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Abstract. Over the last decade, wireless networks have experienced an
impressive growth and now play a main role in many telecommunica-
tions systems. As a consequence, scarce radio resources, such as frequen-
cies, became congested and the need for effective and efficient assign-
ment methods arose. In this work, we present a Genetic Algorithm for
solving large instances of the Power, Frequency and Modulation Assign-

ment Problem, arising in the design of wireless networks. To our best
knowledge, this is the first Genetic Algorithm that is proposed for such
problem. Compared to previous works, our approach allows a wider ex-
ploration of the set of power solutions, while eliminating sources of nu-
merical problems. The performance of the algorithm is assessed by tests
over a set of large realistic instances of a Fixed WiMAX Network.

Keywords: Wireless Network Design, Large-scale Optimization, Ge-
netic Algorithms.

1 Introduction

During the last years, wireless communications have experienced an explosive
growth thus rapidly leading to a dramatic congestion of radio resources. In such
complex scenario, the trial-and-error approach commonly adopted by practition-
ers to design networks has clearly shown its limitations. Telecommunications
companies and authorities are thus searching for more effective and efficient de-
sign approaches, also looking on Optimization (as shown by the recent call for
tenders for developing a Digital Video Broadcasting simulator by the Italian
Communications Regulatory Authority [2]). Many models and solution meth-
ods have been proposed for solving the problem of designing a wireless network.
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However, solving to optimality the overall problem is still a big challenge in the
case of large instances. In this paper we present a Genetic Algorithm for solving
the Power, Frequency and Modulation Assignment Problem, a relevant problem
that arises in the design of wireless networks and captures specific features of
Next Generation Networks.

2 The Wireless Network Design Problem

For modeling purposes, a wireless network can be described as a set of trans-
mitters B that provide for a telecommunication service to a set of receivers T .
A receiver t ∈ T is said to be covered or served if it receives the service within
a minimum level of quality. Transmitters and receivers are characterized by a
location and a number of radio-electrical parameters (e.g., power emission and
frequency). The Wireless Network Design Problem (WND) consists in establish-
ing the location and suitable values for the parameters of the transmitters with
the goal of maximizing the number of covered receivers or a revenue associated
with coverage.

In this work we consider a generalization of the so-called Power and Fre-
quency Assignment Problem (PFAP), a version of the WND that is known to
be NP-hard [12]. In addition to power emission and frequency, we also consider
the transmission scheme (burst profile) as parameter to be established, model-
ing a feature of Next Generation Networks, such as WiMAX [3,6]. We indicate
this generalization of the PFAP by the name Power, Frequency and Modulation
Assignment Problem (PFMAP).

In the PFMAP two decisions must be taken: (1) establishing the power emis-
sion of each transmitter on each available frequency and (2) assigning served
receivers to activated transmitters specifying the frequency and the burst profile
used to transmit. To model these decisions, as first step we introduce the set F
of available frequencies and the set H of available burst profiles. Each frequency
f ∈ F has a constant bandwidth D and each burst profile h ∈ H is associated
with a spectral efficiency sh, which is the bandwidth required to satisfy one unit
of traffic demand generated by a receiver.

Then we can introduce two typologies of decision variables, namely:

– a continuous power variable pfb ∈ [0, Pmax] ∀ b ∈ B, f ∈ F representing the
power emission of a transmitter b on frequency f ;

– a binary service assignment variable xfh
tb ∈ {0, 1} ∀ t ∈ T, b ∈ B, f ∈ F, h ∈

H defined in the following way:

xfh
tb =







1 if receiver t ∈ T is served by transmitter b ∈ B
on frequency f ∈ F through burst profile h ∈ H

0 otherwise

Given a frequency f ∈ F , every receiver t ∈ T picks out signals from every
transmitter b ∈ B and the power P f

b (t) that t receives from b on f is proportional



to the emitted power pfb by a factor atb ∈ [0, 1], i.e. P f
b (t) = atb · p

f
b . The factor

atb is called fading coefficient and summarizes the reduction in power that a
signal experiences while propagating from b to t [14].

Among the signals received from transmitters in B, a receiver t can select a
reference signal (or server), which is the one carrying the service. All the other
signals are interfering. We remark that, since each transmitter in B is associated
with a unique signal, in what follows we will also refer to B as the set of signals
received by t.

A receiver t is regarded as served by the network, specifically by server β ∈ B
on frequency f ∈ F through burst profile h ∈ H , if the ratio of the serving power
to the sum of the interfering powers (signal-to-interference ratio or SIR) is above
a threshold δh (SIR threshold) whose value depends on the used burst profile h
[14]:

atβ · pfβ

N +
∑

b∈B\{β} atb · p
f
b

≥ δh . (1)

Note that in the denominator we highlight the presence of the system noise
N > 0. By simple algebra operations, inequality (1) can be transformed into the
following linear inequality, commonly called SIR inequality:

atβ · pfβ − δh
∑

b∈B\{β}

atb · p
f
b ≥ δh ·N . (2)

As we do not know a priori which transmitter b ∈ B will be the server of a
receiver t ∈ T and which frequency f ∈ F and burst profile h ∈ H will be used,
given a receiver t ∈ T we have one SIR inequality (2) for each potential server
β ∈ B and potentially usable frequency f and burst profile h. To ensure that t
is covered, at least one of such inequalities must be satisfied. This requirement
can be equivalently expressed through the following disjunctive constraint:

∨

∀(β,f,h):β∈B,f∈F,h∈H



atβ · pfβ − δh
∑

b∈B\{β}

atb · p
f
b ≥ δh ·N



 . (3)

Adopting a standard approach used in Mixed-Integer Programming (see [13]),
the above disjunction can be represented by a family of linear constraints in
the p variables by introducing a large positive constant M , the so-called big-M
coefficient. Specifically, given a receiver t ∈ T we use the assignment variable
xfh
tβ to introduce the following constraint for each potential 3-ple (β, f, h):

atβ · pfβ − δh
∑

b∈B(t)\{β}

atb · p
f
b + M · (1 − xfh

tβ ) ≥ δh ·N . (4)

It is easy to check that if xfh
tβ = 1 then (4) reduces to the simple SIR con-

straint (2). If instead xfh
tβ = 0 and M is sufficiently large1, then (4) is satisfied

by any feasible power vector p and becomes redundant.

1 For example, we can set M = δh ·N + δh
∑

b∈B\{β} atb · Pmax



By using constraints (4) and by introducing a parameter rt to denote revenue
associated with receiver t ∈ T (e.g., population, number of customers) , we can
define the following natural formulation (BM-PFMAP) for the PFMAP [6,7]:

max
∑

t∈T

∑

b∈B

∑

f∈F

∑

h∈H

rt · x
fh
tb (BM − PFMAP )

s.t. atβ · pfβ − δh
∑

b∈B\{β}

atb · p
f
b +M · (1− xfh

tβ ) ≥ δh ·N

t ∈ T, b ∈ B, f ∈ F, h ∈ H (5)
∑

b∈B

∑

f∈F

∑

h∈H

xfh
tb ≤ 1 t ∈ T (6)

∑

t∈T

∑

h∈H

dt ·
1

sh
· xfh

tβ ≤ D b ∈ B, f ∈ F (7)

pfb ∈ [0, Pmax] b ∈ B, f ∈ F (8)

xfh
tb ∈ {0, 1} t ∈ T, b ∈ B, f ∈ F, h ∈ H (9)

The objective function is to maximize the total revenue obtained by serving
receivers and constraint (6) ensures that each receiver is served at most once.
Each receiver generates a traffic demand dt and each frequency has a bandwidth
equal to D. Constraint (7) ensures that the sum of traffic demands (re-sized by
the spectral efficiency sh of the used burst profile) generated by the receivers
served by a transmitter does not exceed the bandwidth of the frequency. Finally,
(8) and (9) define the decision variables of the problem.

Drawbacks of the natural formulation. The natural formulation (BM-
PFMAP) expands a basic model that is widely used for the WND in different
application contexts, such as DVB, (e.g., [12]), UMTS (e.g., [1,11]) and WiMAX
([6,7]). In principle, such basic model and (BM-PFMAP) can be solved by com-
mercial solvers such as IBM ILOG CPLEX [10]. However, it is well-known (see
[7]) that: (i) the fading coefficients may vary in a wide range leading to (very)
ill-conditioned coefficient matrices that make the solution process numerically
unstable; (ii) the big-M coefficients generate poor quality bounds that dramati-
cally reduce the effectiveness of standard solution approach [13]; (iii) the result-
ing coverage plans are often unreliable and may contain errors (e.g., [7,11]). In
practice, the basic model and (BM-PFMAP) can be solved to optimality only
when used for small-sized instances. In the case of large real-life instances, even
finding feasible solutions can represent a difficult task, also for state-of-the-art
commercial solvers like CPLEX. Though these drawbacks are well-known, it is
interesting to note that just a relatively small part of the wide literature devoted
to WND has tried to overcome them. We refer the reader to [6] for a review of
works that have tried to tackle these drawbacks.

2.1 Contribution of this work and review of related literature

In this paper, we develop our original contribution by starting from a recent
work, [7], that proposes a family of strong valid inequalities for tackling the



drawbacks of (BM-PFMAP) that we have pointed out. The idea at the basis of
[7] is to quit modeling emission power as a continuous variable pb and to use
instead a set of discrete power levels P = {P1, . . . , P|P|}, with P1 = 0 (switched-
off value), P|P| = Pmax and Pi > Pi−1, for i = 2, . . . , |P|. This basic operation
allows the authors to define a family of lifted GUB cover inequalities that are
used in a solution algorithm that drastically enhances the quality of solutions
found.

The solution algorithm proposed in [7] is motivated by a trade-off that arises
from discretization: larger sets of discrete levels lead in principle to better solu-
tions, but on the other hand the corresponding 0-1 Linear Program gets larger
and harder to solve. The computational experience shows that very good solu-
tions can be found by considering small sets with well-spaced power values, but
that no improvement is obtained within the time limit when a number of levels
higher than six is considered.

In the present work, we investigate the possibility of using a Genetic Al-
gorithm (GA) [8] as a fast heuristic to widen the exploration of the discrete
power solution space: the aim is to exploit the entire set of discrete power levels
and thus to evaluate power configurations with levels not included in the best
solutions found in [7]. In particular, our aim is to improve the capacity of solv-
ing large realistic instances by finding higher value solutions. We thus design a
GA that takes into account the specific features of the PFMAP and we test its
performance on the same set of realistic WiMAX instances used in [7].

Heuristics have been extensively used to tackle large instances of different
versions of the WND problem. Two relevant cases are provided by [1], where a
two-stage Tabu Search algorithm is proposed to solve the base station location
and power assignment problem in UMTS networks, and by [12], where a GRASP
algorithm is proposed to solve the PFAP arising in the planning of the Italian
National DVB network. The use of GA to solve versions of the WND is not
a novelty as well and many works can be found in literature. However, to our
best knowledge, no GA has been yet developed to solve the PFMAP and the
algorithm that we propose is the first for solving this level of generalization of
the WND. Until now, GAs were indeed developed to solve just single aspects
of the PFMAP: (i) the transmitter location problem (e.g., [4]); (ii) the service
assigment problem (e.g., [9]); (iii) the frequency assignment problem (e.g., [5]);
(iv) the power assignment problem (e.g., [15]). Moreover, we remark that our
algorithm is the first to be designed with the specific aim of improving the
capacity of solving instances, while tackling the numerical problems pointed out
in Section 2. We now proceed to present our original contributions for the WND.

3 A Genetic Algorithm for the PFMAP

A Genetic Algorithm (GA) is a heuristic method for solving optimization prob-
lems that resembles the evolution process of a population of individuals (for a
comprehensive introduction to the topic we refer the reader to [8]). At any itera-
tion, a GA maintains a population whose individuals represent feasible solutions



to the problem. The solution is encoded in a chromosome associated with each
individual. The genetic strength of an individual is evaluated by a fitness func-
tion that establishes the quality of the corresponding solution to the problem. A
GA starts by defining an initial population, that iteration after iteration changes
by crossover, mutation and death of individuals, according to a natural selection
Darwinistic mechanism.

We develop a GA for the PFMAP that presents the following general struc-
ture:

1. Creation of the initial population
2. UNTIL the arrest condition is not satisfied DO

(a) Selection of individuals who generate the offspring
(b) Generation of the offspring by crossover
(c) Mutation of part of the population
(d) Death of part of the population

We now characterize the elements and the phases presented above for the
algorithm (GA-PFMAP) that we propose to solve the PFMAP.

3.1 Characterization of the population

Individual representation. As we have explained in Section 2.1, our aim
is to conduct a wider exploration of the power solution space, trying to ob-
tain solutions with higher value. To this end, we establish that the chromo-
some of an individual corresponds to a power vector p of size |B| · |F |. Specif-
ically, the chromosome presents one locus for each transmitter b ∈ B and fre-
quency f ∈ F and each locus stores the power pfb emitted by b on f , namely

p = (p11, . . . , p
|F |
1 , p12, . . . , p

|F |
2 , . . . , p

|F |
|B|). Such power belongs to the set of discrete

power levels P , i.e. pfb ∈ P = {P1, . . . , P|P|}.

We remark that establishing the power emission pfb ∀ b ∈ B, f ∈ F does not
completely characterize a solution of the PFMAP. We indeed have to fix the value
of the assignment variables xfh

tb and thus we need to set some assignment rule.

First, note that given a power vector p = (p11, p
2
1, . . . , p

|F |
|B|) and a receiver t ∈ T

we can compute the power P f
b (t) that t receives from b on f , ∀b ∈ B, f ∈ F .

Through P f
b (t), if we fix the server β ∈ B of t, we can check if there exists a

SIR inequality (2) that is satisfied for some frequency f ∈ F and burst profile
h ∈ H . We establish the following assignment rule: as server of t we choose the
transmitter b that ensures the highest received power P f

b (t) on some f . This in
fact ensures the highest serving power. Once that the server β is chosen, we can
identify the SIR inequalities (2) that are satisfied by p when t is served by β for
some f ∈ F and h ∈ H . If the SIR inequality is satisfied for a multiplicity of
frequencies and/or burst profiles, we first choose as serving frequency f̂ the one
that ensures the highest value for the left-hand-side of (2) and then we choose as

burst profile ĥ the one that ensures the highest spectral efficiency (see Section 2).

Thus for t served by β we have xf̂ ĥ
tβ = 1 and xfh

tβ = 0 ∀f ∈ F \ {f̂}, h ∈ H \ {ĥ}.



Note that this last rule may assign a receiver t to a transmitter β that vi-
olates the capacity constraint (7) of β on the chosen frequency f̂ . If this is the
case, we choose the second best couple of frequency and burst profile according
to the rule. If this not possible, the third best and so on. In the end, if there is
no capacity left for any valid couple (f, h), t is not considered covered by β.

Fitness function. As the aim of the WND is to maximize coverage, we adopt
a fitness function that evaluates the coverage ensured by an individual. Specifi-
cally, the fitness COV (p) of an individual is equal to the number of receivers that
are covered when the power vector is p and service assignment is done according
to the previously introduced rules.

Initial population. Our aim is to consider all the feasible discrete power lev-
els from the beginning. Therefore, the initial population is represented by the
power vectors that are obtained by activating a single transmitter b ∈ B on a
single frequency f ∈ F at each of the discrete power levels Pl ∈ P . For every
b ∈ B, f ∈ F , the corresponding individuals included in the initial population
are thus: (0, 0, . . . , pfb = P2, . . . , 0, 0) · · · (0, 0, . . . , pfb = P|P|, . . . , 0, 0) . Note
that we exclude the individual corresponding to all transmitters turned off, i.e.
pfb = P1 = 0 ∀b ∈ B, f ∈ F . We thus have |B| · |F | · |L−1| initial individuals. We
denote the set of individuals representing the population at a generic iteration
of the algorithm by P .

3.2 Evolution of the population

Selection. In order to select the individuals who give birth to the new genera-
tion, we adopt a tournament selection approach: given the set P of individuals
constituting the current population and a value 0 < α < 1, we first define a
number k ∈ Z

+ of groups including ⌊α · |P |⌋ individuals who are randomly ex-
tracted from P . Then we extract m < ⌊α · |P |⌋ individuals with the best fitness
from every group. These are the individuals who generate offspring by crossover.

Crossover, mutation and death. The individuals selected for crossover are
randomly paired up to constitute ⌊k ·m/2⌋ couples. Each couple generates two
offspring by mixing its chromosome. Given a couple of parents with power vec-
tors p1, p2, the crossover operation consists in mixing power levels that are in
the same position of p1 and p2 to generate two offspring with (possibly) higher
fitness power vectors p3, p4.

Before presenting the crossover procedure, we need to define a measure that
evaluates the impact of crossover on coverage. To this end, let ∆COV(p, pfb =
Pl) ∈ Z denote the variation in the number of covered receivers caused by chang-

ing the power value pfb in position (b, f) of vector p to the value Pl, while
maintaining all the other power values unchanged. We can then propose the
following crossover procedure, that concentrates the effort of creating a higher
fitness individual on p3. At the beginning of the crossover, p3 and p4 have all
elements equal to 0. Then, by following this ordering of indices (b, f) : b ∈, f ∈



F : (1, 1) (1, 2) . . . (1, |F |) (2, 1) . . . (2, |F |) . . . (|B|, 1) . . . (|B|, |F |), each null
value inherits the power value in the same position of one of the two parents.

We now present the crossover rule for a generic position (β, φ). For indices
(b, f) : b < β, f < φ, the crossover was already executed and thus the offspring
vectors p3, p4 present power levels inherited by the parents p1, p2. Power levels
of p3, p4 in positions (b, f) : b ≥ β, f ≥ φ are instead still equal to zero. The rule
to establish the power value inherited by p3, p4 in (β, φ) is the following:

p3φβ =

{

p1φβ if ∆COV(p3, p3φβ = p1φβ) ≥ ∆COV(p3, p3φβ = p2φβ)

p2φβ otherwise

p4φβ =

{

p1φβ if ∆COV(p3, p3φβ = p1φβ) < ∆COV(p3, p3φβ = p2φβ)

p2φβ otherwise

This ensures that, at any step of the crossover procedure, offspring p3 inherits
the power level of the parent that allows the most favourable variation ∆COV
in coverage.

In addition to crossover, we also allow to alter the power vector of single indi-
viduals by mutation. This introduces new genetic information in the population
and helps to widen the solution space exploration and to avoid entrapment in
local optima. At any iteration, a number of individuals ⌊γ · |P |⌋ with 0 < γ < 1 is
randomly chosen. Then, still by random selection, |F | power levels corresponding
with different frequencies are reduced to the immediately lower power level al-
lowed in P . This mutation rule is set with the aim of defining new power vectors
that have lower powers but ensure the same coverage. The reduction in power
is generally desirable as a signal that is useful for a receiver may be interfering
for a different receiver.

Finally, after crossover and mutation, the weakest individuals die and are
removed from P . Specifically, we choose to select and remove the 2 · ⌊k · m/2⌋
individuals with the worst fitness function. The size of P is thus maintained
constant over all the iterations.

4 Computational experience

We test the performance of our GA on a set of 15 realistic instances, developed
with the Technical Strategy & Innovations Unit of British Telecom Italia (BT
Italia SpA). All the instances refers to a Fixed WiMAX Network [3], deployable
in an urban area corresponding to a residential neighborhood of Rome (Italy).
The instances consider various scenarios with up to |T | = 529 receivers, |B| = 36
transmitters, |F | = 3 frequencies, |H | = 4 burst profiles (see Table 1). This leads
to large formulations (BM-PFMAP) that are very hard to solve. For a detailed
description of the instances, we refer the reader to [7].

For each instance, we run the proposed algorithm (GA-PFMAP) 50 times
with a time limit of 1 hour by using a machine with a 1.80 GHz Intel Core 2
Duo processor and 2 GB of RAM. Each tournament selection involves k = 20



Table 1. Comparisons between (BM) and WPLAN formulations

|T*|
ID |T| |B| |F| |H|

(BM-PFMAP) WPLAN [7] (GA-PFMAP)

S1 100 12 1 1 63 (78) 74 70
S2 169 12 1 1 99 (100) 107 103
S3 196 12 1 1 108 113 113
S4 225 12 1 1 93 111 115
S5 289 12 1 1 77 86 88
S6 361 12 1 1 154 170 175
S7 400 18 1 1 259 (266) 341 319

R1 400 18 3 4 370 400 400
R2 441 18 3 4 302 (303) 441 441
R3 484 27 3 4 99 (99) 427 434
R4 529 27 3 4 283 (286) 529 462

Q1 400 36 1 4 0 67 72
Q2 441 36 1 4 191 211 222
Q3 484 36 1 4 226 463 466
Q4 529 36 1 4 145 (147) 491 491

groups that include a fraction α = 0.05 of the population P . The best m = 8
individuals of each group are selected for crossover and, after the generation of
the new individuals, mutation affects a fraction γ = 0.1 of the population.

In Table 1, we compare the value of the best solution obtained through the
three approaches that we consider, namely the direct solution of (BM-PFMAP)
by ILOG Cplex 10.1, the solution of the Power-Indexed formulation by the algo-
rithm WPLAN [7] and the solution of (BM-PFMAP) by the proposed algorithm
(GA-PFMAP). Results for (BM-PFMAP) and WPLAN are derived from [7].
The presence of two values in some lines of the column of (BM-PFMAP) indi-
cates that the coverage plans returned by Cplex contain errors and some receivers
are actually not covered. We remark that (GA-PFMAP) provides solutions that
always ensure a higher coverage than (BM-PFMAP) and without coverage er-
rors. Making a comparison with WPLAN, we instead note that (GA-PFMAP),
though in some cases finds solutions with lower coverage, for most of the cases
is able to find solutions that ensure an equal or higher number of covered re-
ceivers than WPLAN. This is particularly evident for instances that seems to be
very hard to solve through (BM-PFMAP). The algorithm is thus effective and
is worth of further investigations.

5 Conclusion and future work

We presented a Genetic Algorithm (GA) to tackle large realistic instances of
a relevant problem arising in wireless network design. We showed that a GA
helps to improve the value of solutions found through a wider exploration of the



power space. A future research path could be represented by the integration of
a refined GA into an exact solution method. It is indeed common experience
that the combination of fast heuristics with Mixed-Integer Linear Programming
leads to a great reduction in the running times w.r.t pure exact optimization
methods. A sensitivity analysis of the GA parameters and a study on the impact
of different starting conditions and selection strategies would also constitute
important subjects of investigations.

Acknowledgments. The author thanks Carlo Mannino and Antonella Nardin
for fruitful discussions. Thanks go also to the three anonymous referees who
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