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Pushing ML Predictions into DBMSs
Matteo Paganelli, Paolo Sottovia, Kwanghyun Park, Matteo Interlandi, and Francesco Guerra

Abstract—In the past decade, many approaches have been suggested to execute ML workloads on a DBMS. However, most of them
have looked at in-DBMS ML from a training perspective, whereas ML inference has been largely overlooked. We think that this is an
important gap to fill for two main reasons: (1) in the near future, every application will be infused with some sort of ML capability; (2)
behind every web page, application, and enterprise there is a DBMS, whereby in-DBMS inference is an appealing solution both for
efficiency (e.g., less data movement), performance (e.g., cross-optimizations between relational operators and ML) and governance.
In this paper, we study whether DBMSs are a good fit for prediction serving. We introduce a technique for translating trained ML
pipelines containing both featurizers (e.g., one-hot encoding) and models (e.g., linear and tree-based models) into SQL queries, and
we compare in-DBMS performance against popular ML frameworks such as Sklearn and ML.NET. Our experiments show that, when
pushed inside a DBMS, trained ML pipelines can have performance comparable to ML frameworks in several scenarios, while they
perform quite poorly on text featurization and over (even simple) neural networks.

Index Terms—Machine Learning, SQL, MLOPs.

✦

1 INTRODUCTION

In the last few years, the interest in Machine Learning (ML)
both in academia (approximately 100 new ML-related papers are
published on Arxiv every day [1]) and in the industry [2], [3], [4],
[5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15] has exploded.
The expectation is that, in the near future, every application will
incorporate trained ML models for all those functions that are
impossible to write for software developers [2]. To fulfill this
vision, ML has to transition from art and science into a mature
engineering discipline [16] centered around data [17]. Unfortu-
nately, it is remarkably easy to accumulate massive maintenance
costs (referred to as technical debt) at the system level when ML
is used [18].

For the last 4+ decades, Database Management Systems
(DBMSs) have proven to be the workhorse of many enter-
prises. Governance, security, audibility, access control, prove-
nance, and performance are some of the common features found in
“Enterprise-grade” software such as DBMSs. One natural question
then arises: to which extent can DBMSs be used to lower the
technical debt of ML deployments and achieve Enterprise-grade
ML [16]? Many works [19], [20], [21], [22], [23], [24] have
indeed already explored this problem, although mostly from an
ML training perspective, or for a few model classes. Conversely,
in-DBMS prediction serving of end-to-end ML pipelines (i.e.,
pipelines composed of featurizers and ML models) remains largely
an open question. This is somehow surprising, in fact:

1) in practice, ML models are seldomly deployed alone,
whereas data featurizers are often required to transform
data into the format that is understandable by ML models
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(e.g., in [25] we found that pipelines can have up to
hundreds of operators);

2) models are often trained once and served many times
(e.g., rendering of web pages based on users’ profiles,
batch prediction of asset prices based on historical data),
and this pattern appears quite amenable for in-DBMS
execution;

3) applications where prediction serving will likely be used
(e.g., websites, smart BI dashboards) are often backed by
a DBMS;

4) the top used operators in practical data science over
tabular data are not compute-heavy neural networks,
but rather memory-intensive operations (such as one-hot
encoding or tree ensemble methods [25], [26]) which
should benefit from in-DBMS execution;

5) when data already resides in a database, execution of
in-DBMS predictions is a natural choice, whereas a
different solution will require pulling the data out of the
database. This not only is a path not always practicable,
for instance, if for security reasons data cannot be moved
outside the database, but it also causes performance costs,
while making it difficult to enforce the “Enterprise-grade”
features without resorting to bespoken solutions (and
likely increasing the technical debt).

Our observation is further corroborated by the fact that commercial
databases are starting to surface functionalities for expressing
model predictions directly from SQL statements [27], [28], [29],
[30]. Pushing the execution of predictions directly into the DBMS
by translating ML pipelines end-to-end into SQL is therefore the
natural next step.

To study whether trained ML pipelines can be pushed into
DBMSs, and predictions served directly in SQL, we have col-
lected 10 representative pipelines, spanning (1) different ML tasks
(binary, multiclass classification, and regression); (2) a diverse
set of models (linear, tree ensembles) and featurizers (one-hot
encoder, normalizer, etc.); and (3) a heterogeneous set of datasets
(from large scale with 10s of millions of records to small ones
with only few 100s instances). We experimentally evaluate the
performance of Sklearn and ML.NET pipelines against their SQL
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implementations executed over MySQL and SQL Server; we
evaluate the performance of using both different input / output
modalities (flat CSV file or database), prediction settings (batch or
online), and optimization and implementation strategies (e.g., w/
and w/o indexes, columnar store, operator fusion). SQL implemen-
tations are generated by MASQ (Machine learning AS Query): a
library whereby trained ML pipelines are translated into standard
SQL (without UDFs or vendor-specific syntax) and are therefore
executable on any DBMSs.

Our experiments show that DBMSs performance can be com-
parable to Sklearn and ML.NET when data resides in the database.
Conversely, when ML pipelines contain textual featurizers or
compute heavy models (e.g., neural networks) databases perform
quite poorly. Summarizing, the contributions of the paper are:

• We introduce MASQ1: a library able to translate trained
ML pipelines into SQL;

• We empirically evaluate the performance of queries im-
plementing trained ML pipelines on a diverse workload,
and compare in-DBMS predictions against two ML frame-
works;

• We provide a set of lessons learned (e.g., how to cir-
cumvent the limit on the number of database columns),
and additional insight related to running ML predictions
natively on DBMSs.

To our knowledge, we are the first to evaluate the performance of
ML pipelines run end-to-end in plain SQL and to show that SQL
execution can be achieved even for high-dimensional ML models
and featurizers going beyond DBMSs limits.

The paper is organized as follows: Section 2 sets the back-
ground. Related works are listed in Section 3. Section 4 describes
MASQ implementation. The experiments are in Section 5. The
paper ends with lessons learned and conclusions in Section 6.

2 BACKGROUND: ML WORKFLOW

Figure 1 depicts a typical ML workflow. Starting with some
input data, a data preparation step is used for sanity checks,
data validation, data cleaning, feature generation, and selection.
Data preparation is commonly performed through a set of data
featurizers. The featurized data, the output of the data preparation
step, is then passed to the training step, where a learning algorithm
is used to fit an ML model through an iterative process. Once the
model is trained, it can be represented as a prediction function
transforming input features into a prediction score (e.g., 1 or 0 for
binary classification). Finally, the trained ML model along with the
data preparation operators constitute the ML predictive pipeline
which is then deployed for serving prediction queries [31]. Wrap-
ping data preparation and trained models into a unique artifact
is common practice in ML systems [2]. At serving time, the
new input data is pre-processed and featurized (using the same
operators) and fed into the prediction function of the trained ML
model for rendering the final score.2

The focus of this paper is to study whether the prediction
serving process can be pushed down and directly executed on

1. https://github.com/softlab-unimore/MASQ
2. This is an oversimplification of actual ML workflows, and it does not

cover, for example, hyper-parameter tuning and model selection. It is however
a fair summary of common use cases. In this work, we deal only with “pure”
pipelines, i.e., pipelines composed only of Sklearn or ML.NET operators, and
without arbitrary code.

Fig. 1: A typical ML workflow. Rectangles are used to identify
data artifacts (e.g., input data, or trained models); ellipses deter-
mine computations (e.g., data preparation and serving).

DBMSs. The training process is kept as in the typical ML workflow
and is not the focus of this paper. Rather, once a model is trained,
we use MASQ to generate SQL queries that perform the same
data preparation and prediction logic as the original predictive
pipeline. We purposely target standard SQL such that we can (1)
target different DBMSs; and (2) allow the optimizer to properly
generate efficient end-to-end plans. Finally, our focus is on models
learned over relational data. Therefore, we will only consider
pipelines composed of “traditional” ML operators. (i.e., no deep
neural networks). Traditional methods are the state-of-the-art over
structured data [32], and it is still the more widely-used type of
ML [25], [26]. Nevertheless, we did test the performance of a
shallow neural network in Section 5.8.2.

3 RELATED WORK

The integration of ML into RDMBSs has a long history. In the
early 2000s, SQL Server shipped with data mining operators for
classification and clustering [33]. Later in the 2010s, MADlib [19]
and following works (e.g., [20], [34], [35], [36]) propose to use
User-Defined Aggregates (UDAs) and User-Defined Functions
(UDFs) as the Trojan Horse to overcome the limitations of
DBMS regarding iterative computation and linear algebra rou-
tines. Apache Spark’s MLlib [37], SystemML [14], [15], Apache
Mahout Samsara [38] and others [39], [40] could be seen as a
continuation of this trend. Beyond UDAs/UDFs, other approaches
have tried to add ML to DBMSs by extending database runtimes
with linear algebra operations (e.g., [41], [42]). While extending
consumer database runtimes for properly supporting ML will
bring the best performance, this is a herculean task because it
requires the modification of decades-old systems. Conversely,
the UDA/UDF approach is more generic, but it introduces non-
trivial overheads [43], while limiting the set of possible cross-
optimization between ML and relational algebra [44], [45]. Fi-
nally, factorized approaches (e.g., [46]) rewrite ML models in a
database-friendly way. While these approaches work well over
linear-algebra-based models, it is not clear whether they can also
support effectively tree-ensemble models.

All the above-mentioned works mostly focus on (1) the train-
ing aspect of ML, and on (2) optimizing specific workloads relying
heavily on linear algebra. Conversely, our focus is far less ambi-
tious but arguably practical: we want to understand whether off-
the-shelf DBMSs are a good fit for serving ML predictive pipelines.
Our observation is that, in practice, predictive pipelines are not
deployed into DBMSs, but rather into external containers [47] or
directly into the application [48], even when input data resides
in a relational format in a database. Furthermore, predictive
pipelines are composed of a variety of prediction functions and
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data featurizers (e.g., tree methods and one-hot encoding), where
inefficient linear algebra operations are not necessarily the bottle-
neck. Tidypredict [49] is probably the closest work to MASQ,
although it works only in R, and for a small set of models
(linear regression, generalized linear model, random forest, and
decision tree). Amazon Redishift ML [29] and Azure Synapse
Analytics allow SQL predictions, but this is achieved by a wrapper
around external libraries. Google’s BigQuery supports inference
(and training) directly in SQL, but only for generalized linear
models [50]. Interestingly, the original version of MADlib [51]
did follow the same “pure” SQL approach of MASQ. However,
they found that “Unfortunately, the portable core of vanilla SQL
is often not quite enough to express the kinds of algorithms needed
for advanced analytics.” [19]. Nonetheless, this argument refers to
training, while inference algorithms are in general simpler. More
recently, [52] also proposed to translate ML training into SQL, and
with really good performance. Raven [44] co-optimizes predictive
pipelines and SQL queries. Among the optimizations, Raven can
generate SQL queries from ML operators. We see our study in this
paper as complementary to approaches such as Hummingbird [53]
since we specifically target predictive pipelines when data resides
on a database and no hardware accelerator is available. Even when
hardware accelerators are available, using Hummingbird requires
(1) pulling the data from the database; (2) transforming the data
into columnar format; (3) transferring the data into GPU memory
(and back). Executing predictive pipelines directly into SQL can
therefore still be widely beneficial because all the above steps can
be avoided. The cross-point on when one technique is better than
the other is investigated elsewhere [54].

In this paper, we will focus on traditional ML, and compare
DBMS execution against Sklearn [55] and ML.NET [2]. Other
alternative libraries include H2O [56], Weka [57], and Spark’s
MLlib [37] (for scale-out training). A demonstration of MASQ
functionalities was presented at SIGMOD 2021 [58].

4 THE MASQ LIBRARY

Fig. 2: MASQ applied to an ML predictive pipeline.

As a first step, we describe how trained pipelines can be
programmatically translated into SQL. The MASQ library consists
of two main components (Figure 2). The Compiler (Section 4.1) is
responsible for the transformation of the predictive pipelines into
SQL queries; the Executor (Section 4.2) instead connects and runs
the queries on the DBMS holding the data.

4.1 The Compiler
The Compiler job can be divided into three phases: during parsing
(Section 4.1.1) the fitted parameters are extracted from the trained
featurizers and models; parsed pipelines are then analyzed (Sec-
tion 4.1.2); finally, a conversion phase (Section 4.1.3) generates
the SQL implementations.

4.1.1 Parsing
Predictive pipelines are actually Direct Acyclic Graphs (DAGs)
of operators, where each operator can be a data featurizer or
a model. In the parsing phase, input predictive pipelines are
parsed one operator at a time, and each operator is wrapped
by a container object maintaining input/output relationships, as
well as an operator signature and an extractor function used for
extracting the fitted parameters. Operator signatures are initialized
with the object types (e.g., the result of the type function applied
over a Python operator object) and used for picking the correct
extractor (and conversion) function for the given operator instance.
MASQ compiler is extensible: extractor functions are registered
at startup time into a hash table mapping operator signatures
into the related extractor function. In its current implementation,
MASQ provides wrappers for the Sklearn and ML.NET libraries,
and extractors for linear and tree models, as well as a handful of
featurizers (standard scaler, one-hot encoder, and label encoder).
At the end of the parsing phase, the input pipeline is “logically”
represented in MASQ as a DAG of containers storing all the
information required for the successive analysis and conversion
phase.

Example 1 (Parsing a Sklearn pipeline). Let us suppose that
a user provides a Sklearn pipeline composed of a scaler [59]
followed by a linear regression model. Furthermore, let us suppose
that the pipeline is applied over the numeric columns of the
TaxiTable dataset represented in Table 1. Figure 3 depicts the
trained pipeline object with an excerpt of its parameters (top)
and the result of parsing (bottom). During parsing MASQ (1)
generates a container wrapping each operator, and containing
the extractor function; and (2) wires the containers into a DAG
following the input/output dependencies in the pipeline (in this
specific example, the container DAG is a simple sequence).

Pipeline(...,	steps=[
				('scaler',	StandardScaler(with_mean=True,	...)),

				('lr',	LinearRegression(normalize=False,	...))])

scikit

C
on
ta
in
er

LinearRegressionType

lr extractor Extractor
Function

Operator
Signature

Parsing

C
on
ta
in
er

StandardScalerType

scaler extractor Extractor
Function

Operator
Signature

Fig. 3: Parsing of the pipeline of Example 1. The pipeline (top)
is parsed on a container DAG (bottom). Each container stores a
reference to the operator, its signature and extractor.

4.1.2 Analysis
In this phase, the DAG of containers generated in the parsing phase
is traversed in topological order. During the traversal pass, for each
operator MASQ extracts the operator’s parameters by calling the
referenced extractor function stored in the container. Extracted
parameters are stored within the container. MASQ supports
different to-SQL converters based on the operator characteristics.
By default, MASQ uses a mix of SELECT and CASE statements for
converting ML operators into SQL (Section 4.1.3), but sometimes
the number of features or structure of the operators is restricted
by DBMSs’ limits. In the latter case, in the first traversal pass,
MASQ rewrites the queries in order to bypass the database
limitations. We will show in Section 4.1.4 a couple of techniques
used by MASQ for this task.
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TABLE 1: The TaxiTable used in the examples. Abbreviations:
Pc = Passenger Count; Tts = Trip Time; Td = TripDistance; Pt =
Payment Type; Vi = Vendor Id. The Label is the fare amount.

Pc Tts Td Pt Vi Label
t1 1 1271 3.8 CRD CMT 17.5
t2 1 720 2.34 CRD VTS 10.5
t3 1 0 11.06 CSH VTS 120
t4 1 3 0 NOC CMT 52
t5 5 1560 19.97 UNK VTS 52

Example 2 (Analysis of the Sklearn pipeline). During analysis,
the extractor functions of the parsed pipeline of Example 1 are
triggered. Specifically, the parameters extracted from the scaler
and linear model are shown in Tables 2a and 2b, respectively. In
the StandardScaler case, the extractor pulls the mean and the
standard deviation values for each column by calling mean_ and
scale_ from the operator object, respectively. The extractor for
the LinearRegression retrieves the weights and the bias by
calling respectively operator.coef_ and .intercept_.

4.1.3 Conversion
During this last phase, the DAG of containers is again traversed
in topological order and a conversion-to-SQL function is triggered
based on each operator signature. Each conversion function re-
ceives as input the parameters (extracted during analysis, and
stored directly into the container) and generates a string containing
the SQL implementation. The SQL implementations of all opera-
tors are then merged into a unique query following the input/output
dependencies expressed in the container DAG.

As for the extractors, MASQ stores a map of the operator
signatures/conversion functions. MASQ currently implements
converters for the following operators (where each of them has
a default and triplet-format version): standard scaler, one-hot en-
coder, label encoder, gradient boosting classifier/regressor (w/ and
w/o tweedie loss), random forest, decision tree, linear regression
with some variants (i.e., Poisson and SDCA), logistic regression
classifier, PCA, and linear SVM classifier. In the default case, the
above operators can be implemented using the following simple
strategies.

4.1.3.1 Conversions via SELECT statements: The conver-
sion into SQL is straightforward when the ML prediction function
consists only of algebraic operations between the extracted param-
eters and the input features. Examples of methods implemented via
SELECT statements are normalizers/scalers and linear models (by
unrolling the linear algebra operations into the SELECT clause).

Example 3 (Pipeline conversion). The conversion of the pipeline
of Examples 1 and 2 leads to the queries in Figure 4, where
the two SELECT clauses implement the scaler and the regressor,
respectively. For the former case, scaling is implemented by
subtracting and subsequently diving each column by the pre-
defined values generated during training. For the latter case, the
weights and bias of the linear regression model are multiplied with
the corresponding column, and the bias term added afterward.
Note that the queries, at conversion time, will be merged into a
unique query.

4.1.3.2 Conversions via CASE statements: SQL CASE

statements can be used to implement rule-based learners such
as decision trees, or data featurizers such as one-hot encoding
(OHE). In the former case, each rule from the model is translated
into a SQL CASE statement; rules are then nested, according to

TABLE 2: Parameters extracted from the pipeline of Example 1.

Pc Tts Td
mean 1.8 710.8 7.434
std 1.6 638.9 7.28

(a) Scaling

Findex Weight
1 -20.33
2 -31.36
3 48.72

bias 50.4
(b) Regression

SELECT	((Pc	-	1.8)	/	1.6)	AS	Pc,	((Tts	-	710.8)	/
	638.9)	AS	Tts,	((Td	-	7.434)	/	7.28)	AS	Td
FROM	TaxiTable

SELECT	(-20.33*Pc	-	31.3*Tts	+	48.72*Td	+	50.4)	
		AS	Score	FROM	NormalizedTable

Fig. 4: Scaling and linear model in SQL.

the model, by nesting the correspondent CASE statements. For the
latter, we use CASE statements to encode input categorical values
into a sequence of columns, one for each distinct value. For each
input, only the column of that particular categorical value will
store 1, all the other columns will be 0.

Example 4 (OHE). We want to apply a one-hot encoder to the
columns Pt and Vi of the data represented in Table 1. The result
of this transformation is a new set of columns, one for each
unique categorical value of the Pt and Vi columns. As we can
see in the query of Figure 5, each column name is generated
by concatenating the original categorical input name with each
distinct value. Each column will store 1 only if the value is of the
proper category. 3

SELECT
	CASE	WHEN	Pt	=	'CRD'	THEN	1	ELSE	0	END	AS	Pt_CRD,
	CASE	WHEN	Pt	=	'CSH'	THEN	1	ELSE	0	END	AS	Pt_CSH,
	CASE	WHEN	Pt	=	'NOC'	THEN	1	ELSE	0	END	AS	Pt_NOC,
	CASE	WHEN	Pt	=	'UNK'	THEN	1	ELSE	0	END	AS	Pt_UNK,
	CASE	WHEN	Vi	=	'CMT'	THEN	1	ELSE	0	END	AS	Vi_CMT,
	CASE	WHEN	Vi	=	'VTS'	THEN	1	ELSE	0	END	AS	Vi_VTS
FROM	TaxiTable

Fig. 5: One-hot Encoding in SQL.

4.1.3.3 Combining SELECT and CASE statements: Some
model requires the combination of SELECT and CASE statements.
This is, for example, the case for tree ensemble models. Tree
ensemble methods construct a sequence of decision trees and
adopt different strategies to select the output class (e.g., the mode
class in classification tasks, and the means of the resulting values
in regression tasks). In the SQL implementation for this kind of
method, we nest the CASE-based queries of the decision trees in a
query that collects the results and computes the final output via a
SELECT clause.

4.1.4 Escaping DBMSs’ Limits
DBMSs are not designed for ML, and it is fairly easy to reach
database limits with ML pipelines of reasonable complexity.
During the analysis phase, MASQ detects when a certain limit is
reached, and it automatically selects, at conversion time, the proper
operator implementation. Next, we list a couple of problems, and
related solutions, we encountered while implementing MASQ.

Limit to the number of columns. SQL Server-wide (sparse)
tables support 30k columns; 1024 in regular tables [60]. MySQL
supports a maximum of 4096 columns per table [61]. Conversely,

3. Note that this example is only for providing a high-level description of
how OHE could be implemented in SQL. In MASQ we use a “sparse” version
of the above example where only non-zero values are materialized.
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SELECT Id, 'Pt' AS Name,
 Pt AS Val FROM TaxiTable

UNION ALL

SELECT Id, 'Vi' AS Name,
 Vi AS Val FROM TaxiTable

SELECT Id,
 CASE WHEN Name = 'Pt' THEN 1,
  WHEN Name = 'Vi' THEN 1 END AS Fval,
 CASE
  WHEN Name = 'Pt' AND Val = 'CRD' THEN 1
    ...
  WHEN Name = 'Vi' AND Val = 'CMT' THEN 5
  WHEN Name = 'Vi' AND Val = 'VTS' THEN 6
 END AS Findex 
FROM TripletTable1 2

1

2

TripletTable OHETable

Assets

Id Pt Vi
0 CRD CMT
1 CRD VTS
2 CSH VTS
3 NOK CMT
4 UNK VTS

TaxiTable

Assets

Id Fval Findex
0 1 1
1 1 1
... ... ...
... 1 5
... 1 6

Fig. 6: SQL workflow for the one-hot encoding sparse implementation.

ML datasets and pipelines can easily reach several millions of
features. Therefore, high dimensional data needs to be stored using
a different format.

MASQ solution. To overcome the above problem, we use a
triplet-based representation where each record is stored in the
form (identifier, attribute_name, attribute_-
value). In the analysis phase, MASQ injects a triplet-
representation operator (TRO) into the plan if the number of
columns is too large. This operator is used to inform the compiler
to transform the data from the default into a triplet format during
the conversion phase and to successively use the related triplet-
based conversion function for each subsequent operator. As an
example, next, we show the compilation process for a pipeline that
contains an OHE operator generating a large number of features.

Example 5 (Pipeline with TRO and OHE). Let us assume we
want again to transform the columns Pt and Vi of Table 1 using
OHE. This time, however, we assume that the total number of
distinct values for these categorical columns is greater than the
maximum number of columns supported by the database 4. In
this case, the compiler will inject a TRO operator before OHE.
The following converter is then instructed to use the triplet-based
conversion function for OHE, which uses a sparse implementation.
Specifically, the converter in this case generates pairs in the form
(1, index_value) instead of materializing the full dense
vector as we did in Example 4. In Figure 6 we provide the SQL
workflow implementing the pipeline.

The SQL statement on the left-hand side of the Figure (➊)
implements the TRO operator. This creates a TripletTable where
the first column is the identifier of the rows in the dataset, while
the second and third columns store the attribute name and its
values, respectively. In the SQL query on the right-hand side (➋),
the first CASE statement (①) is used to select the attribute(s) to
encode and sets 1 as the value for those attributes. 5 The second
CASE statement (②) provides the index of non-zero values. Note
that indexes are sequential, even across categorical columns (the
index for the Vi column starts at 5 instead of 1). This is because
we implicitly concatenate one-hot encoded columns into a unique
feature vector.

Limits on SELECT and CASE clauses. High-dimensional datasets
introduce problems not only regarding the data representation but
also regarding how we implement operators in SQL. In fact, limits
exist on the number of columns allowed in SELECT statements
(e.g., 4096 for SQL Server), or the total number of conditions in
CASE clauses (few thousand for SQL Server [62]).

4. This check is, for example, implemented for Sklearn as a condi-
tion on the total number of elements of the parameter extracted from
operator.categories_.

5. Note that even if Fval contains all 1s and therefore could be removed,
we keep them to maintain a uniform interface across the operators defining the
predictive pipelines.

MASQ solution. These two issues are addressed by injecting
TROs, and partitioning large SELECT and CASE statements.6 We
show how this strategy works through two pipelines made of an
OHE plus a linear regression (Example 6) and a tree ensemble
(Example 7).

Example 6 (OHE and linear regression). Figure 7 depicts how
MASQ translates this pipeline. Due to space constraints, we
directly start from the TripletTable of Example 5, because, as in
the previous example, we assume that the OHE generates a large
number of features. Additionally, we assume that also the number
of CASE statements in the OHE is too large, and therefore the
query for the encoding needs to be partitioned (➊). Each partition
is executed independently and generates a distinct OHETable.
The OHETables are then joined (➋) with the WeightsTable
containing the linear regression’s parameters (e.g., Table 2b).
Over the output of the join, we then multiply each feature value
with the respective regression weight, and generate the partial
sums which will then be aggregated by a final query (➌). Note
that, differently than the unrolled version of Section 4.1.3.1, by
using the triplet representation we can also avoid the limit of
columns in the SELECT statements.

Example 7 (OHE and tree ensemble model). The implementation
of tree ensemble models after OHE basically follows the same
workflow as Example 6, with two important differences. First,
while WeightsTable can be partitioned following the OHETable
partitioning, for tree ensembles each tree could potentially touch
all input features. To solve this, we partition tree ensembles into
batches (up to the number allowed by DBMS constraints), and
run each batch over the union of the OHETables. Secondly,
CASE statements cannot be directly used to implement trees on
data in triplet-based representation. This is because each original
(not triplet) row is split into several triplet rows, and CASE

statements, to work, should now be able to select multiple rows
simultaneously. To overcome this limitation, MASQ implements a
technique whereby all the trees in the batch are traversed together,
level by level, in a breadth-first search manner. For each level,
we select the triplets that match the conditions on the trees, and
we use the condition to select the next CASE statement in the
next level. In Figure 8(a) we depict a tree ensemble model with 3
trees and we detail specifically the first 2 levels of Tree0 where
the decision nodes use OHE features Pt CRD and Pt CSH.
Figure 8(b) contains the queries for the first 2 levels of Tree0.
The query for Level 0 (i.e., the root) of Tree0 contains two nested
CASE statements: one for selecting the proper feature (i.e., feature
Pt CRD has Findex = 1, Pt CSH has Findex = 2), and one for
evaluating the condition of the feature. The result of the condition

6. Currently, the partitioning strategy takes track of how many elements each
statement contains, and it creates a new query once the number of statements
surpasses the database maximum.
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SELECT Id,
(Fval * Weight) AS RScore 
FROM OHETable AS O
INNER JOIN WeightsTable AS W
 ON O.Findex = W.Findex)

SELECT Id, CASE
   WHEN Name = 'Pt' THEN 1 END AS Fval,
 CASE
  WHEN Name = 'Pt' AND Val = 'CRD' THEN 1
  WHEN Name = 'Pt' AND Val = 'CSH' THEN 2
  WHEN Name = 'Pt' AND Val = 'NOC' THEN 3
 END AS Findex FROM TripletTable

SELECT Id, CASE   WHEN Name = 'Pt' THEN 1,
  WHEN Name = 'Vi' THEN 1 END AS Fval,
 CASE
  WHEN Name = 'Pt' AND Val = 'UNK' THEN 4
  WHEN Name = 'Vi' AND Val = 'CMT' THEN 5
  WHEN Name = 'Vi' AND Val = 'VTS' THEN 6
 END AS Findex FROM TripletTable

SELECT Id, SUM(RScore)
 + bias
FROM PartialScoreTable
GROUP BY Id

1 2 3

OHETable WeightsTable PartialScoreTable

TripletTable
-46.38
-46.38

3.5
-3.5

0
1

Assets

Findex Weight
1 -46.38
2 63.13
3 -11.88
4 -4.88
5 3.5
6 -3.5

bias 60.38

Fig. 7: Pipeline with OHE followed by a linear regression executed in MASQ with TRO and partitioning.

Pt_CRD < 0.5Tree 0
Tree 1

Tree 2
Level 0

T F
Node 1 Node 2

Pt_CSH < 0.5 69.6
Level 1T F

Node 3 Node 4

(a) Snapshot of a tree ensemble.

SELECT Id, MAX(CondTree0) AS Tree0
FROM ( SELECT O.Id,
    CASE WHEN Tree0 = 2 THEN 69.6
      WHEN Tree0 = 1 THEN CASE WHEN Findex = 2 THEN
          CASE WHEN Fval <= 0.5 THEN 3 ELSE 4 END END
    END AS CondTree0
  FROM LEVEL0 JOIN OHETable AS O ON (LEVEL0.Id=O.Id)
 ) AS TLEVEL
GROUP BY Id

SELECT Id, MAX(CondTree0) AS Tree0
FROM (
  SELECT O.Id,
    CASE WHEN Findex = 1 THEN
      CASE WHEN Fval <= 0.5 THEN 1 ELSE 2 END
    END AS CondTree0
  FROM OHETable AS O
) AS TLEVEL
GROUP BY Id

(b) How MASQ compiles the first 2 levels of Tree0.

Fig. 8: How tree ensembles over triplet are translated in MASQ.

contains the index of the node which will then be used in the
successive level. The final GROUP BY and MAX operations are
used to return a unique not null record. In Level 1 query we use
the results of Level 0 and have three nested CASE statements:
in the outermost statement we have one condition for each node,
while for each node we have, again, two case statements, one for
selecting the proper feature, and one for evaluating the condition.
The other levels follow a similar approach. With this technique,
we can evaluate, for each level, batches of trees concurrently.
This algorithm is equivalent to Tree Traversal strategy in [53].
The SQL query of Figure 8(b), for each level, will then actually
contain different CASE statements for each tree. We add padding
logic to deal with trees with different numbers of levels.

4.2 The Executor

The Executor provides the functionalities necessary for the execu-
tion of the SQL queries generated by the Compiler in a relational
database. The Executor also makes use of a set of connectors
(currently we support MySQL and SQL Server via Python and
C# connectors) for extracting the data from the database and
running the original pipeline externally as validation. Finally, a
small driver program manages the executions of the pipelines
(either as a SQL query or externally to the database). We refer
readers to our demo paper [58] for a visualization of the execution
flow in MASQ.

5 EXPERIMENTAL EVALUATION

The main question we want to answer in this experimental
evaluation is: are databases a good fit for serving ML predictive
pipelines? To answer this question, we (1) select 10 representative
ML pipelines; (2) implement them on two ML frameworks,
namely Sklearn and ML.NET; and (3) compare their execution

against MASQ-generated queries run on 2 DBMSs: MySQL and
SQL Server. We test both the final accuracy (with the expectation
of matching the same accuracy of the ML frameworks), the
throughput, and the latency performance over single record predic-
tions. Finally, we (4) further explore how SQL pipelines perform
with optimizations such as indexing and operator fusion; and
(5) report some negative results on text featurization and neural
network models. The experiments are organized as summarized in
Table 3.

Datasets. For the main experimental evaluation, we employed
7 datasets (see column Dataset Size in Table 4 for details). On
these datasets, we run a wide range of tasks: from binary and
multi-class classification to regression. Iris is the smallest one
with 150 records, each described by 4 numeric columns. Criteo is
the dataset with the largest number of features (39 columns). At
prediction time the input columns are transformed with OHE into
around 2.5 million features. Flight Delay is the biggest dataset:
it contains more than 21 million records and 26 initial columns
which, during execution, they get expanded into approximately
700 features.

ML Pipelines. Table 4 shows the pipelines we will be using
in our evaluation. 8 pipelines have been taken from ML.NET

samples [63]; 2 of them (Criteo and Flight Delay) are pipelines
commonly used to evaluate the scalability of ML frameworks [2].
For each pipeline, we (1) started with an implementation in
ML.NET; (2) we re-implemented it over Sklearn (note that for
P3 we used XGBoost [64] as GBDT library in order to match
the Tweedie loss on ML.NET); and finally (3) we used MASQ
to generate SQL queries for both implementations. For each
pipeline, Table 4 contains the Featurizers (when used) and the
final Model. For each pipeline, we list the used featurizers and
models by Framework; for MASQ we mentioned which technique
we used from Section 4, i.e., whether we used SELECT statements,
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TABLE 3: Description of the experiments.

Experiment Goal
Accuracy (Sec. 5.1) Evaluation of the conformity of the final predicted output

Throughput (Sec. 5.2) Runtime performance comparison among the frameworks
Scalability (Sec. 5.3) Evaluation of the time performance as the data batch size changes

Latency (Sec. 5.4) Performance when executing prediction over a single record

Performance Breakdown (Sec. 5.5) Evaluation of where the time is spent (1) per-operator;
(2) within each operator on load, computing, and write operations

Optimizations (Sec. 5.6) Evaluation of the impacts of optimizations such as adding indexes or operator fusion
Operators Implementation (Sec. 5.7) Study of possible variants for the SQL translations

Special Cases (Sec. 5.8) Study of additional pipelines for textual data and Neural Network Models

TABLE 4: Pipelines and datasets used in the experiments. In brackets, the effectiveness in terms of accuracy for classification, R2

for regression pipelines. Abbreviations: FTC = FastTreeClassifier; FTR = FastTreeRegression; FTT = FastTreeTweedie; GBDTR=
GradientBoostingRegression; GBDTC= GradientBoostingClassifier; LBFGSR = LBFGSPoissonRegression; LR = LogisticRegression;
SDCAR = SDCARegression; SDCAME = SDCAMaximumEntropy SGDR = SGDRegression; DC= DropColumns; DF= DropFeatures;
LE = LabelEncoder; MVK= MapValueToKey; NMV = NormalizeMeanVariance; SS = StandardScaler; Sel St = SELECT Statement;
Case St = CASE Statement; PC = Partitioned CASE Statement; PCS = Partitioned CASE, SELECT statement.

.
Pipeline Dataset Size Featurizer Model Pipeline Dataset Size Featurizer Model Framework

P1
Iris

(acc. 0.98)

150 rows
4 cat. cols

MVK SDCAME P2
Heart Disease

(acc. 0.95)

303 rows
13 num. cols N/D

FTC ML.NET
LE LR GBDTC Sklearn

Sel St Sel St Case St, Sel St MASQ
P3

Bike Sharing
(R2 0.33)

17,379 rows
12 num. cols N/D

LBFGSR P4
Bike Sharing

(R2 0.27)

17,379 rows
12 num. cols N/D

SDCA-R ML.NET
SGDR SDCAR Sklearn
Sel St Sel St MASQ

P5
Bike Sharing

(R2 0.88)

17,379 rows
12 num. cols N/D

FTR P6
Bike Sharing

(R2 0.91)

17,379 rows
12 num. cols N/D

FTT ML.NET
GBDTR XGBoost Sklearn

Case St, Sel St Case St, Sel St MASQ
P7

Taxi Fare
(R2 0.57)

200,000 rows
3 num. cols
3 cat. cols

OHE, NMV SDCAR P8
Credit Card
(acc. 0.99)

284,897 rows
30 num. cols

DC, NMV FTC ML.NET
OHE, SS SDCAR DF, SS GBDTC Sklearn

Case St, Sel St Sel St Sel St Case St, Sel St MASQ
P9

Criteo
(acc. 0.73)

4,000,000 rows
13 num. cols
26 cat. cols

OHE FTC P10
Flight Delay

(R2 0.99)

21,604,865 rows
23 num. cols

3 cat. cols

OHE FT-R ML.NET
OHE GBDTC OHE GBDTR Sklearn

TRO + PC PCS TRO + PC PCS MASQ

CASE statements, both SELECT and CASE statements, TROs, or
partitioned statements. Finally, the Table reports the effectiveness
of the pipelines (in terms of accuracy for classification models and
R2 score for regression models) as computed with the ML.NET

framework.

Setup. The experiments are executed on an Azure Standard D32
v3 machine with 32 virtual cores, 128GB of RAM, and 256GB
of local (SSD) storage. The machine runs Ubuntu version 18.04,
Sklearn version 0.21.2, and ML.NET version 1.2. Both ML libraries
were run with multithreaded. MASQ was evaluated on MySQL
version 5.7.29 and SQL Server 2017 version 14.0.3223. We run
all experiments 5 times, and report the average. For MASQ we
average the query time as reported on the database catalog; for
Sklearn and ML.NET we time the execution within the running
process. The experiments do not include the time required to
convert an ML pipeline into a SQL implementation. This operation
is performed offline once, and in all experiments the time taken
for conversion is insignificant. Due to space limits, for some
experiments, we only report MySQL numbers. Interested readers
can refer to the technical report [65] for SQL Server results, as
well as additional experiments.

5.1 Accuracy

The first step for evaluating whether DBMSs can be used as
prediction serving systems is to check that the prediction outcomes
match the original ones generated by the ML framework. Round-
ing errors introduced by the different floating point operation
implementations can in fact lead to inconsistent results [66]. In
Table 5 we report the errors between the outcomes generated by

the baseline frameworks (Sklearn and ML.NET) and MASQ. We
compute errors as the mean of the absolute differences between
the returned values (posterior probabilities of the labeled class)
for regression (classification) tasks. As we can see from the table,
using SQL queries for inference introduces negligible errors (e.g.,
between 1e− 05 and 1e− 06 in the general case; 1.49e− 02 in
the worst case). The worst case is due to the Compiler which uses
ML.NET tree-aggregation logic, while XGBoost uses a specific
aggregation function for Tweedie.

TABLE 5: Error (mean of the absolute differences) on the predic-
tions generated by MASQ versus ML.NET and Sklearn.

Pipeline MASQ vs
ML.NET

MASQ vs
Sklearn Pipeline MASQ vs

ML.NET
MASQ vs

Sklearn

P1 5.99e− 08 1.97e− 06 P2 2.47e− 06 2.44e− 06

P3 3.74e− 05 2.49e− 06 P4 2.38e− 05 2.50e− 06

P5 1.65e− 05 2.52e− 06 P6 2.69e− 05 1.49e− 02

P7 1.03e− 05 2.50e− 06 P8 5.17e− 06 3.81e− 06

P9 2.07e− 06 2.13e− 06 P10 7.46e− 06 1.83e− 06

5.2 Throughput
The goal of this experiment is to compare the performance of each
framework and on each pipeline in serving predictions over the full
datasets. For Sklearn and ML.NET we also test the performance
when the data resides both over flat CSV files and in the databases.
In the latter case, data has to be moved out of the database into
CSV format before the predictive pipeline can be executed. This
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ML.NET (MySQL)

Sklearn (MySQL)
ML.NET (SQL Server)

Sklearn (SQL Server)
MASQ (MySQL)

ML.NET (CSV)
MASQ (SQL Server)

Fig. 9: Throughput for Sklearn, ML.NET (on CSV, MySQL and SQL Server) and MASQ (on MySQL and SQL Server).

1 10 100 1k 10k ALL
Batch size

10 4

10 2

100

102

104

106

RP
S

P1

1 10 100 1k 10k ALL
Batch size

P2

1 10 100 1k 10k ALL
Batch size

P3

1 10 100 1k 10k ALL
Batch size

P4

1 10 100 1k 10k ALL
Batch size

P5

1 10 100 1k 10k ALL
Batch size

10 4

10 2

100

102

104

106

RP
S

P6

1 10 100 1k 10k ALL
Batch size

P7

1 10 100 1k 10k ALL
Batch size

P8

1 10 100 1k 10k ALL
Batch size

P9

1 10 100 1k 10k ALL
Batch size

P10

Sklearn ML.NET MASQ

Fig. 10: Scalability of the different frameworks, over MySQL, as we change the batch size.

latter case simulates what happens in practice ML deployments
where data must be moved out of the database in order to be
fed to the model. Since the datasets used for the pipelines have
different sizes, we plot the average throughput in terms of rows
evaluated per second (RPS). Figure 9 shows the results.

Discussion. There are several insights from this experiment: (1)
there is no system constantly outperforming the others (Sklearn
on CSV is better on 6 over 10, ML.NET on 1, and MASQ
on 3); (2) as expected, the throughput for the ML frameworks
when the data needs to be moved out of the database decreases,
although it decreases considerably (around 10×) for Sklearn, less
for ML.NET—we think that this is due to the quality of connectors;
(3) in general there is no clear winner between MySQL and
SQL Server connectors for ML.NET, whereas for Sklearn, the
SQL Server connector performs worse than the MySQL one; (4)
MASQ throughput is better than the database version of the ML
frameworks for almost all the pipelines with linear models (P1,
P3, P4), while it is slightly lower for a couple of tree ensemble
models (P6, P9), and comparable to the other pipelines (P2, P5,
P7, P8, P10); (5) MySQL and SQL Server implement different
optimization strategies whereby the same query generated by
MASQ can result in a different performance. The 4th point is
somehow surprising and invalidates the common knowledge that
databases are not performant over linear algebra. Conversely,
tree-model performance varies based on the implementation and
dataset. We will further explore this behavior in the following
sections.

5.3 Scalability

In this section, we study how the throughput changes as we scale
the data processed by each system. We implement this scenario by
splitting each dataset into batches of various sizes, and plotting the
overall throughput. We test batches of 1 (i.e., online predictions),
10, 100, 1K, and 10K rows, plus the full dataset in one batch. We
use the full dataset in cases where the batch size is greater than the
total length. Figure 10 shows the results for MySQL. For Sklearn
and ML.NET we run the versions where the data resides in the
database.

Discussion. We can notice similar trends in all the pipelines: as
the batch size increases, the throughput increases as well, up to
a saturation point (either we saturate over the dataset size or
the resources). Regarding MASQ: for pipelines P1, P3, P4, and
P7, with linear models, MASQ shows the best performance in
most of the settings. Conversely, for tree-based models, we can
see that in the majority of the settings (P2, P5, P9, P10) MASQ
performance is either the best or in between Sklearn and ML.NET.
For the remaining pipelines (P6, P8) MASQ trend is generally
worse than the baseline frameworks, although in aggregate not by
much. This is because these pipelines have tree ensemble models
and either simple, or absent featurization. In this case, we cannot
use optimizations as we are doing for other tree-based pipelines.

5.4 Latency

In this section, we focus on the latency performance for executing
online (single record) predictions. Figure 11 shows the results
computed over MySQL, where for ML.NET and Sklearn we also
consider the time to pull the records out of the database.
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Discussion. The latency numbers confirm that MASQ performs
better (up to 3×) than the baseline frameworks for linear models
(P1, P3, P4, P7) while tree-based models (P2, P5, P6, P8, P9,
P10) can be up to around 2× slower (P2, P5, P6). Even for the
same dataset, we can notice the latency of tree ensemble models
is worse than the linear ones (i.e., P4, P5). Next, we will study
more in detail the trade-offs between linear and tree ensemble
models by breaking down the performance for each single pipeline
component.

5.5 Performance Breakdown
In this Section, we drill down into the performance of a few
selected queries over the largest datasets. We first evaluate how
each pipeline operator contributed to the final runtime for queries
P7, P8, P9 and P10 (Section 5.5.1). Successively, we further look
deeper into how time is spent between data loading, data writing,
and computing for all the above pipelines (Section 5.5.2).

5.5.1 Operator Breakdown
We plot, by batch size (where a batch of 1 is online), the runtime
for each operator as a percentage of the total runtime. For MASQ
we report the numbers over MySQL (similar results hold for
SQL Server), and we compare it against Sklearn and ML.NET

over CSV for P7 and P8 in Figure 12. In Figure 13 we instead
report the results for MASQ for P9 and P10, where for P9 we
show two variants: one with a tree model (GBDT, as described in
Table 4) and one with a linear model (SDCA). Recall that Criteo
is the largest dataset with 2.5M features (after OHE). We run
two variants so that we can study, in the worst-case scenario, the
tradeoffs between linear and tree ensemble models for MASQ.
Discussion. Starting with P7, we notice that: (1) data featurizers
take the majority of the time; and (2) as the batch size increases,
the time spent on normalization decreases. This second point is
even more marked on P8 where for Sklearn and ML.NET normal-
ization surprisingly takes more than 50% for batches of 1, while
it takes less than 10% when we score the entire dataset at once.
We think that this behavior is due to the benefits of vectorization
which increases with the batch size. In P8, for MASQ we see that
the majority of the time (>90%) is spent on the evaluation of the
GBDT model.

If now we move our attention to the evaluation of P9 and
P10 in Figure 13, we see that: (1) the time required to complete
the OHE operator is proportional, as expected, to the number of
features generated rather than the number of rows processed (i.e.,
the percentage of time spent on OHE is greater in P9 than in P10:
the first generated 2.5M features over 4M rows, the second 700
over 21M rows); (2) as the batch size increase, the time spent on
executing the GBDT model increases, up to reach 80% in P10 for
a batch size of 10K. The experiment performed on P9 with SDCA,
instead, confirms that the time required to execute the linear model
is irrelevant wrt the time for executing the featurizer or the GBDT.

5.5.2 Latency Breakdown
In this section, we look at the latency (single record) performance
for the pipelines used in the previous section. We compute the
breakdown by dividing the latency into three components: data
loading, computation, and data writing. For this experiment, we
have enabled the profiling of all events / statements generated by
the queries using SET @@ profiling = 1 and SET @@ profiling
history size = 100, and we classified each event using the above

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
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Fig. 11: Latency numbers over a single record (MySQL).
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Fig. 12: Operator breakdown for P7 and P8.

components. We report the time performance measured on MASQ
running on MySQL, and compare it against Sklearn and ML.NET

run both over CSV files, and when records are loaded from
MySQL.

Discussion. The breakdown in Figure 14 shows that the com-
putation time is dominant in P7 for MASQ, while load takes
the majority of time for P9. We think that this is because P7
contains a linear model whereby the majority of the time is spent
in multiplications, while for P9 the one-hot encoder generates 2.5
million features out of 26 columns, thus creating substantial data
access in our implementation.

For ML.NET and Sklearn the computation time is almost al-
ways dominant. Interestingly, the difference between data loading
for the CSV and the DB is minimal for ML.NET while it is quite
large for Sklearn. Again, we think that this is due to the quality of
the database connectors.

5.6 Optimizations

In this section, we explore database-specific optimizations such as
adding indexes (Section 5.6.1) and “logical optimizations” at the
operator level such as operator fusion (Section 5.6.2).
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Fig. 14: Latency breakdown for MASQ, ML.NET (ML.) and
Sklearn (SK.), for pipelines P7, P8, P9 and P10. The time spent is
divided into three buckets: load, computation, and write.

5.6.1 Using Indexes
In this experiment, we evaluate whether the performance over the
DBMSs can be improved by applying indexes. We evaluate three
settings: in the first setting, referred to as No Index, we add a
clustered index on the primary key. In the second setting, IndexID,
a non-clustered index is added to the column identifier (ID).
Finally, in the setting IndexALL we add a non-clustered index
for each column. We add indexes both to the input dataset, and to
temporary tables when used (e.g., in P7, P9 and P10). Figure 15
contains the results of this experiment for MySQL. SQL Server
results are similar.
Discussion. The results show that there is no benefit from in-
dexing. This indeed is unexpected behavior. Our intuition is that
the secondary indexes should help, for example, on tree models
for retrieving records more efficiently. This is because, in each
decision node, we only fetch records with specific conditions.
However, as the experiment shows, this is not the case. We think
that this is because conditions are expressed in CASE statements
that cannot be pushed into index lookups. Additionally, we do not
see any improvement for the pipelines where indexes are built also
on temporary tables (P7, P9 and P10). Note that in this latter case,
the cost of building the index is counted into the running time of
the final queries. We also explored a column-store layout in SQL
Server. What we found is that, similarly to indexing, this technique
does not introduce any significant improvement and sometimes
even degrades performance. With small batches (i.e. 1 to 10k)
we measured performance degradations of up to 3×. This is due
to the overhead of reconstructing the per-row format of records.
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102

103

104

105
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No Index IndexID IndexALL

Fig. 15: Performance comparison with indexing (MySQL).
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Fig. 16: Operator fusion (OHE + GBDT) for P9 and P10.

With large batches (i.e. greater than 100k) instead we found an
increase in performance only in P8 and with a tree ensemble depth
greater than 6. This is motivated by the fact that deep trees require
repeated access to the features and this pattern is able to better
exploit the columnar format.

5.6.2 Operator Fusion.
We evaluate an optimization for pipelines P9 and P10, where the
queries implementing the tree ensemble models are fused with
the OHE. Specifically, the CASE statements evaluating the tree
conditions on the columns targeted by the OHE are rewritten to
compute both the featurization and the prediction in the same
statement. Note that this optimization is currently not supported by
database optimizers, and therefore we had to manually implement
it directly in MASQ. Figure 16 shows the RPS for the optimized
implementation on MySQL compared to the baseline where no
optimization is used.
Discussion. The results show that when operator fusion is not used
MASQ performance decreases substantially for P9 and P10. With
operator fusion, MASQ does more computations per single row
(i.e., for each row we compute the encoding multiple times, one
for every time the row is used by a tree), but since the number
of features is large and not all of them used, the total number of
encodings is less. We tried a similar optimization for P8 where we
fuse normalization with GBDT. This last experiment introduced
a 4× slowdown. This is because all features are used by the
GBDT model. This result suggests that a cost-based optimizer is
likely required for selecting the best compilation strategy when
optimizations are enabled. Regarding latency, operator fusion
improves P9 by 5×, and P10 by 2×.

5.7 Study of Operators Implementation
In this section, we study a few possible variants of the operator
implementations discussed in Section 4.1.4 (Section 5.7.1 for tree
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ensembles, and Section 5.7.2 for linear models) as well as how
model characteristics affect the query performance (Section 5.7.3).

5.7.1 Tree ensembles implementation
Pipelines P2, P5, P6, P8, P9, and P10 make use of tree ensem-
ble algorithms whereby a certain number of trees (100 in our
experiments) are executed, and their predictions combined. In
this experiment, we test two different implementations for this
operation. In the first implementation, the queries representing
each tree are a subquery of an outer query computing the final
score over the partial results (this is the approach described in
Example 7). The results obtained with this implementation are
represented in Figure 17 as “1 query”. In the second implemen-
tation, we batch different sets of trees (1, 5, 10, 25, and 50) in
multiple queries (respectively 100, 20, 10, 4, 2) and store the
partial predictions into an intermediate table. A final query then
computes the output by aggregating the results from the temporary
table. In this experiment, we use pipelines P8, P9, and P10, and we
tested over different batch sizes. In Figure 17 we plot the results
for MySQL.
Discussion. The experiment shows that the approach with a single
query outperforms the others in pretty much any setting. This is
because the database is able to optimize the execution end-to-end
using a single query, while the more queries we use, the less they
can be optimized.

5.7.2 OHE followed by linear models
When an OHE featurizer is followed by a linear model, a tem-
porary table is built storing the results of the featurization (the
OHETable in Figure 7), and its content is joined with the model
parameters table (see Section 4.1.4 for details). In this experiment,
we evaluate a possible alternative plan for implementing the oper-
ation as a multi-way join. We perform a test on MySQL against
pipeline P9 with SDCA, where the OHETable is partitioned into
300 tables 7. Figure 18 plots the results of the experiment over
different batch sizes.
Discussion. As we can see the join implementation performs
better over large batch sizes, whereas when the data to process
is smaller, the single intermediate table implementation performs
better. This is likely because, for small batch sizes, fewer inserts
to the intermediate table are executed concurrently.

5.7.3 Tree ensembles with a variable number of leaves
In this experiment, we study how the performance of our tree
ensemble implementation varies as we increase the number of
leaves (i.e., the height) of the trees. Figures 19a and 19b
report the performance on MySQL of different P8 tree ensembles
implementations obtained by varying the number of leaves.
Discussion. Figure 19a shows how performance varies, per batch
size, as we increase the number of leaves. As we can see, the
difference in performance is stable across the different batch sizes,
and it is because evaluating taller trees (with more leaves) requires
the evaluation of more conditions. If we look specifically at the
batch size of one, from Figure 19b we can conclude that P8 latency
is from 3× to 6× slower on MASQ compared to the baseline
systems. Interestingly, Sklearn and ML.NET performance slightly
increases with the increase of the number of leaves, while MASQ
gets up 2× slower. This is likely due to the overhead of unrolling
tree ensemble evaluation as a sequence of CASE statements.

7. This is the minimum number of tables required in order to meet MySQL
limits on case statements

5.8 Negative Results
In this section, we consider two scenarios that are common in ML
pipelines but we found to be hard to support in databases, with rea-
sonable performance: featurization of textual data (Section 5.8.1),
and neural network models (Section 5.8.2).

5.8.1 Managing textual data
To study whether MASQ can support textual data, we create a
pipeline over the Sentiment dataset [67]. This dataset contains
40k records, with 7 numerical and 1 textual feature each. The
ML pipeline is composed of a data featurizer (FeaturizeText in
ML.NET, TfidFeaturizer in Sklearn) over the textual column, and
a logistic regression model. After the application of the text
featurizer, the number of features becomes around 210K. We
implemented the text featurizer in SQL using temporary tables and
CASE statements, while the logistic regression is implemented as
a simple SELECT statement. The left-hand-side plot in Figure 20
shows the results against MySQL. Sklearn and ML.NET are run
over the data stored in the database.
Discussion. The experiment shows that MASQ performance is
several orders of magnitude off compared to the baseline frame-
works. This is due to: (1) the large number of features generated;
(2) the implementation of the text featurizer which mixes CASE

statements and temporary table transformations; and (3) the heavy
use of the string intrinsics provided by the database. We believe
that text featurizers are better supported in databases with UDFs.

5.8.2 What About Neural Networks?
For this experiment, we created a SQL implementation of a
Multilayer Perceptron (MLP) through SELECT statements. We test
the implementation using a simple model composed of 3 hidden
layers, each one with 5 nodes. We used the Credit Card dataset
for the experiment, and we compare the results with Sklearn (note
that ML.NET currently does not provide native support for MLP
models). The results for MySQL are plotted on the right-hand side
of Figure 20.
Discussion. As we can see from the results, MASQ performance
is comparable to Sklearn only for small batch sizes, whereas for
larger batch sizes Sklearn is able to better use the hardware than
MySQL. This MLP model requires three matrix multiplications,
and Sklearn uses BLAS libraries to efficiently compute them. Note
that these results are over a very small MLP with only 3 layers and
5 neurons per layer. We also experimented with larger MLPs with
a few hundred neurons, and the results are, as expected, worse by
several orders of magnitude.

6 LESSON LEARNED AND CONCLUSIONS

From this experimental evaluation, we learned several interesting
insights. For example, linear models are not a bottleneck, while
featurizers and tree-based models can be. Adding indexing is not
helpful, while operator fusion sometimes is. Furthermore, we had
to come up with specific implementations and optimizations to
address database limits, and these scenarios can be quite common
in practice. MASQ currently supports more than a dozen of fea-
turizers and models (Section 4.1.3), and we are actively working
on adding support for additional operators (e.g., feature selection
operators, imputers, K-means, missing linear and tree models).
Unfortunately, while we believe that any ML operator can be
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Fig. 17: Comparison of different tree implementation methods (MySQL).
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Fig. 19: Comparison of tree ensembles performance with variable
number of leaves on P8.

translated into SQL, we are aware that not all operators will have
good performance, as we saw for text featurization, and neural
networks. We think that, to properly support these operators, a
UDF-based approach is probably required. Additionally, since
many operators (e.g., tree methods and one-hot encoding) use
CASE statements, having better support for deep CASE expressions
will probably help with the performance.

Finally, we discovered several interesting compromises be-
tween optimizations and compilation strategies. Examples are,
when to use operator fusion (Section 5.6.2), or when to change the
operator implementation (Section 5.7). This suggests that a cost-
based optimizer is likely required to achieve the best performance.
This is even more true when hardware accelerators are also
available [53]. We recently started the exploration of this exciting
space [44], [54], [68].
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Fig. 20: Left hand-side: Sentiment Analysis over textual features.
Right hand-side: an MLP model applied on Credit Card.
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