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Somatic mutations have been shown to play a significant
prognostic role in myelodysplastic syndromes (MDS).
Actually, detection of a TP53, EZH2, RUNX1, ASXL1, or
ETV6 mutation predicts rapid disease progression and may
direct treatment choices in all MDS subgroups, also in the
context of allogeneic stem cell transplantation (HSCT)
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[1–3], which to date remains the only curative option for
higher-risk MDS (HR-MDS). We recently reported the
results of the phase II multicentre BMT-AZA trial, which
was designed to assess the feasibility of HSCT in HR-MDS
and low-blast count acute myeloid leukemia (LBC-AML)
after a short bridge with azacitidine (AZA) [4]. In this trial,
hematopoietic cell transplantation-comorbidity index at the
time of HSCT and response to AZA were independent
predictors of overall survival (OS), underlining the impor-
tance of disease-debulking before HSCT.

We were interested in the identification of biologic pre-
dictors of response to AZA and survival, which could be
used to address upfront treatment in MDS. To this purpose,
we studied the prognostic role of somatic mutations and of
changes in mutation burden in 65 patients (53 de novo HR-
MDS and 12 LBC-AML, 21 females and 44 males, median
age: 59 years, range 21–66), enrolled in the BMT-AZA trial
(EudraCT number 2010-019673-15) [4]. Patients were
included in the translational study according to availability
of paired samples collected before treatment start and after
four cycles of AZA. Main patient characteristics are shown
in supplementary Table 1. All patients were treated with the
standard AZA regimen (75 mg/sqm/day sc for seven days
every 28 days), for a median of four cycles (range 1–11),
followed by HSCT in 44 patients. Distribution of patients
according to treatment and response is shown in Supple-
mentary Figure 1 and supplementary text. Patients gave
informed consent according to institutional guidelines and
the declaration of Helsinki. The study had been approved by
the institutional ethical committees of participating centers
and of University of Rome Tor Vergata.

Ultra-deep next generation sequencing (NGS) was per-
formed on 65 DNA samples obtained before AZA treatment
start, using the commercial Myeloid Solution produced by
SOPHiA GENETICS (SOPHiA GENETICS, Saint-Sulpice,
Switzerland) on a HiSeq® sequencing platform (Illumina,
San Diego, California). Thirty genes known to be involved
in MDS and AML pathogenesis were studied (10 full genes
and 20 hot-spot regions). Details on the NGS pipeline are
reported as supplementary text. NGS mutation burden in
cases with variant allele frequency (VAF) > 5% was

validated by pyrosequencing assays (detailed in Supple-
mentary text and Supplementary Figure 2A).

At the time of protocol enrolment, we identified at least
one mutation at a VAF greater than 1%, in 62 out of
65 patients (95.4%) (Fig. 1a). The median number of
mutated genes was three per patient (range, 0–6). The most
commonly mutated genes were: ASXL1 (37%), RUNX1
(29%), SETBP1 (25%), DNMT3A (21%), TET2 (21%),
SRSF2 (17%) and TP53 (17%). Thirty-one of 62 patients
had more than one mutation in the same gene. There were
no differences in the median number of mutated genes
between HR-MDS and LBC-AML patients (data not
shown). A comprehensive list of all mutations identified,
their localization and VAF% are reported in supplementary
Table 2, while significant associations between different
mutations and clinical characteristics of patients are repor-
ted in Fig. 1b and Supplementary text.

In our cohort of 65 patients, overall response to AZA
treatment was 46% (including complete remission (CR),
partial remission (PR) or haematological improvement (HI)
in MDS and CR/PR in LBC-AML), while patients with
stable disease (SD) and progressive disease (PD) were
considered unresponsive. Univariate analyses of the impact
of mutational status on response according to VAF are
summarized in Supplementary Figure 3. Mutations of
DNMT3A localized in the functional methyl-transferase
domain played a significant role for AZA response: ten of
11 patients with these mutations were unresponsive to AZA
and only one achieved HI (p= 0.0281). In particular, all
seven patient carriers of the specific DNMT3A-R882
mutation were resistant to AZA (p= 0.0126). Similarly,
the genomic localization of SETBP1 mutations was pre-
dictive of response: all seven patients mutated in the SKI
homologous region (amino acids 868–872) were resistant
to AZA treatment (p= 0.0126). Finally, we observed that
SRSF2 mutations were more frequent in patients with
PD after AZA (11.3% vs 41.7%, p= 0.035). All other
mutations, including those affecting TP53, were not pre-
dictive of AZA response. No differences in the mutational
profile was observed comparing patients with MDS in
SD vs PD (data not shown).

We used specific pyrosequencing assays (supplementary
table 3) to quantify changes in the mutational burden of
selected genes after four AZA cycles. The allelic frequency
of most mutations did not change upon AZA treatment
(supplementary Figure 4A). Conversely, we observed a
statistically significant decrease in TP53 mutational burden
(median VAF: 29.5% vs 10.5%, p= 0.0243, supplementary
Figure 4B), which was independent of the depth of response
(CR vs PR, vs HI, supplementary Figure 4C). Interestingly,
in ID32 with two different TP53 mutations, one clone was
sensitive and the other resistant to AZA, while the TP53

Fig. 1 a Distribution, frequency and variant allele frequency (VAF) of
mutations in the study cohort. Each column represents a single patient.
Light- and dark- green boxes indicate the presence of 1 or ≥2 muta-
tions in the same gene, whereas empty boxes indicate wild-type genes.
Median VAF and standard deviation for each mutation are shown on
the right. b Associations between mutations and patient characteristics.
Violet and pink boxes indicate a significant negative or positive
association between variables, respectively (p < 0.05). R Pearson test,
Fisher exact test and Wilcoxon were used, according to the variables
analyzed. c Association between OS and TET2, SETBP1 and TP53
mutations
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mutation burden remained unchanged for two different
TP53 mutations in ID72, who progressed under AZA.

At a median follow-up of 20.3 months (1.6–40.6) after
AZA start, median progression-free survival (PFS) was
12.2 months, while OS was 17.6 months. Similar to the
reported extended cohort [4], patients who achieved CR,
PR, HI, or SD had a longer OS as compared to patients
with PD, confirming the important role of AZA induction
before HSCT. In agreement with previous reports [5],
patients with mutations in more than three genes had poorer
OS and PFS (p= 0.069 and p= 0.036, supplementary
Figure 5). Table 1 shows univariate and multivariate ana-
lysis for OS and PFS. In multivariate analysis, TP53
mutations were independent negative predictors for both
OS and PFS (p= 0.0008 and p= 0.0013, respectively,
Fig. 1c). This was independent of both VAF (median
31%, range 1–93%, supplementary Figure 6), and co-
existence of more than one TP53 mutation or other muta-
tions in the same patient. Moreover, mutations in SETBP1
were associated not only to AZA resistance, but also
to decreased OS (p= 0.0241), whereas TET2 mutations
were a favourable prognostic factor for OS (p= 0.0237)
(Fig. 1c). The prognostic role of SETBP1 and TET2
mutations was independent from the VAF% (median 43 and
46%, range 1-52% and 3–88%, respectively). In patients
who underwent HSCT (n= 44), TP53 and ZRSF2 muta-
tions were a negative prognostic factor for OS after trans-
plant (p= 0.014 and p= 0.002, respectively).

In recent years, the prognostic role of mutational profiling
has been extensively studied in MDS and AML patients,
often with controversial results due to heterogeneity in treat-
ment context and patient subsets [1–3, 5–7]. Our analysis
included younger, newly diagnosed HR-MDS or LBC-AML,
homogeneously treated with AZA as bridge to HSCT. We
found that the recurrent DNMT3A R882MUT, which occurred
in a minor proportion of our patients (11%) and exerts a
dominant-negative effect on the methyltransferase activity
[8, 9], was significantly associated to resistance to AZA. The
'hypomethylator' phenotype associated to this mutation may
explain the lack of response to hypomethylating treatment
(HMT). In line with the data recently reported by Jongen-
Lavrencic et al. in a wide population of AML and HR-MDS
patients treated with chemotherapy [10], AZA was unable to
clear the DNMT3A mutation burden in our patients. In
addition, we observed for the first time, that SETBP1SKI-domain-
MUT was a predictor of AZA resistance. Accordingly, Win-
kelmann et al., showed that patients with myeloid neoplasms
and SETBP1-hotspot mutations presented with rapidly evol-
ving disease and inferior overall survival, as compared to
patients with other SETBP1 mutations [11].

Although not predictive of AZA response, TP53 muta-
tions were an unfavourable prognostic factor for survival.
These data are in agreement with those reported by

Craddock et al. who did not find any association between
mutations studied before treatment start and response to
AZA [7]. In keeping with our observations, several
studies showed that TP53 mutations were independently
associated with shorter survival and shorter time to
relapse in patients undergoing HSCT, regardless of the
induction or conditioning regimens used [1–3, 6]. On the
contrary, Welch et al. reported that decitabine (DAC) at
the extended ten-day dosing was able to reset TP53-
mutations in patients with AML or MDS [12]. In this
context, DAC bridge nullified the prognostic role of unfa-
vourable karyotype and TP53 mutations. The different
results described in patients receiving AZA versus those
treated with DAC may be due to a more pronounced
or specific cytotoxic action of prolonged DAC on TP53mut

clones, which may not be reproduced by AZA at the stan-
dard schedule.

The role of TP53 allelic burden is controversial. Sallman
et al., identified the TP53mut 40% cut-off as predictor of
poor survival [13]. Similar to Lindsley et al.[2], the negative
prognostic role of TP53mut for survival in our patients was
independent of VAF and of the number of concomitant
mutations. In our study, although the TP53mut allelic burden
significantly decreased upon AZA induction, TP53 muta-
tions never became undetectable, also in patients achieving
CR. Small TP53mut clones may be sufficient to drive relapse
or progression after HSCT. DAC may be more appropriate
than AZA in TP53-mutated patients with MDS, and addi-
tion of targeted treatments may be envisaged in the context
of a personalized medicine approach to further reduce the
relapse risk.
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Waldenström macroglobulinemia (WM) is a unique IgM-
associated, indolent lymphoma with at least 10% marrow

lymphoplasmacytic infiltrate [1]. IgM paraprotein is impli-
cated in 5–7% of patients with light and/or heavy chain
immunoglobulin amyloidosis (AL/AHL) [2–4]. However,
data regarding AL/AHL in WM are sparse. A greater clonal
bone marrow plasma cell (BMPC) burden confers poorer
survival in AL, as observed in a study from our institution
(median 16 months for patients with >10% BMPCs versus
46 months), underscoring the importance of the degree of
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