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The one-dimensional form of some types of differential equations that appear in the modeling
of solid-state devices, like, e.g., the Poisson and Schrödinger equations, can be solved
numerically using the Numerov Process (NP). The accuracy of NP is superior by at least two
orders of magnitude to that of commonly-used solution methods like, e.g., the finite-difference
one. Another advantage of NP is that the increase in computational cost is modest. This
paper investigates the possibility of extending the applicability of NP to the whole set of
equations that constitute the mathematical model of semiconductor devices. It shows that
the charge-continuity and charge-transport equations can be recast in a form suitable for
NP. The performance of the method is tested on an n+-n-n+ device, and the extension of the
approach to the two-dimensional transport problem is worked out.

1 Introduction
A number of physical problems are described by second-order dif-
ferential equations of the form

− z′′ = F(z, x) (1)

(primes indicate derivatives with respect to x). When a uniform
grid with grid size h is used, such a form can be tackled numerically,
thanks to the absence of the first derivative, with an O(h4)-accurate
discretization method generally known as Numerov Process (NP);
this in contrast to O(h2) of the finite-difference method (the deriva-
tion of the scheme is shown in the Appendix). Linearization of (1)
yields

− z′′ = Q(x) z + P(x) . (2)

Scope of this paper is to extend the applicability of NP to the
system of equations that describe the transport of electric charge in
solid-state devices. This paper is an extension of work originally pre-
sented at the SISPAD 2019 Conference [1]; besides the Appendix,
more details about NP are given, e.g., in [2] and references therein.

In some cases, (2) can be reduced to equations that appear in
the model for semiconductors; for instance, letting Q = 0, and
naming z = u the electrostatic potential normalized to the thermal
voltage kB T/q, and P = q/(ε kB T ) %, with % the charge per unit
volume, transforms (2) into the Poisson equation, which is one of
the equations of the standard semiconductor-device model (in the
above definitions, symbols q, ε, kB, T denote the elementary charge,

material permittivity, Boltzmann constant, and lattice temperature,
respectively). If, instead, one lets P = 0, the form of the time-
independent Schrödinger equation is recovered, which enters the
semiconductor-device model when nanometer-scale devices are con-
sidered; in this case, z = w is the time-independent wave function,
whereas the form of Q reads Q = 2 m (E − V)/~2, where E = const
is the total energy of the electron and V(x) the potential energy;
in turn, m is the electron effective mass and ~ the reduced Planck
constant.

The elimination of the odd-order derivatives in the Taylor ex-
pansion (see Appendix), as required by NP, prescribes the use of a
uniform grid; the better accuracy of the method largely compensates
for this aspect. An application of NP to the analysis of a semi-
conductor device was shown in [2], where the coupled solution of
the Schrödinger-Poisson system was dealt with; in that case, no
manipulation of the equations was necessary because both have
already the form (2).

Object of this paper is to show that, by a suitable choice of
the unknowns, NP can be extended to the whole set of equations
constituting the mathematical model of semiconductor devices. To
this purpose it is convenient to briefly outline the recent progresses
in modeling, following the semiconductor-device roadmap (now
“International Roadmap for Devices and Systems — IRDSTM” [3])
and the corresponding evolution of the mathematical models.

The standard model of semiconductor devices (drift-diffusion
model) is made of the Poisson equation and, for each type of mo-
bile charges (electrons and holes), of the continuity and transport
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equations for the mobile-charge density; the transport equation has
two terms: the first one is of the drift type, the second one of the
diffusive type. For submicron devices the model is extended by
adding another pair of continuity and transport equations, whose
unknown is the energy density of the carriers (in this case, the model
is termed hydrodynamic).

When the lateral extension of the device channel shrinks to
the nanometer scale, the device can be described as a cylindrical
structure. This makes it possible to separate the longitudinal and
transversal directions; then, the calculation of the charge density is
accomplished by solving the Schrödinger equation over each cross
section, whereas the analysis along the longitudinal direction is still
carried out in classical terms. An example is found in the solution of
a cylindrical nanowire shown in [2]. Other examples of nanometer-
size structures made of compound materials are illustrated in [4].

The n+-n-n+ structure considered in this paper is suitable for
checking the extension of NP to the solution of the whole transport
model of semiconductors. The structure is one of the benchmarks
used in the literature (see, e.g., [5] and references therein): besides
being one-dimensional, like a nanowire or a gate-all-around transis-
tor, it has the advantage of being unipolar, namely, for its description
it suffices to use only one type of carriers (electrons in this case),
thus halving the number of continuity-transport pairs of equations
to be solved.

The investigations on numerical methods for solving the semi-
conductor equations have gone in parallel with the strong devel-
opment of the integrated-circuit technology of the last 50 years.
At present, the most successful solution techniques for the drift-
diffusion or hydrodynamic models are incorporated in huge device-
analysis systems, whose update and maintenance is a concern of the
semiconductor Companies in cooperation with specialized Software
Houses. The advantage of NP is that it is applicable to the existing
solution techniques without excessive changes in the organization
of the software, and with a limited increase in the computational
cost; for this reason, also considering the improvement in accuracy,
the application of NP to the semiconductor equation is worth consid-
ering. The present investigation about the applicability of NP to the
numerical solution of the semiconductor transport equations con-
siders the drift-diffusion model for the sake of simplicity, since the
hydrodynamic model and the other models of higher order, derived
from the Boltzmann Transport Equation, have the same structure.

The paper is organized as follows: the model equations are
shown in Section 2 along with the transformation that gives them
an NP-suitable form; the NP-based discretization in the one-
dimensional case is carried out in Section 3. A method for cal-
culating the electric potential at each node independently of the
coupling with the transport equation is outlined in Section 4, fol-
lowed by a stability analysis of the iterative solution (Section 5).
The results are shown in Section 6, and the extension of the method
to the two-dimensional case, still over a uniform grid, is given in
Section 7. Finally, the conclusions are drawn in Section 8, while a
summary of the derivation of NP is provided in the Appendix.

2 Model Equations
The semiclassical, drift-diffusion equations describing the transport
of carriers in solids is made of the Poisson equation and, for each
type of charges (namely, electrons and holes), of a pair of equations
made of the continuity and of the transport equations. Here a one-
dimensional device of the unipolar type is analyzed, whose carriers
are electrons. This situation is found, e.g., in n+-n-n+ structures like
that shown in Figures 1 and 2, or in memory devices of the phase-
change type (e.g., [6, 7]); in these devices, the Poisson equation
reads

x

V

Figure 1: Lateral view of the simulated n+-n-n+ structure. The red regions indicate
the contacts, while the shades of green mimic the non-uniform dopant concentration.
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Figure 2: Dopant profiles of the simulated n+-n-n+ structure.

− u′′ = P =
q

ε kB T
%(n,ND) , (3)

with n the electron concentration and ND(x) the concentration of
ionized donors within the n+-n-n+ structure (when phase-change
materials are considered, ND is replaced with the concentration
nT of empty traps). The continuity equation of the electrons, and
the corresponding drift-diffusion equation for the electron-current
density read, respectively,

J′n = q U , Jn = q Dn (n′ − u′ n) , (4)

with U = U(n), Dn being the net-recombination rate and the
electron-diffusion coefficient, respectively (here a constant value of
Dn is considered). Combining (4) yields

n′′ − u′ n′ − u′′ n =
U
Dn

. (5)

The Wronskian determinant of the homogeneous equation asso-
ciated to (5) reads, by Abel’s identity, W = const × exp(u) , 0.

The system of equations to be solved is then made of (3) and (5),
whose boundary conditions are the values of u and n at the two ends
of the (finite) integration interval. If the discretization of the interval
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produces N internal nodes, the boundary conditions are u0, uN+1
and n0, nN+1, respectively; in the analysis of solid-state devices it is
assumed that the contacts force a condition of electric neutrality, so
that n0, nN+1 are such that P0 = PN+1 = 0 (compare with (3)).

In a decoupled solution scheme, one assumes that n is given and
solves (3) for u, then solves (5) for n using the form of u thus found;
the procedure is iterated until convergence is reached. One notes
that NP is not applicable to (5) as it stands, due to the presence of
the first derivative; to give the equation a more suitable form one
defines

s = −
U
Dn

exp(−u/2) , g = n exp(−u/2) , (6)

this transforming (5) into

− g′′ = c g + s , c =
P
2
−

(u′)2

4
. (7)

Transformation (6) does not consist in a reduction to a self-adjoint
form; in fact, the expression of the latter would be

[n′ exp(−u)]′ = (U/Dn − P n) exp(−u) ; (8)

transformation (6) is not either an “exponential fitting” of the type
commonly adopted for solving the semiconductor equations: the
exponential fitting would in fact yield

q Dn [n exp(−u)]′ = Jn exp(−u) , (9)

where the current density Jn is approximated with a different
constant along each interval between two nodes (in the field of
semiconductor-device modeling the scheme based on (9) is also
known as Scharfetter-Gummel method [8]).

The homogeneous equation corresponding to (7) reads g′′+c g =

0; in the iterative procedure by which the system made of (3) and
(7) is solved within the finite integration interval, coefficient c is
obtained from the electron concentration n and the normalized elec-
trostatic potential u calculated at the previous iteration. As neither
n nor u have poles, all points within the integration interval are
ordinary.
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Figure 3: Electric field in the simulated n+-n-n+ structure, at different values of the
applied bias; namely, 0 V (blue curve, left scale) and 1 V (red curve, right scale).
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Figure 4: Maximum modulus of the relative variation maxg |(Ed − Ec)/Ed | of the
electric field with respect to the densest grid (2000 nodes). The horizontal axis shows
the number of nodes of each grid used in the comparison (more details are given in
Section 6). The analysis has been repeated for different values of the applied voltage
V , as shown in the inset.

3 Application of NP

In this Section, the Numerov Process is applied to (3) and (7) over a
grid made of N, uniformly-spaced internal nodes with element size
h. The Poisson equation (3) is transformed into the N × N algebraic
system

− ui−1 + 2 ui − ui+1 =
h2

12
(Pi−1 + 10 Pi + Pi+1) , (10)

i = 1, 2, . . . ,N, while (7) transforms into the N × N system

−

(
1 +

h2

12
ci−1

)
gi−1 +

(
2 − 10

h2

12
ci

)
gi (11)

−

(
1 +

h2

12
ci+1

)
gi+1 =

h2

12
(si−1 + 10 si + si+1) .

The matrix of the algebraic system (10) is symmetric, whereas
that of (11) is non symmetric due to terms ci−1 and ci+1 at the
left hand side. Although in the latter system the unknowns are
gi = ni exp(−ui/2), terms ci and si still depend on the original
unknown n; also, each gi depends, through exp(−ui/2), on the (arbi-
trary) zero of the electric potential; finally, due the presence of the
exponentials of the electric potential, the matrix of the coefficients
of (11) may become stiff. For the above reasons it is convenient to
multiply both sides of (11) by exp(ui/2). In this way, the following
replacements are carried out in (11): gi−1 ← ni−1 exp[(ui − ui−1)/2],
gi ← ni, and gi+1 ← ni+1 exp[(ui − ui+1)/2]; by the same to-
ken, si−1 ← −(Ui−1/Dn) exp[(ui − ui−1)/2], si ← −(Ui/Dn), and
si+1 ← −(Ui+1/Dn) exp[(ui − ui+1)/2].
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Figure 5: Maximum modulus of the relative variation maxg |(nd − nc)/nd | of the
electron concentration with respect to the densest grid (2000 nodes). Compare with
Figure 4.

The new form of (11), where the original unknown appears,
is preferable because the exponents bearing differences like, e.g.,
ui − ui−1, instead of a nodal potential alone, are expected to be rela-
tively small. To complete the calculation it is necessary to express
the derivative u′ that appears in (7); this is also done using NP, so
that the accuracy of the scheme is preserved, and yields

u′i =
ui+1 − ui−1

2 h
+ h

Pi+1 − Pi−1

12
. (12)

When i = 2, . . .N − 1, only the indices of internal nodes appear in
(12); if, in contrast, i = 1 or i = N, then one boundary condition is
present (u0 and P0 = 0 or, respectively, uN+1 and PN+1 = 0); the last
possible case occurs when i = 0 or i = N + 1, in which the values
of the electric potential and charge in the interior of the contacts
appear in (12); remembering that the contacts are equipotential and
neutral, it is u−1 = u0, P−1 = 0 and uN+2 = uN+1, PN+2 = 0.

4 Decoupling the Model Equations
The model equations are solved by iterating between (10) and (11).
In general, equations like these are tackled with algebraic solvers
able to provide the values of the unknowns in a given sequence;
for instance, considering the solution of (10) obtained through the
A = L U decomposition, the ith nodal value of the normalized
electric potential u is obtained only after calculating it at nodes 1
through i−1 (or at nodes N through i+1). Here a different approach
is adopted, in which ui is obtained as soon as necessary, without the
need of calculating its other nodal values. Such a result is achievable
for the discretized form (10) of the Poisson equation by solving it
with the scheme of [9, p. 769], that provides each nodal value ui

independently of the others; using such a scheme after indicating
with Ci the right hand side of (10) yields

u1 = u0 + R , ui = u0 + i R − Yi−1 , i = 2 . . .N , (13)

where

Z j = h2
j∑

k=1

Ck , Yi =

i∑
j=1

Z j , i = 1 . . . N , (14)

R =
uN+1 − u0 + YN

N + 1
. (15)

The differences that appear in (11) after carrying out the replace-
ments outlined above, are easily evaluated from (13–15):

ui − ui−1 = R − Zi−1 , ui+1 − ui−1 = 2 R − (Zi−1 + Zi) .

In practice, this scheme decouples (10) from (11); it may appear
that this result is due to the discretization: in fact, one can also elim-
inate the Poisson equation prior to the discretization, by recasting
it in integral form [9, p. 781–784]. The calculation of the overall
number of operations also shows that the method based on (13–15)
requires fewer operations than the A = L U decomposition; specif-
ically, for a matrix of order N the number of operations required
by the A = L U decomposition is 6 (N − 1) multiplications and
3 (N − 1) additions, whereas the method based on (13–15) requires
N − 1 multiplications and 4 (N − 1) additions.

Another difference between the standard discretization schemes
like, e.g., finite differences, and the present one is the following:
here, the discretized functions and their derivatives of all orders
“belong” to the nodes; as a consequence, no hypothesis is necessary
about the form of the discretized functions over each element. In
the finite-difference scheme the functions and their derivatives of
even order belong to the nodes, whereas the derivatives of odd order
belong to the elements.

5 Stability
Observing that the equations of the model are non linear, it is neces-
sary to implement an iterative solution. Specifically, considering for
instance the equilibrium case, the normalized charge concentrations
Pi−1, Pi, Pi+1 at the right hand side of (10) depend on the elec-
tric potential u; the dependence is exponential in a non-degenerate
semiconductor, or via a Fermi integral in a degenerate one [9]. In
both cases, the derivatives dPi/du are negative irrespective of the
type of carriers (electrons or holes) that is considered: in fact, elec-
trons (holes) contribute negatively (positively) to the charge density,
and the electron (hole) concentration increases (decreases) when
u increases. This reasoning also applies in the non-equilibrium
case, because the functional dependence of the concentration on the
electric potential is the same. In conclusion, linearizing (10) with
respect to u adds weight to the main diagonal of the system matrix,
resulting in an improved convergence rate; this behavior, typical of
the linearized Poisson equation in semiconductors, is due to the de-
pendence of the carrier concentrations on the electrostatic potential
and is common to a number of discretization schemes. In contrast,
as shown below, the properties of the algebraic system obtained by
discretizing the continuity and transport equations with the scheme
shown in this paper are quite different from those obtained with the
standard scheme.

Coming now to (11), when the expressions of ci−1, ci, ci+1 that
appear in (7) are replaced in (11), one finds an algebraic system
whose right hand side, in the ith row, is made of three summands:
the structure of the first summand, Ai = −gi−1 + 2 gi − gi+1, is the
same as that of Poisson’s equation (10). The form of the other two
terms is

Bi =
(u′i−1)2 gi−1 + 10 (u′i)

2 gi + (u′i+1)2 gi+1

48/h2 , (16)
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Ci = −
Pi−1 gi−1 + 10 Pi gi + Pi+1 gi+1

24/h2 . (17)
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The curves refer to the bias values shown in the inset.

The coefficients defined by (16) are non negative, therefore they
add weight to all diagonals of the system matrix (11); due to factor
10, the weight added to the main diagonal is generally dominant,
unless node i is near an extremum of u. As for (17), the presence
in it of the normalized charge density P, which may have either
sign, makes the analysis more complicated; on the other hand, (17)
is of order 2 in h, whereas, due to a cancellation that takes place
when (12) is replaced in (16), Bi is of the same order as Ai, namely,
order 0 in h. In essence, the structure of the algebraic system (11)
deriving from the present discretization scheme of the continuity
and transport equations is similar to that deriving from the Poisson
equation. In contrast, the standard exponential-fitting scheme for
the continuity and transport equations, based on (9), approximates
U as a piecewise-constant function at each node, and linearizes u
between each pair of nodes; with these premises, the scheme yields

− Ki
i−1 ni−1 +

(
Ki−1

i + Ki+1
i

)
ni − Ki

i+1 ni+1 = −h2 Ui

Dn
, (18)

whose coefficients Kk
j depend on the normalized electric potential

through the Bernoulli function B:

Kk
j = B(u j − uk) , B(λ) =

λ

exp(λ) − 1
. (19)

Besides the approximations mentioned above, it is easily found
that the main diagonal of the algebraic system (18) is not necessarily
dominant [9, p. 781].

6 Results

As an example of application, the solution scheme based on NP
is applied here to the n+-n-n+ structure whose lateral section and
dopant profiles are shown in Figures 1 and 2, respectively. The
device length is L = 10 µm, the concentration of the light, con-
stant dopant (black line in Figure 2) is NB = 1015 cm−3, while
the two profiles (red lines) are given by NL = N0 exp(−x2/x2

0) and
NR = N0 exp[−(L − x)2/x2

0], with N0 = 1017 cm−3 and x0 = 1.165
µm, respectively. The total dopant distribution to be used in (3)
is ND(x) = NB + NL + NR. The device is uniform in the direction
normal to the field; the equations of the models have been solved at
different applied voltages V , ranging from equilibrium (0 V) to 1.6
V. The form of the electric field E is shown in Figure 3 for V = 0 V
and V = 1 V.

Each solution was repeated on different grids, starting with a
reference grid having N = 2000 nodes and successively decreasing
it down to N = 100. Figure 4 compares the electric field E calcu-
lated using the 2000-node grid with that calculated using coarser
grids. As all grids are obtained by refining the 100-node one, for
each node of the latter there exists a node of the denser grids having
the same abscissa. Consider, e.g., the V = 0 curve of Figure 4, for
which the 500-node grid yields about 4 × 10−9; to obtain this value
one considers two vectors, namely, the electric field Ec at each node
of the 500-node grid and the electric field Ed at the corresponding
abscissae of the 2000-node grid; from this vector one then extracts
the maximum relative difference maxg|(Ed − Ec)/Ed |, which is the
strictest metric for the problem in hand. Figures 5 and 6 show the
same type of comparison carried out for the electron concentration n
and the electric potential ϕ, respectively. The worst case (about 9%)
occurs for the electron concentration at the largest bias; this was to
be expected, given the exponential dependence of the concentration
on the electric potential.

Another part of the investigation aimed at determining the num-
ber of calls to the solver (i.e., iterations) that are necessary to bring
the error below a prescribed value, given the number of grid nodes
and the applied bias. The error is defined as

Error = maxi |q
(k+1)
i − q(k)

i | , (20)

where i is the node index, k is the iteration index, and q stands for
ϕ or n. The number of calls is plotted in Figure 7 for a 1500-node
grid, in Figure 8 for a 500-node grid and, finally, in Figure 9 for a
100-node grid, respectively; the bias values are the same in all cases.
The curves show that the prescribed error is reached smoothly for
all values of the applied bias, with no substantial difference from
one grid to another; thus, the method provides a significant gain as
far as the computational cost is concerned.
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In [1], a different electronic device has been used to compare
the error of the method presented here with that of the exponential-
fitting one (the Scharfetter-Gummel method), in which the discretiza-
tion scheme for the carrier concentration is based on (9). Like in the
example above, after obtaining the reference solution over a dense
grid (N = 2000), more solutions were calculated by making N to
progressively decrease; after each solution, the maximum difference
was calculated with respect to the reference solution. The improve-
ment of the present method with respect to the standard one was
found to be about one order of magnitude in all cases.
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Figure 8: Same as Figure 7, using a 500-node grid.

7 Extension to Two Dimensions

It may be argued that a method for solving one-dimensional prob-
lems has a limited range of applicability. This is not so in the
modeling of solid-state devices; in fact, when dealing with trans-
port problems in structures like, e.g., carbon-nanotube transistors or
nanowires, that are essentially cylindrical objects whose diameter is
in the nanometer range, the restriction to the one-dimensional case
is not too severe a constraint. In fact, for such devices the problem
is typically separated by decoupling the longitudinal coordinate (the
channel) from the transversal ones [11]; as no charge transport takes
place in the directions transversal to the channel, separating the
problem yields, for each transversal section, a system made of the
Poisson and Schrödinger equations, which are further separated by
exploiting the radial symmetry of the device. As shown in Section
1, the one-dimensional Poisson and Schrödinger equations are solv-
able by NP. In turn, the transport along the channel is described
by equations of the form discussed here, also amenable to the NP
scheme.

Clearly the NP method would gain in flexibility from the exten-
sion to a non-uniform grid. This issue is outside the scope of this
paper; the interested reader may refer to a method for extending NP
to a variable stepsize, still in one dimension, based on the k-step
Cowell method, which has been tested on the Schrödinger equation
(see [10] and references therein).

Another direction for evolving the NP scheme is the extension to
more than one dimension using uniform grids of the tensor-product

type. Such an extension, again applied to the case of the Schrödinger
equation, is described in [12]. It is of interest to ascertain whether
the approach of [12] can be extended to the class of equations
investigated here. To this purpose, one must first determine the
multi-dimensional form of (7); the latter is obtained as follows,

g′′ ← ∇2g , u′ ← |∇u| , (21)

this yielding

− ∇2g = c g + s , c =
P
2
−
|∇u|2

4
. (22)

The multi-dimensional form (22) shows that the equations de-
scribing charge transport in a semiconductor can be reduced to a
single second-order equation of the elliptic type.

The notation becomes rather awkward even if one limits the
extension to the two-dimensional case; taking a uniform, tensor-
product grid, and using the matrix notation of [12], namely,

a11 g j−1
i+1 + a12 g j

i+1 + a13 g j+1
i+1 + a21 g j−1

i + · · · (23)

+ a23 g j+1
i + · · · + a33 g j+1

i−1 =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


g

,

in which the lower indices of g j
i , . . . refer to the x axis, and the

upper ones refer to the y axis, the two-dimensional expansion yields
an interpolation of the form 1 0 1

0 −4 0
1 0 1


g

= 2 h2 (∇2g) j
i + (24)

+
h4

6
[∇2(∇2g)] j

i +
2
3

 1 −2 1
−2 4 −2

1 −2 1


g

.

Calculating the Laplacian of both sides of (24), eliminating
[∇2(∇2g)] j

i after neglecting the derivatives of the 6th-order and,
finally, replacing (∇2g) j

i from (22) and defining the matrices

M = −

 1 4 1
4 −20 4
1 4 1

 , J =

 0 0 0
0 1 0
0 0 0

 , (25)

eventually yields the two-dimensional generalization of (11):

Mg − h2
(
6 Jc g −

Mc g

12

)
= h2

(
6 J s −

Ms

12

)
. (26)

The result expressed by (26) shows that the approach of [12] can
indeed be extended to the second-order equation of the general form;
like in the one-dimensional case, no special assumption is necessary
on the form of the discretized functions inside each elements or
along its edges.
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Figure 9: Same as Figures 7 and 8, using a 100-node grid.

8 Conclusions

It has been shown in this paper that the standard charge-transport
model in solid-state devices, made of the continuity and transport
equations for the charge, can be given a form suitable for the ap-
plication of the NP scheme, using a uniform grid in one or two
dimensions. With respect to the standard discretization schemes
used in the analysis of semiconductor devices, the increase in the
computational cost is modest; like in the case examined in [2],
where the solution of the Schrödinger equation was takled, the NP
approach has provided a simple tool for improving the solution of
the equations.

In the field of semiconductor-device modeling, the results pre-
sented here are important from two points of view, already men-
tioned in Section 1: first, the NP approach, besides being able to
significantly improve the solution, is applicable without excessive
changes in the organization of the existing software; second, the
drift-diffusion model on which NP has been tested is in fact the
simplest level of description of solid-state devices; more sophisti-
cated models exist, made of higher-order moments of the Boltzmann
transport equation. On the other hand, such moments can always
be grouped in pairs, each pair having the same structure: specifi-
cally, one equation of the pair is an even-order moment (order 2 k,
with k = 0, 1, . . .) whose general form, with a suitable meaning of
symbols, reads [9]

− div S = C . (27)

The next equation of the pair is the odd-order moment of order
2 k + 1, whose form is

S = a gradσ + σ∇b . (28)

Comparing (27, 28) with (4) shows that all pairs of moments of
the Boltzmann transport equation have the same structure. It follows
that the method worked out in this paper applies to any order of
transport models; also, considering that in the dynamic case the term
C in (27) embeds the time derivative ∂σ/∂t, the method is applicable
also in the dynamic operating mode of solid-state devices.

Appendix
Letting zi = z(xi), zi+1 = z(xi + h), zi−1 = z(xi − h), the series
expansions around xi yield

zi+1 = zi + h z′i +
h2

2
z′′i +

h3

6
z′′′i +

h4

24
z′′′′i + · · · (29)

zi−1 = zi − h z′i +
h2

2
z′′i −

h3

6
z′′′i +

h4

24
z′′′′i + · · · (30)

Adding up (29) and (30) and leaving out the terms of the sixth order
or higher,

zi−1 + zi+1 ' 2 zi + h2 z′′i +
h4

12
z′′′′i . (31)

Multiplying (31) by h2/12, taking the second derivative of both
sides, and leaving out again the sixth-order term,

h4

12
z′′′′i '

h2

12

(
z′′i−1 + z′′i+1 − 2 z′′i

)
. (32)

Eliminating the fourth derivative between (31) and (32),

zi−1 + zi+1 = 2 zi + h2 z′′i +
h2

12

(
z′′i−1 + z′′i+1 − 2 z′′i

)
, (33)

or

zi−1 − 2 zi + zi+1 =
h2

12

(
z′′i−1 + 10 z′′i + z′′i+1

)
. (34)

Now one replaces the second derivatives in (34) using (2), to find
the three-node interpolation

−

(
1 +

h2

12
Qi−1

)
zi−1 +

(
2 −

h2

12
10 Qi

)
zi− (35)

−

(
1 +

h2

12
Qi+1

)
zi+1 =

h2

12
(Pi−1 + 10 Pi + Pi+1) .

The method originates from [13] (cited, e.g., in [14]). It pro-
vides a three-point interpolation where the terms of the expansion
that are left out are those of order six or larger; for this reason, it is
superior to the standard finite-difference interpolation, although the
computational load is comparable.

The method can be extended to higher orders. For instance,
leaving out of the expansion the terms of order eight or larger, and
using the short-hand notation −z′′ = F(z, x), one finds the five-point
interpolation

− zi−2 − 2 zi−1 + 6 zi − 2 zi+1 − zi+2 = (36)

=
h2

30
(Fi−2 + 56 Fi−1 + 246 Fi + 56 Fi+1 + Fi+2) .
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