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Abstract
This paper presents an algorithm that computes polytopic robust
control-invariant (RCI) sets for rationally parameter-dependent systems with
additive disturbances. By means of novel linear matrix inequalities (LMI) fea-
sibility conditions for invariance along with a newly developed method for
volume maximization, an iterative algorithm is proposed for the computation
of RCI sets with maximized volumes. The obtained RCI sets are symmetric
around the origin by construction and have a user-defined level of complexity.
Unlike many similar approaches, the proposed algorithm directly computes the
RCI sets without requiring control inputs to be in a specific feedback form. In
fact, a specific control input is obtained from the LMI problem for each extreme
point of the RCI set. The outcomes of the proposed algorithm can be used to
construct a piecewise-affine controller based on offline computations.
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1 INTRODUCTION

Robust control-invariant (RCI) sets have been an important area of research within the controls community for the past
six decades.1,2 For a controlled dynamical system, these sets are bounded regions of the state-space, wherein the state tra-
jectories can always be restricted by the application of some admissible control inputs.1 Invariant sets can be also used for
controller synthesis (e.g., model predictive control [MPC]3) and stability analysis of closed-loop systems.1 Consequently,
a lot of research has been done specifically focusing on the computation of these sets.

The algorithms to compute an RCI set for a linear system with polytopic constraints are well established in the
literature.1,2,4-6 A widely used algorithm to compute an RCI set for a linear system belongs to the class of the so-called
geometric approach, in which a recursive method based on one-step backward reach operator is employed until some ter-
mination condition is matched. In each backward reach operation, numerical procedures like Minkowski sum, projection
and finding minimal set representation are performed on polytopes, which can be computationally very demanding.1,7

Depending upon the choice of the initial set, the result of such a recursive method is the arbitrarily close outer/inner
approximation of the maximal RCI set.8,9 Although effective, the geometric approach does not guarantee finite time ter-
mination of the procedure, and also the obtained set may have a very high representational complexity.2,4,8-11 For polytopic
systems, the computational complexity grows exponentially with each additional vertex and system dimension.1
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Recently, many algorithms have been proposed for the efficient computation of RCI sets with restricted representa-
tional complexity. In these algorithms, the candidate RCI sets are assumed to be symmetric ellipsoids or polytopes, and
the computation thereof generally involves solving an optimization problem to find a set with maximum or minimum
volume. For example, algorithms are proposed by References 12,13 to compute ellipsoidal RCI sets of maximum volumes
for uncertain systems. For linear systems with polytopic constraints, it is well known from the literature that the max-
imal RCI set is also polytopic.14 Therefore, using a polytopic candidate RCI set would qualify to be an obvious choice.
As a result, References 11,15-18 proposed different approaches for the computation of restricted complexity or low com-
plexity polytopic RCI sets. Algorithms developed by References 15-17 are applicable to polytopic linear systems, whereas
those in References 11,18 can be applied to affinely parameter-dependent systems. It is important to mention here that
all these algorithms assume the invariance inducing controller to be based on linear state feedback, which is computed
by the algorithm while optimizing the volume of the set. It was proved in19 that, even for simple LTI systems, assigning a
linear state feedback controller to an already known polytopic RCI set is not always feasible. In fact, it was shown that a
piece-wise affine controller can always be assigned. Thus, if the main goal is to compute large volume RCI sets, in general,
a linear state feedback law is not a suitable candidate for inducing invariance. In References 20,21, methods are proposed
to compute RCI sets using a more general feedback structure, which is though only applicable to LTI systems.

In this paper, we present a novel algorithm to compute an RCI set with a predefined complexity for an uncertain system
with additive disturbances. Similar to References 10,22, we consider rationally parameter-dependent systems, which are
more general than other linear system descriptions discussed above in that they can be used to approximately describe
many nonlinear engineering systems.23 We start by proposing a new necessary and sufficient condition for invariance,
which is a slight extension of the result in Reference 24 for the considered system. By then using this condition along
with the full block S-procedure,25 a sufficient linear matrix inequality (LMI) feasibility condition for invariance is derived.
Also, an approach to directly maximize the volume of the RCI sets is presented, which is less conservative than using
an indirect approach used in References 10,11. In contrast to References 10,11,15,17,18,22, we directly compute the RCI
sets without imposing any structural restrictions on the control input so that possibly larger RCI sets can be obtained.
The algorithm generates RCI sets of monotonically increasing volume at each iteration until convergence. Hence, it can
be terminated at any iteration, unlike the geometric approach which needs a termination condition to be satisfied to
eventually obtain a maximal RCI set. Further, by applying the procedure in References 24,26,27, we show that solutions
obtained from the proposed algorithm can be used to construct a piece-wise affine controller for the simple constrained
control of the system. We demonstrate the applicability of the proposed algorithm by using numerical examples, where
considerably larger RCI sets were obtained in comparison with other similar algorithms.

2 PRELIMINARIES

For completeness, we recall some basic definitions and well-established results from,1,6 which will be useful in the later
parts.

Definition 1. A set is a C-set if it is convex, compact and contains the origin in its interior.

Definition 2. A C-set  is 0-symmetric if

x ∈  ⇒ −x ∈  . (1)

Definition 3. The convex hull of a set S ⊂ Rn is the smallest convex set containing S. For any finite set S = {s1, s2, … , sr},
where si ∈ Rn, i= 1, 2, … , r, the convex hull of S is given by

 = conv(S) ≜

{ r∑
i=1
𝛼isi ∶

r∑
i=1
𝛼i = 1, 𝛼i ∈ [0, 1]

}
. (2)

Definition 4. An n-simplex  ⊂ Rn is an n-dimensional polytope, which is the convex hull of n+ 1 vertices.

Consider a dynamical system

x(k + 1) = f (x(k),u(k),w(k)), (3)

where x(k) ∈  , u(k) ∈  , w(k) ∈  are the state, input and disturbance (or uncertainty) vectors.
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1676 GUPTA et al.

Definition 5. A set 𝛀 ⊆  is an RCI set for the system (3) if

x(k) ∈ 𝛀 ⇒ ∃u(k) ∈  ∶ x(k + 1) ∈ 𝛀,∀w(k) ∈  . (4)

Definition 6. A set 𝛀∞ ⊆  is said to be the maximal RCI set for the system (3) if it is RCI and contains all other RCI sets.

Definition 7. Given 𝜆, 0 < 𝜆 ≤ 1, a C-set  ⊆  is a 𝜆-contractive set for the system (3) if

x(k) ∈  ⇒ ∃u(k) ∈  ∶ x(k + 1) ∈ 𝜆 ,∀w(k) ∈  . (5)

For 𝜆 = 1, we say  is an RCI set.

Lemma 1. A set  is 𝜆-contractive for the system (3) if and only if it is controlled-invariant for the modified system

x(k + 1) =
f (x(k),u(k),w(k))

𝜆
. (6)

3 PROBLEM STATEMENT

We consider a discrete-time uncertain system described by

x+ = (Δ)x + (Δ)u + (Δ)w, (7)

where x ∈ Rnx is the current state vector, x+ is the successor state vector, and u ∈ Rnu and w ∈ Rnw are the control input and
the (additive) disturbance vectors,respectively. Furthermore,(Δ),(Δ) and(Δ) are the rationally parameter dependent
system matrices expressed as an LFT of the form[

(Δ) (Δ) (Δ)
]
=
[

A B E
]
+ BpΔ(I − DpΔ)−1

[
Ad Bd Ed

]
, (8)

where A, B, E, Ad, Bd, Ed, Bp, and Dp are known matrices of appropriate dimensions. Δ is an uncertain (and possibly)
time-varying parameter matrix that satisfies

Δ(k) ∈ 𝚫, ∀k ≥ 0, (9)

where𝚫 is a known compact polytopic set expressed as the convex-hull of finitely many given matrices𝚫v = {Δ1, … ,Δ𝜂}:

𝚫 = conv(𝚫v). (10)

We assume that (I − DpΔ) is invertible ∀Δ ∈ 𝚫, which guarantees that the LFT representation is well-posed.
The system is subject to the following polytopic state and input constraints, respectively:

 = {x ∶ Hx ≤ 1},
 = {u ∶ Gu ≤ 1}.

(11)

Here H ∈ Rnh×nx and G ∈ R
ng×nu are given matrices and 1 represents the vector of ones of compatible dimension.

We assume w ∈  , with  as a C-set and represented by the convex-hull of a set of finitely many known vertices
 v = {w1,w2, … ,w𝛾}:

 = conv( v). (12)

We allow the sets  ,  and  to be non-symmetric, unlike References 10,11,17,18 where some or all the sets are
assumed to be symmetric. The affine parameter dependence of the system, as considered in for example, References 11,18,
is just a special case that corresponds to Dp = 0 in (8). Moreover, the algorithm proposed in this paper does not impose
any structural restriction on the matrix Δ.

 10991239, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.5378 by U

niversity M
odena, W

iley O
nline L

ibrary on [28/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



GUPTA et al. 1677

The goal in this paper is to compute a 0-symmetric RCI set with a predefined complexity np described as

 = {x ∈ R
nx ∶ −1 ≤ PW−1x ≤ 1}, (13)

where P ∈ R
np×nx and W ∈ Rnx×nx . We tacitly assume that W is invertible, which would be later guaranteed by the LMI

conditions for invariance.
From Definition 5, a set  ⊆  is RCI if for each x

x ∈  ⇒ ∃u ∈  ∶ x+ ∈ , ∀(w,Δ) ∈ ( ,𝚫). (14)

Notice that we do not impose any structure on the control input. The problem of finding an RCI set can now be formulated
as follows:

Problem 1. Given a matrix P and the discrete-time system (7) subject to constraints (10), (11), and (12) with given 𝚫v, H
and G, find a matrix W such that

1. the controlled system in (7) and (8) satisfies (14);
2. the set  in (13) must satisfy  ⊆  .

The representational complexity of the set  (i.e., np) is decided by the choice of the matrix P. For P= I, the candidate
RCI set  has a complexity similar to the one considered in References 10,17,18. Systematic choices of P with increasing
degrees of complexity will be exemplified briefly in the sequel.

Thus, in the next section, we derive tractable feasibility conditions for the solvability of Problem 1. The obtained
feasibility conditions will be then utilized to develop an iterative algorithm to compute RCI sets with potentially increased
volume at each step.

4 SUFFICIENT CONDITIONS FOR INVARIANCE

Let us first introduce a state transformation

𝜃 ≜ W−1x ⇔ x = W𝜃. (15)

Using (15), the controlled system (7) can be expressed in the transformed space as

𝜃+ = W−1(Δ)W
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

(W ,Δ)

𝜃 + W−1(Δ)
⏟⏞⏞⏟⏞⏞⏟

(W ,Δ)

u + W−1(Δ)
⏟⏞⏞⏟⏞⏞⏟

(W ,Δ)

w. (16)

For notational simplicity, we will suppress the arguments of the matrices (Δ), (Δ), (Δ), (W ,Δ), (W ,Δ), and
(W ,Δ) in the later parts. Using (15), we can also express the set  as

 = {W𝜃 ∈ R
nx ∶ 𝜃 ∈ 𝚯}, (17)

where 𝚯 is a symmetric set defined as follows:

𝚯 ≜ {𝜃 ∈ R
nx ∶ −1 ≤ P𝜃 ≤ 1}. (18)

We have thus introduced a 𝜃-state-space in which the candidate RCI set is a known 0-symmetric set identified as
in (18). The RCI set  in the x-state-space will be determined as in (17) based on the choice of W .

According to the Definition 5, for invariance of 𝚯, we have to show that for each 𝜃 ∈ 𝚯, there exists a u ∈  for which
𝜃+ ∈ 𝚯, ∀(w,Δ) ∈ ( ,𝚫). Verifying the existence of u for each 𝜃 ∈ 𝚯 for invariance is an intractable problem. To obtain
a tractable formulation, we first note that the set 𝚯 can always be expressed as the convex hull of finitely many (known)
vertices. The vertices (and thus the number of them) are determined by the choice of the matrix P. With the set of vertices
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1678 GUPTA et al.

represented as 𝚯v = {𝜃1, … , 𝜃2𝜎}, we can write

𝚯 = conv(𝚯v). (19)

For now, we ignore the state constraints on 𝜃 obtained using (11) and (15), and propose a necessary and sufficient
condition for the invariance of the set 𝚯.

Lemma 2. Consider following statements:

i. 𝚯 in (18) is an RCI set for the system (16), i.e. for each 𝜃 ∈ 𝚯,

∃u ∈  ∶ 𝜃 + u + w ∈ 𝚯,∀(w,Δ) ∈ ( ,𝚫). (20)

ii. for each 𝜃j ∈ 𝚯v,

∃uj ∈  ∶ 𝜃j + uj + w ∈ 𝚯,∀(w,Δ) ∈ ( ,𝚫). (21)

The above two statements are equivalent.

Proof. It can be clearly seen that (i ⇒ ii) since 𝜃j ∈ 𝚯. To prove the converse statement (i.e., ii ⇒ i), we first assume the
existence of uj as in (21) and aim to construct u for any given 𝜃 ∈ 𝚯 such that the invariance condition expressed in (20)
is satisfied. As implied by the notation, the idea would be to compute the control input as a convex combination of ujs.
This convex combination is identified by first expressing 𝜃 in terms of the extreme points 𝜃j as

𝜃 =
2𝜎∑
j=1
𝛼j𝜃

j, where
2𝜎∑
j=1
𝛼j = 1, 𝛼j ∈ [0, 1]. (22)

By using the 𝛼js identified from this decomposition, the control input is then constructed as

u =
2𝜎∑
j=1
𝛼juj ∈  . (23)

With this input, the transformed state vector in the next step would be obtained based on (16) as

𝜃+ = 

( 2𝜎∑
j=1
𝛼j𝜃

j

)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝜃

+ 

( 2𝜎∑
j=1
𝛼juj

)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

u

+ 

( 2𝜎∑
j=1
𝛼j

)
⏟⏞⏟⏞⏟

1

w =
2𝜎∑
j=1
𝛼j(𝜃j + uj + w)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

y(w,Δ)

. (24)

We know from (21) that y(w,Δ) ∈ 𝚯,∀(w,Δ) ∈ ( ,𝚫). Since 𝜃+ is obtained as a convex combination of y(w,Δ) ∈ 𝚯
and as 𝚯 is a convex set, it then necessarily follows that 𝜃+ ∈ 𝚯,∀(w,Δ) ∈ ( ,𝚫). ▪

Similar results were originally proved24 and extended to uncertain systems in Reference 26. Lemma 2 shows that for
invariance of the set 𝚯, existence of u ∈  needs to be verified only for the finite set of points 𝜃j ∈ 𝚯v. This is a crucial
observation that paves the way toward a tractable solution for Problem 1.

We next derive matrix inequality conditions for the invariance of the set 𝚯 based on (21). For each 𝜃j ∈ 𝚯v, we can see
that condition (21) can be rewritten as

∃uj ∈  ∶ −1 ≤ P(𝜃j + uj + w) ≤ 1,∀(w,Δ) ∈ ( ,𝚫). (25)

Condition (25) must be satisfied element-wise. Using (16), we hence express (25) equivalently as

∃uj ∈  and 𝜙j,i ∈ R+ ∶ 𝜙j,i(1 − (eT
i PW−1(W𝜃j + uj + w))2) ≥ 0,∀(w,Δ) ∈ ( ,𝚫); i = 1, … ,np, (26)

 10991239, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.5378 by U

niversity M
odena, W

iley O
nline L

ibrary on [28/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



GUPTA et al. 1679

where ei represents the ith column of the identity matrix of size np ×np and 𝜙j,is are introduced for the convenience of
our derivations in the sequel. Condition (26) is a nonlinear parameter-dependent necessary and sufficient condition for
the invariance of the set 𝚯, which has to be satisfied for each 𝜃j ∈ 𝚯v.

Having obtained the condition for invariance of the set 𝚯, we now proceed to present the main result of this paper,
which gives feasibility conditions for Problem 1. In order to deal with uncertain parameter dependence, we employ a spe-
cific version of the full-block S-procedure from,10 which is cited in Appendix A1 for ease of reference. As ingredients that
emerge through this procedure, we introduce a set of multiplier matrices (associated with 𝚫) and an inner approximation
thereof respectively as

 ≜ {M ∶ (A2)} and pol ≜ {M ∶ (A4)}. (27)

Note that pol ⊆ is characterized by LMI conditions (as inherited from Reference 28) and is hence used to express
the theorem statement.

Theorem 1. Problem 1 is feasible if there exist uj ∈ Rnu , Vj,i = V T
j,i ∈ Rnx×nx , 𝜙j,i ∈ R+, Mj,i ∈ pol; i= 1, … , np; j =

1, … , 2𝜎 and W ∈ Rnx×nx with which (28), (29), and (30) are satisfied for i= 1, … , np, j = 1, … , 2𝜎 and k = 1, … , 𝛾 .
A robust control invariant set can then be obtained as in (13).

HW𝜃j ≤ 1, Guj ≤ 1, (28)[
W TV−1

j,i W ∗
𝜙j,ieT

i P 𝜙j,i

]
≻ 0, (29)

⎡⎢⎢⎢⎣
𝜙j,i ∗ ∗

AW𝜃j + Buj + Ewk Vj,i + BpRj,iBT
p ∗

AdW𝜃j + Bduj + Edwk Sj,iBT
p + DpRT

j,iB
T
p Qj,i + Sj,iDT

p + DpST
j,i + DpRj,iDT

p

⎤⎥⎥⎥⎦ ≽ 0. (30)

Proof. Recalling Lemma 2, we aim for finding uj ∈  ; j = 1, … , 2𝜎 that satisfy (21). In this fashion we will have estab-
lished that 𝚯 in (18) and thus  in (17) are RCI sets. We hence assume that the control input is formed as in (23) and
observe in reference to (15) that the state and control input constraints in (11) read as (28).

With the intention to resolve the nonlinearity (26), we now introduce a positive-definite matrix variable V j, i that
satisfies

V−1
j,i − 𝜙j,iW−TPTeieT

i PW−1 ≻ 0. (31)

Note that this condition can be expressed equivalently as in (29) by applying first a congruence transformation with
W and then the Schur complement lemma. With V j, i satisfying (31), a sufficient condition for (26) can be formulated as

𝜙j,i − (W𝜃j + uj + w)TV−1
j,i (W𝜃j + uj + w) ≥ 0. (32)

This reads after an application of the Schur complement lemma as the parameter-dependent LMI[
𝜙j,i ∗

(Δ)W𝜃j + (Δ)uj + (Δ)w Vj,i

]
≻ 0. (33)

By now applying Lemma 4 with

 =
⎡⎢⎢⎢⎣

Dp AdW𝜃j + Bduj + Edw 0

0 1
2
𝜙j,i 0

Bp AW𝜃j + Buj + Ew 1
2

Vj,i

⎤⎥⎥⎥⎦ , (34)
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1680 GUPTA et al.

we arrive at an LMI condition in terms of Mj,i ∈ , which needs to be satisfied for all w ∈  . Thanks to the fact
that dependence on w is affine and  in (12) is polytopic, we arrive at the condition in (30) expressed in terms of the
vertices vj. ▪

It should be noted at this point that (1, 1) block of (29) has nonlinear dependence on (W , V j, i). This issue was also faced
in10 and resolved by adapting a successive linearization approach from Reference 18. We follow similar lines to develop
an iterative scheme for volume optimization in the next section.

5 ITERATIVE RCI SET COMPUTATION

In this section, we first briefly recall the linearization approach from References 10,18. We then formulate a cost based
on which successive volume optimization can be performed.

5.1 Linearization

Consider the following inequality

W TV−1
j,i W = (W − Vj,iYj,i)T

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
T

j,i

V−1
j,i (W − Vj,iYj,i)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

j,i

+ Y T
j,iW + W TYj,i − Y T

j,iVj,iYj,i ≽ Y T
j,iW + W TYj,i − Y T

j,iVj,iYj,i
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

j,i

, (35)

where Y j, i is an arbitrary matrix of compatible dimension. A sufficient condition for (29) can be obtained by replacing its
(1, 1) block with j,i in (35). Nevertheless, the resulting condition is an LMI only if Y j, i fixed. Assuming that an iterative
scheme can be started with an initial choice, the approach developed in Reference 10 is based on fixing the choice at the
n+ 1st step as

Yj,i = Y n
j,i ≜ (V n

j,i)
−1W n, (36)

where (W n,V n
j,i) are the values of (W , V j, i) obtained at the nth step. Hence, the sufficient LMI condition for (29) to be used

at the n+ 1st step of our iterative scheme is[
(Y n

j,i)
TW + W TY n

j,i − (Y n
j,i)

TVj,iY n
j,i eiPT𝜙j,i

𝜙j,ieT
i P 𝜙j,i

]
≻ 0. (37)

In Reference 10, it has been shown that such an iterative scheme reduces the conservatism introduced by (35). Note
that (37) still holds if W =W n and Vj,i = V n

j,i, which confirms that the solutions obtained at the nth step are also feasible
at the n+ 1st step. We also recall that the invertibility of matrix W is implied from the (1, 1) block of (37).

5.2 Iterative volume maximization

We now develop an iterative scheme based on Theorem 1 for the computation of RCI sets of potentially large volumes at
each step. Some recent works like References 11,22 adopt an indirect approach to maximize the volume of the RCI set by
iteratively maximizing the volume of the ellipsoidal set enclosed therein.

In contrast, we present in this paper a direct approach in which the volume of the actual RCI set is aimed to be
maximized.

5.3 Volume computation

As the first major step toward developing our algorithm, we first show that the volume of the set  is proportional to|det(W)| once P is fixed. For this, we use the fact that any 0-symmetric polytopic set can be decomposed into nx-simplices

 10991239, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.5378 by U

niversity M
odena, W

iley O
nline L

ibrary on [28/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



GUPTA et al. 1681

m, m = 1, … , 2𝜇, which are identified in terms of their vertex points xi
m as

m =

{ nx∑
i=0
𝛼ixi

m ∶
nx∑

i=0
𝛼i = 1, 𝛼i ∈ [0, 1]

}
. (38)

These simplices would have the following properties:

i. m is nonempty;
ii. int(m1 ∩ m2) = ∅, if m1 ≠m2;

iii.
⋃2𝜇

m=1 m = .

Each m would have origin as a common vertex point (i.e., x0
m = 0,∀m = 1, … 2𝜇). The remaining nx vertices of m

can be represented as the columns of a matrix

Xm =
[

x1
m x2

m … xnx
m

]
. (39)

From Reference 29, its known that the volume of the simplex m is given by the Cayley–Menger determinant:

Volume(m) =
1

nx!
|det(Xm)|. (40)

Let the matrix Θm be defined as

Θm = W−1Xm ⇔ Xm = WΘm. (41)

From (15), we know that the columns of the matrix Θm represent nx independent vertices from the set 𝚯v.

Lemma 3. The volume of the set  identified as in (13) with a fixed P is proportional to |det(W)|.
Proof. Since the simplices m have disjoint interiors, the volume of the set  can be written as

Volume() =
2𝜇∑

m=1
Volume(m). (42)

It then follows from (40) and (41) that

Volume() = 1
nx!

2𝜇∑
m=1

|det(Xm)| = 1
nx!

2𝜇∑
m=1

|det(WΘm)|. (43)

Since the set  is symmetric, we can always order Θms as

Θm+𝜇 = −Θm,m = 1, … , 𝜇. (44)

With |det(Θm)| = |det(−Θm)|, the summation in (43) can be rewritten as

Volume() = 2
nx!

|det(W)| 𝜇∑
m=1

|det(Θm)|. (45)

For a fixed P matrix, Θms will be fixed too, which implies that

Volume() ∝ |det(W)|. (46)
▪

Note that the simplicial decomposition of the set  is not unique, which is though not a problem for our purposes.
Once P is fixed, Lemma 3 basically justifies to maximize |det(W)| to obtain a set  of desirably large volume. Simplicial
decomposition will also be useful when we consider controller design in the next section.

 10991239, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.5378 by U

niversity M
odena, W

iley O
nline L

ibrary on [28/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1682 GUPTA et al.

5.3.1 Iterative volume maximization

In order to obtain an RCI set with a desirably large volume, we hence need to solve a determinant maximization problem
under LMI conditions presented in Theorem 1. Such a problem reads as a generalized semi-definite program only when
W is required to be symmetric,30 which would necessarily introduce potential conservatism. An iterative volume maxi-
mization approached was developed in Reference 10 without enforcing symmetry on W , which we will also use in this
paper.

The basic idea is to maximize the determinant of a different matrix Z, which is required to be symmetric and
positive-definite. We relate Z to W by a condition as

W TW ≽ Z ≻ 0, (47)

which would ensure that det(Z) ≤ |det(W)|2. Since (47) is not an LMI, it needs to be replaced with a sufficient condition.
This is done within an iterative scheme in which the solution of W at the nth step is represented as W n. A sufficient
condition for (47) is formulated by Reference 10 in terms of W n as

W TW n + (W n)TW − (W n)TW n ≽ Z ≻ 0. (48)

Note that this condition is necessarily satisfied with W =W n. As a result, maximization of det(Z) under (48) would
lead to a solution W n+ 1 that satisfies

|det(W n+1)| ≥ |det(W n)|. (49)

This allows us to develop the following iterative algorithm to compute RCI sets of increased volume at each step for a
priori chosen matrix P:

Algorithm 1: [n+ 1st step]

max log det(Z)
W ,Z,Vj,i,Mj,i, 𝜙j,i,uj

subject to: (28), (30), (37), and (48)

Initial optimization to compute W0: Condition (48) is removed and log det(Z) is changed to log det(W + W T);
(37) is imposed with Y n

j,i → 𝜓I, where 𝜓 is selected by a line search to find an initial feasible solution.
The invariance conditions (30) and (37) are only sufficient and hence might be conservative. By updating the matrix

W at each iteration, we are actually scaling and rotating the initial polyhedron to a desirably large volume. It has been
already shown before that the solution from step n is feasible at step n+ 1 in (37) and (48), which ensures that Algorithm 1
is recursively feasible. Hence the volume of set  increases iteratively until it converges to some stationary point. The
algorithm should be terminated in practice when the change in |det(W)| is below a certain value or when infeasibility
occurs due to numerical reasons.

Algorithm 1 requires a user-defined matrix P, which determines the representational complexity of the set . In gen-
eral, it is difficult to devise a guideline for the selection of the matrix P following which an RCI set is guaranteed to
exist. In fact, this is the common drawback of many similar approaches (e.g., References 11,17,22,31-33), which adopt the
optimization-based strategy to compute RCI sets with restricted or predefined complexity. We explain some procedures
to select the initial matrix P based on the heuristic in the following remark.

Remark 1. We can always choose matrix P in (13), while assuming W = I, such that it defines an initial candidate polytope
of desired shape and complexity within the state constraints. We emphasize that the candidate polytope need not be RCI.
A simple approach to select the candidate set could be to distribute the hyperplanes on an arbitrarily small ball of radius
𝜖 enclosed within the state constraints. For example, in the two-dimensional case, the ith row could be selected as

𝜖 > 0, eT
i P =

[
1
𝜖

cos
(
𝜋(i−1)

np

)
1
𝜖

sin
(
𝜋(i−1)

np

)]
, i = 1, … ,np. (50)

With this choice of the initial candidate set, the state and input constraints are most likely to be satisfied. Thus, at
the first iteration, the algorithm now has to guarantee the satisfaction of invariance conditions, which can be achieved
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GUPTA et al. 1683

by generating a suitable matrix W . Alternatively, having an approximate knowledge of the shape of the RCI set can be
very helpful while selecting the initial polytope. Thus one could select the initial set by performing a few iterations of
the geometric approach6 (convergence not needed) to get an initial estimate of the RCI set. Note that this could be still
beneficial in the case of a higher-dimensional system where the geometric approach is known to be computationally
inefficient and may not even converge.

One might obtain different RCI sets from Algorithm 1 for different P choices (as well as different initial solutions) and
these can in fact be combined to construct larger RCI sets.

As is known from References 1,34, the convex hull and union of different RCI sets is a larger RCI set with higher
complexity.

Remark 2. In Algorithm 1, the SDP consists of
(

2𝜎 × np ×
(
𝛾 + 1 + 𝜂(𝜂+1)

2

)
+ 1

)
LMIs due to (30), (37), (48); and (2𝜎 ×

(nh + ng)) scalar inequalities representing the system constraints in (28). Furthermore, these inequalities are in terms of
(2 + 2𝜎 × (1 + 4np)) matrix variables and (2𝜎 × np) scalar variables. The complexity due to system and invariance con-
straints can in fact be reduced significantly in the case when the sets  ,  , and  are 0-symmetric. Because of the
symmetry, the invariance condition needs to be verified only on nonsymmetric elements of 𝚯v. In this way the number of
LMIs and scalar inequalities reduce to

(
𝜎 × np ×

(
𝛾 + 1 + 𝜂(𝜂+1)

2

)
+ 1

)
and 𝜎 × (nh + ng), respectively. We then also have

less number of matrix and scalar variables as (2 + 𝜎(1 + 4np)) and (𝜎 × np), respectively. The computational complexity
can be reduced by also considering alternative relaxation schemes or structured multipliers at the cost of potential con-
servatism. For instance, Pólya relaxation might be replaced with the so-called convex hull relaxation (e.g., Reference 28)
to reduce the number of LMIs. The number of variables can be reduced by using D-scales, DG scales, or block-diagonal
subblocks in the multiplier matrix M.23

Remark 3. An algorithm to obtain desirably small RCI sets can be formulated by minimizing |det(W)| iteratively in a
similar fashion as done in Algorithm 1. This can be achieved by minimizing trace(Z) at each iteration and replacing (48)

by
[

Z W T

W I

]
≽ 0 in Algorithm 1. For further details, we refer the reader to Reference 18.

Algorithm 1 would provide RCI sets for which control inputs that ensure invariance are known to exist. But to realize
constrained control, a method needs to be devised to compute a feasible input for any given x ∈ . In the next section,
we present an offline approach to constrained controller design based on an existing result.

6 CONTROLLER DESIGN

The purpose of this section is to design a piecewise affine controller based on the approach presented in References 24,26
for the constrained control of the system in (7). The approach requires that at each vertex of the set , there should exist
an admissible control action that brings the state to the interior of the set  within finite time. To be able to design such
a controller,

we consider using Lemma 1 together with the RCI set computation algorithm developed in the previous section. For
a specific 𝜆 ∈ (0, 1) choice, we would then obtain an RCI set  for the modified system in (6), which would serve as a
𝜆-contractive set for the original system of (3). A controller designed for the modified system of (6) would hence serve as
a stabilizing piecewise-affine controller for the original system (3), thus ensuring asymptotic convergence to origin in the
absence of any disturbance input. This controller will also keep the trajectory of (3) in  for any disturbance input within
the considered disturbance set.

To this end, we first recall the decomposition of the RCI set  into nx-simplicies m as in (38). The control law is then
formulated as a domain-dependent state feedback of the form

x(k) ∈ m ⇒ u(k) = Kmx(k). (51)

If x(k) happens to be at a point that is common to i and j (e.g., a point on a common edge), then the control input
can be computed with either Ki or Kj. To identify the state-feedback gain matrices Km, we first use the control inputs
associated with the vertices xj

m to form a matrix as

Um =
[

u1
m u2

m … unx
m

]
. (52)
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1684 GUPTA et al.

The associated state feedback gain matrix is then computed as

Km = UmX−1
m , m = 1, … , 2𝜇. (53)

In References 24,26, it is shown that the piece-wise affine control law obtained in this fashion is stabilizing and is
recursively feasible, which indeed imply that it is an invariance-inducing controller. Indeed, if x(k) is expressed as a convex
combination of the vertices of m, u(k) of (51) can then also be expressed as a convex combination of the associated
vertices uj

m, which basically corresponds to the control law proposed in (23):

x(k) = Xm𝛼 ⇒ u(k) = KmXm𝛼 = Um𝛼. (54)

Assuming that the system starts from an initial state within the computed RCI set, it is also possible to develop a
control algorithm based on online optimization by using the associated W matrix and the vertices 𝜃j, j = 1, … , 2𝜎.27 At
each time step, a linear program would then be solved to obtain a set of weights, with which the control input would be
constructed. With kth time step indicated with a superscript k, the weights are obtained and used to construct the control
input as follows:

𝛽k = arg min
𝛽∈R2𝜎

{ 2𝜎∑
j=1
𝛽j ∶

2𝜎∑
j=1
𝛽jW𝜃j = x(k), 0 ≤ 𝛽j ≤ 1 , j = 1, … , 2𝜎

}
⇒ u(k) =

2𝜎∑
j=1
𝛽k

j uj. (55)

A controller implemented in this fashion would ensure asymptotic stability, as established in detail by Reference 27.
An online approach might be preferable especially when working with high dimensional systems, for which obtaining a
simplicial decomposition of the set  would be difficult.

The closed-loop transient performance of the system can (to some extent) be shaped by the choice of the contrac-
tion factor 𝜆, which also affects the size of the set . However, a known weakness of such a control structure is that
a full range of control inputs are utilized only at the boundary of the set . In the interior of the set , progressively
smaller control inputs are applied as the system trajectories approach origin. Thus it may take a long time for a con-
troller to stabilize the system. It follows from Reference 27 that this weakness could easily be overcome by modifying
the proposed controller into a so-called interpolation-based controller, which suboptimally minimizes a predefined cost
function.

7 ILLUSTRATIVE EXAMPLES

In this section, we provide some examples to illustrate the potential of the approach proposed in this paper. The algorithm
was implemented in Matlab on a 3.1 GHz Intel Core i7-555U macOS computer with 8 GB RAM with YALMIP35 and the
solver SeDuMi.36 The computation of the volume, vertices, and projections of the polytope was done using MPT.37

7.1 Double integrator

In this section, the proposed algorithm is demonstrated with a discrete-time double integrator that has rational parameter
dependence. The system dynamics are described as in (7) with

 =
⎡⎢⎢⎣
1 + 𝛿1 1 + 𝛿1

0 1 + 𝛿2
1+𝛿1

⎤⎥⎥⎦ ,  =

[
0
1

]
,  =

[
1
0

]
, (56)

where |𝛿1,2| ≤ 0.25 represent the uncertain parameters. The state and control input constraints and the input disturbance
bound are expressed as

|x| ≤ [
5
5

]
, |u| ≤ 3, |w| ≤ 0.6. (57)
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GUPTA et al. 1685

F I G U R E 1 (A) Admissible states  (red) and maximal RCI
set 𝛀∞ geometric approach (blue; dotted), and maximum volume
RCI set 5 (green; solid) and 4 (magenta; dashed) from
Algorithm 1 with complexity np = 5 and np = 4, respectively, and
minimum volume RCI set from Remark 3 with np = 5 (yellow;
dot-dashed) and (B) Admissible states  (red) and Simplex
decomposition of the maximum volume RCI set (with 𝜆 = 0.99)
from Algorithm 1 with np = 5 (colored) [Colour figure can be
viewed at wileyonlinelibrary.com]

In order to make comparisons with the existing algorithms11,18 and the geometric approach, we first introduce a new
parameter as 𝛿3 = 𝛿2∕(1 + 𝛿1) and thus view (56) as a system that has affine dependence on (𝛿1, 𝛿3). We illustrate the pro-
posed algorithm by computing the sets 4 and 5 associated with np = 4 and np = 5, respectively. These sets are compared
with the maximal RCI set 𝛀∞ obtained by using an existing geometric approach, in which the control inputs are also
assumed to be free. Figure 1(A) shows the generated RCI sets. We were unable to compute any RCI set with the methods
from References 10,11,17,18,22, in which the control input is assumed to have a linear structure and/or a conservative
system description is used to account for parametric uncertainty. It can be observed that the maximal RCI set from the
geometric approach (Volume = 40.2445) is described by 10 hyperplanes and has a slightly larger volume than the one
obtained using the proposed approach with the same complexity (Volume= 39.9720). The nonsymmetric vertices of the
set 5 and the corresponding inputs are given by

X =
⎛⎜⎜⎜⎝

x1 x2 x3 x4 x5

3.3198 5.0000 5.0000 2.2185 −1.6636
−3.6425 −3.4323 −1.4801 1.2336 3.2409

⎞⎟⎟⎟⎠
U =

(
u1 u2 u3 u4 u5

2.9922 2.6635 −1.1764 −2.9825 −3.0000

)
. (58)

Notice that the vertices {x5,−x5} ∉ 𝛀∞, this is due to the approximation of (56) with an affine parameter dependent
system while computing𝛀∞. Lastly, in Figure 1(B), we demonstrate the controller proposed in the Section 6 in closed-loop
with the system (56). Also, the proposed decomposition of the set  into simplices is shown. The closed-loop trajectory,
when starting from one of the vertices, can be seen in black (dot-dashed) is produced by randomly varying disturbances
and uncertainties within their bounds.

7.2 4D Vehicle lateral dynamics

We now compare the proposed algorithm with a recent work10 using a four-dimensional bicycle model for vehicle lateral
dynamics.10 We assume the longitudinal velocity of the vehicle to be an uncertain parameter as V x ∈ [50, 70] km/h, which
enters the system dynamics rationally. For a fair comparison, we keep the complexity of the RCI set same as Reference 10
by selecting P= I. Using Algorithm 1, the nonsymmetric vertices of the set  and corresponding control inputs were
found to be

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x1 x2 x3 x4 x5 x6 x7 x8

0.3714 0.4000 −0.2800 −0.2514 0.2514 0.2800 −0.4000 −0.3714
−3.0000 −2.9754 −2.3478 −2.3233 −1.3182 −1.2937 −0.6661 −0.6415

0.0485 0.0035 0.1136 0.0687 0.0681 0.0232 0.1332 0.0883
−0.2040 −0.1502 −0.0704 −0.0165 −1.3353 −1.2815 −1.2017 −1.1479

⎞⎟⎟⎟⎟⎟⎟⎟⎠
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1686 GUPTA et al.

F I G U R E 2 (A) Projection of admissible set  (red; dotted),
maximum volume RCI set  from Algorithm 1(green; solid) and
using Reference 10 (yellow; dashed) [Colour figure can be viewed at
wileyonlinelibrary.com]

U =
⎛⎜⎜⎜⎝

u1 u2 u3 u4 u5 u6 u7 u8

−0.0791 0.0776 −0.0873 0.0873 0.0517 0.0873 −0.0426 0.0873
−0.1235 0.1407 −1.0000 −0.9999 1.0000 0.9991 0.3675 −0.9999

⎞⎟⎟⎟⎠ . (59)

The plots in Figure 2(A)–(D) show the projections of the admissible states  , and the maximum volume RCI set 
obtained from Algorithm 1 after 3000 iterations, and the algorithm in Reference 10, respectively. The RCI set obtained
from the proposed algorithm is much larger than the compared approach. However, larger set comes at the cost of a
modestly complex controller. Furthermore, even though the computational complexity is high (see Remark 2), each
iteration of the proposed algorithm took 24 s on average compared to 14 s taken by Reference 10. We also tried to
compute the RCI set by using the approximate polytopic model, but were unable to compute any RCI set with the
methods from Reference 11,18. On the other hand, the geometric approach did not converge even after more than
24 h.

8 CONCLUSION

We have developed an iterative algorithm to compute a desirably large 0-symmetric RCI set for a rationally
parameter-dependent system with additive disturbances. Sufficient LMI conditions guaranteeing invariance have been
derived by favor of a state transformation, the full block S-procedure and a Newton update technique. These LMI
conditions and the reformulated system constraints are then integrated into an algorithm where an SDP is solved to
obtain RCI sets of successively larger volumes at every iteration. A relatively less-conservative formulation has been
achieved by rendering the control inputs independent of any predefined feedback structure along with the employment
of a direct approach for volume maximization. These claims are supported by including relevant numerical examples
where the proposed algorithm was able to compute considerably larger RCI sets in comparison with other similar
approaches.

It has been observed in our numerical exercises and is also emphasized in Remark 1 that the choice of initial polytope
affects the final outcome, thereby encouraging investigations to identify an appropriate approach to select this initial
set. Moreover, a future research direction could be to extend the proposed formulation to compute asymmetric polytopic
RCI sets. It requires some further investigations to develop parameter-dependent set computations along with control
algorithms that achieve certain performance objectives.
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APPENDIX A. A FULL-BLOCK S-PROCEDURE

The following Lemma is a special case of the full block S-procedure25 as presented in Reference 10. We first introduce the
LFT

Δ ⋆

[
11 12

21 22

]
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟



≜ 22 + 21Δ(I − 11Δ)−112,

which is said to be well-posed when I − 11Δ is nonsingular ∀Δ ∈ 𝚫.

Lemma 4. The LFT Δ ⋆  is well-posed and

He{Δ ⋆ } ≜ Δ ⋆  + (Δ ⋆ )T ≻ 0, ∀Δ ∈ 𝚫, (A1)

holds if there exists a scaling matrix M that satisfies[
ΔT

I

]T[
Q S
ST R

]
⏟⏞⏞⏟⏞⏞⏟

M

[
ΔT

I

]
≼ 0, ∀Δ ∈ 𝚫, (A2)

[
21RT

21 + He{22} 21RT
11 + 21ST + T

12

∗ Q + 11RT
11 + He{11ST}

]
≻ 0. (A3)

The condition (A2) is a semi-infinite LMI condition. Since we consider a polytopic uncertainty region, one can use
Pólya’s method to relax (A2). Hence using zeroth order Pólya relaxation in References 10,28, we replace (A2) by a sufficient
condition given by

Ωjj(M) ≼ 0, j = 1, … , 𝜂

He{Ωji(M)} ≼ 0, j = 1, … , 𝜂; i = j + 1, … , 𝜂

}
, (A4)

where

Ωij(M) ≜

[
(Δi)T

I

]T

M

[
(Δj)T

I

]
, i, j = 1, … , 𝜂. (A5)

Note that, it is possible to obtain potentially less conservative conditions at the cost of a combinatorial increase in
the number of LMIs by employing higher-order Pólya relaxations; see Reference 10. Lastly, for the uncertainty regions
described by polynomial inequalities, the sum-of-squares (SOS) approach can be used; see References 28,38,39.
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