction and guarantees the
sufficient decrease of the objective function by means of an Armijo–like backtracking procedure.
In order to evaluate the effectiveness of the suggested theoretical approaches we conduct a
numerical study on simulated data. In particular, we investigate which approach produces the
most accurate ROI reconstruction, without any assumption on the ROI size or location.

2. Region-of-interest tomography setup
In the ROI tomography problem, measurements are taken only within a limited region-of-interest
(generally, a disk) strictly inside the object support. The goal is to reconstruct the density
function inside the ROI only from these truncated data.

This can be accomplished by using the mask function M(θ, τ) = 1P(S)(θ, τ) which selects
the set P(S) = {(θ, τ) ∈ T : `(θ, τ) ∩ S 6= ∅} of those rays meeting the ROI, where 1A is the
characteristic function of the set A, S the ROI disk, `(θ, τ) = {x ∈ R2 : 〈x, ωθ〉 = τ} denotes
a ray, being ωθ = (cos(θ), sin(θ))T , and T = {(θ, τ) : θ ∈ [0, 2π), τ ∈ R} the tangent space.
Namely, the truncated sinogram y0(θ, τ) shall be given by:

y0(θ, τ) = M(θ, τ)Rf(θ, τ), (1)

where Rf(θ, τ) =
∫
`(θ,τ) f(x) dx is the Radon transform of the density function f ∈ R2 [7]. In

the following, we will address as full sinogram the Radon projections

y(θ, τ) = Rf(θ, τ). (2)

In particular, equation (2) can be used as a global constraint to fix an extrapolation scheme
which defines y outside P(S). Indeed, the following equation

y = y0 + (1−M)y. (3)

suggests to interpret ROI CT as an extrapolation problem, where, given y0 on P(S), the goal is
to extrapolate this function to the region outside P(S). Clearly, not any extrapolation scheme
is suitable to define y outside P(S) and equation (2) ensures that y is the image of the Radon
transform of the same density function f ∈ L1(R)∩L2(R). From (2), we derive two conditions:

MRf = M y = y0 (data fidelity) (4)

(1−M)Rf = (1−M) y (data consistency) (5)

Notice that the data fidelity equation defines a constraint inside the ROI while the data
consistency equation enforces accurate reconstruction inside the ROI.

Equations (4) and (5) alone do not lead to a unique solution. Indeed, the least square solution

f̂ = arg min
f
‖MRf − y0‖22,

is not unique, since, in general, the solution of the ROI CT problem is not guaranteed to be
unique [7]. When uniqueness is ensured, the ill-posedness is too severe, due to the truncation
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of projections. A classical approach to achieve uniqueness is to impose an additional norm
condition, according to Tikhonov regularization, and this norm condition can be applied in the
image domain or in the (Radon) transform domain. Hence, we define a norm condition in the
transform domain by posing:

‖f‖22 =
1

4π

∥∥∥I− 1
2Rf

∥∥∥2

2

given that f=(4π)−1R∗I−1Rf holds true [7, p. 11], where R∗ is the adjoint of the operator R
(usually referred to as backprojection operator), and I−1/2 is the Riesz potential operator [7, p.
5]. Thus, we are lead to the following optimization problem:

f̂ = argmin
f

Υ2(f) s. t. y = Rf and My = y0 (6)

with Υ2(f) = ‖I−1/2Rf‖22. By analogy, we can modify the optimization problem using the
functional Υp(f) = ‖I−1/2Rf‖pp with 1 ≤ p ≤ 2. In the following, we will use p = 1, that can be
interpreted as a sparsity-promoting condition. The discrete counterpart of (6) reads as:

f̂ = argmin
f
‖ΦWf‖pp s. t. y = Wf and My = y0 (7)

where W is the forward projection matrix, representing the map from the image domain to
the projection domain. It is sized NθNdtc × N2, with Nθ number of projection angles, Ndtc

number of detector cells and N is both the width and the height in pixels of the object to
reconstruct. The elements of the matrix W are computed according to the distance-driven
method [8]. The diagonal matrix M, sized NθNdtc × NθNdtc, is the mask corresponding to
the ROI, whose entries are either 0 or 1. The unknown discrete density function f is a vector
of length N2, while the full and truncated sinogram y and y0 are vectors of length NθNdtc,
all obtained by column-wise stacking the entries of the corresponding matrices. Finally, Φ is a
discrete filter corresponding to the Riesz potential operator I−1/2. Indeed, in place of considering
a straightforward matrix discretization of the Riesz potential operator, we approximate it by
using a discrete shearlet transform [3], whose corresponding matrix is denoted by Φ. The
underlying idea is to exploit the shearlets optimally sparse approximation properties, which are
particularly relevant in CT-like applications, since point-like structures in the image domain
map onto sine-shaped curvilinear structures in the projection domain [9]. Formulation (7) is
equivalent to the following formulation:

f̂ = argmin
f∈RN2

Ψ(f) where

Ψ(f) =
1

2
‖MWf − y0‖22 + λ ‖Φ((INθNdtc

−M)Wf + y0)‖pp + ιΩf
.

(8)

In (8) we considered the L2-norm error of the data fidelity equation and we incorporated the
data consistency information in the regularization term. Here, λ denotes the regularization
parameter and ιΩf

is the indicator function of the feasible region which is defined as f ≥ 0
or 0 ≤ f ≤ L, where L is the image maximum pixel intensity and the inequalities are meant
component-wise. Notice that each term of the objective function is convex with respect to the
unknown. In the following, we compare two different models belonging to (8) and obtained by
selecting p = 2 or p = 1.

3. Numerical Experiments
To demonstrate and validate our approach, we use the synthetic data set known as “modified
Shepp-Logan phantom” sized N × N pixels with N = 128, which is available, for instance, in
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Table 1. Optimal results for shearlet-based regularization (8) with p = 1, 2, and λ = 10−4.
σ = 0.05 σ = 0.1

rROI = 0.25N rROI = 0.15N rROI = 0.1N rROI = 0.25N rROI = 0.15N rROI = 0.1N
iter value sec iter value sec iter value sec iter value sec iter value sec iter value sec

ROI PSNR ROI PSNR
Sm 83 35.86 4.7 109 33.61 6.0 106 32.57 5.8 77 35.49 5.3 111 35.37 7.6 102 37.12 6.9

NSm 83 36.94 15.1 78 41.98 14.2 48 45.43 8.6 48 37.76 10.5 72 40.92 15.9 62 44.64 13.6
ROI Relative error ROI Relative error

Sm 83 0.21 4.7 109 0.57 6.0 106 1.06 5.8 77 0.23 5.3 111 0.46 7.6 102 0.63 6.9

NSm 83 0.19 15.1 78 0.22 14.2 48 0.24 8.6 48 0.17 10.5 72 0.25 15.9 62 0.26 13.6

the Matlab Image Processing toolbox. All the algorithms are implemented in Matlab 8.1.0 and
the experiments performed on a dual CPU server, equipped with two 6-cores Intel Xeon X5690
at 3.46GHz, 188 GB DDR3 central RAM memory and up to 12 TB of disk storage.

All the numerical experiments are carried out in the framework of 2D fan-beam geometry. A
full angle scan (182 views over 2π) with complete data was simulated. The matrix Φ is generated
by using the classical shearlet decomposition. In details, the number of scales for the shearlet
transform is set equal to 4 and the number of directions across the scales is set to (8, 8, 16, 16).

Truncated projection data are obtained by discarding the samples outside the ROI projection
P(S). In particular, we consider concentric ROI disks with decreasing radius rROI, placed off-
center with respect to the field of view. The results in this paper cover ROIs which are fully
inside the object being imaged, according to the hypothesis of the interior tomography problem.
Here, we assume that the noise which corrupts the projection data is described by a white
Gaussian process, with zero mean and variance σ.

To evaluate the goodness of model (8) by varying the regularization term, we investigated
two different formulations: a smooth one with p = 2 and a nonsmooth one with p = 1. The
solution of both the corresponding optimization problems has been addressed by using VMILA.
It is a proximal-gradient (or forward-backward) method suitable for minimizing the sum of a
differentiable, possibly nonconvex, function plus a convex, possibly nondifferentiable, function.
Both the considered formulations for the ROI CT problem are suitable to be faced by such
an algorithm. Indeed, in the smooth framework, the differentiable part consists of the first
two terms of (8) and the nondifferentiable contribute reduces to the indicator function of the
feasible set Ωf . In the nonsmooth setting, the differentiable term is given by the L2−norm of the
data fidelity and the nondifferentiable one takes into account both ιΩf

and the data consistency
regularizer. The VMILA (k + 1)-th iteration for the minimization of the sum of a smooth
function Γ0 and a nonsmooth one Γ1 is given by:

f (k+1) = f (k) + λk

{
prox

D−1
k

αkΓ1

(
f (k) − αkDk∇Γ0(f (k))

)
− f (k)

}
where λk is a linesearch parameter, αk is a positive steplength, Dk is a symmetric and positive

definite scaling matrix and prox
D−1
k

αkΓ1
denotes the proximal operator associated to Γ1. VMILA

global convergence is ensured by a generalized Armijo-like backtracking procedure to select λk.
Moreover, αk ∈ [αmin, αmax] ⊂ R+ and Dk ∈ Dµ, where Dµ = {D = diag(d1, . . . , dN ) | dj ∈
[µ−1, µ] ∀j} with µ > 1. For both formulations, we select αk through an adaptive strategy based
on the Barzilai-Borwein updating rules [10, 11] and Dk according to a split-gradient idea [12]
based on the decomposition of the gradient of Γ0 into a positive and a negative part.

In many common situations, including ROI CT, a closed-form of the proximal operator of
Γ1 is not known. In this case, VMILA consists in a double loop method, where the inner loop,

6th International Workshop on New Computational Methods for Inverse Problems IOP Publishing
Journal of Physics: Conference Series 756 (2016) 012009 doi:10.1088/1742-6596/756/1/012009

4



Figure 1. Optimal reconstructions of the Shepp-Logan phantom for decreasing radii and
σ = 0.05. First row: smooth formulation. Second row: nonsmooth formulation.
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designed to inexactly solve the minimization problem associated to the definition of the proximal
operator, is devised with a suitable stopping criterion. For the ROI CT problem, if p = 1 we
need to compute an approximation of the proximal point which defines the VMILA direction;
on the other hand, if p = 2, the proximal operator corresponding to the nondifferentiable term
of the objective function reduces to the scaled euclidean projection onto the feasible set and
therefore no inner loop is required.

We investigated the performance of both the models for regularization parameters λ = 10`,
with ` = −4,−3, . . . , 4. As figures of merit, we use the peak-signal-to-noise ratio (PSNR) and
the relative error. We stress that both PSNR and relative error are evaluated inside the ROI
only, since ROI CT aims to recover the image only inside the ROI.

Due to room constraint, we summarize in Table 1 only the best results, with respect to
the figures of merit, obtained with the shearlet-based formulation for both smooth (Sm) and
nonsmooth (NSm) cases, and for two levels of noise, namely σ = 0.05 (Table 1, left-hand side)
and σ = 0.1 (Table 1, right-hand side). The corresponding images, only for the case σ = 0.05, are
reported in Figure 1. We stress that many additional tests were performed for both formulations,
with different level of noise, and also exploiting other regularization approaches, such as smooth
total variation (sTV) and early stopping. For instance, for all ROI radii in Table 1 the sTV
approach with ρ = 1 and σ = 0.05 yields PSNR = 37.81, 42.93, 47.25, relative error equal
to 0.17, 0.19, 0.20, and iter = 107, 145, 172 in 7.3, 9.7, 11.7 seconds, respectively, while with
σ = 0.1, it yields PSNR = 39.21, 44.94, 49.69, relative error equal to 0.14, 0.15, 0.15, and
iter = 114, 137, 181 in 7.6, 9.4, 12.3 seconds, respectively. Worse performances were obtained
for ρ = 10−2, 10−1, 10. These results are slightly better than the (nonsmooth) shearlets-based
approach, but this is clearly dependent on the phantom features (which is piecewise constant)
and may not hold for more general data. We expect that, using more realistic sinograms, the
contribution of the shearlet term will become more relevant for the regularization. Evidence of
this can be found in [9].
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The results in Table 1 show that the nonsmooth formulation outperforms the smooth
approach, and this is even more evident as the radius rROI gets smaller. Indeed, when σ = 0.05,
the smooth reconstruction exhibits a 100% ROI relative error for rROI = 0.1N , while the
nonsmooth reconstruction achieves 24%. This is definitively confirmed by the corresponding
images, where no artifacts are visible for the nonsmooth reconstructions, while the smooth ones
suffer from low contrast between the smallest features and mild checkerboard effect. Notice that,
concerning the figures of merit, the difference between the two approaches is less remarkable
when σ = 0.1, while for the corresponding images (not reported here) similar considerations
hold true. However, all the reconstructions are sufficiently good, on a visual basis, since all
the fundamental features are detected, and the transition between the ROI to the non-ROI is
smooth enough.

For baseline comparison, the analytic approach called Filtered Back-Projection (FBP) with
σ = 0.05 yields PSNR = 27.88, 27.58, 28.49, and rel. err. = 0.54, 1.14, 1.69, respectively. These
results are considerably worse than the ones obtained with VMILA. Similar results are obtained
with σ = 0.1. The corresponding images are blurred, suffer from cupping artifacts and the
details are not sharp. Some other results, for the smooth case, can be found in [13, 14].

4. Conclusions
In this paper, we presented a numerical assessment on the solution of the ROI CT problem via
an iterative minimization method. Two different types of objective functions, namely smooth
and nonsmooth, have been considered, aiming at making the reconstruction from truncated data
stable. The experiments show that the reconstructions obtained by considering the nonsmooth
approach are the best ones, with respect to the figures of merit. A possible explanation might
be that the use of the 1-norm leads to the suppression of many small shearlet coefficients in
favor of few large shearlet coefficients, that are associated to edges. This allows to separate the
structural components of the image from the noise, and this roughly corresponds to denoising.
Overall, the reported results show that accurate ROI reconstructions can be obtained regardless
of the location and size of the ROI and for rather small ROI sizes using both formulations of
the objective function.
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