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generates an equicontinuous, not necessarily compact, semigroup. The regularity 
of the nonlinear term also depends on the Hausdorff measure of noncompactness. 
The existence of integral solutions is discussed, with a topological index argument. 
A transversality condition is required. The results are applied to a partial differential 
inclusion in a bounded domain in Rn with nonlocal integral conditions. The model 
also includes an m-dissipative but not necessarily compact semigroup generated by 
a suitable subdifferential operator.
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1. Introduction

In this paper we prove the existence of integral solutions of the following differential equation{
u′(t) ∈ Au(t) + F (t, u(t)), for a.e. t ∈ [0, T ],
u(0) = g(u),

(1.1)

with nonlocal initial conditions in a Banach space (X, ‖ · ‖). Here A : D(A) ⊂ X � X is an m-dissipative 
multioperator while g : C([0, T ]; X) → D(A) and F : [0, T ] × X � X are a given map and a multimap, 
respectively.

Starting from the seminal paper by Byszewski, [16], problem (1.1) has been widely investigated and the 
literature on this topic can be divided in two main classes. In the first one, about semilinear problems, A is 
linear and it generates a C0 semigroup. In the second, about fully nonlinear problems, A is a nonlinear 
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m-dissipative operator and it generates a nonlinear semigroup according to the Crandall-Lidget definition 
[19] (see also Definition 3.7). Among the results for semilinear problems involving a multivalued map F we 
cite [7], [8], [9], [17], [30]. In particular, the multipoint condition appears in [14]. To our knowledge the case 
when A is nonlinear and F multivalued was first discussed in [2, Theorem 3.8]; there F is closed-valued and 
lower semicontinuous in its second variable and A generates a compact semigroup. Subsequently, under the 
assumption of the compactness of the semigroup generated by A, the existence of the solutions for (1.1)
with multivalued perturbations F has been extensively studied. See for instance [29], [35] and also [3], [18], 
where the topological structure of the solution is also studied. Furthermore, the case when A = A(t) is a 
family of maximal monotone operator was recently investigated in [6].

When A is a m-dissipative operator, the nonlinearity F frequently satisfies some dissipative type con-
ditions, such as F (t, ·) Lipschitz (see, e.g., [1], [34]), one sided Perron as in [12], or one sided Lipschitz, 
see [13] and the recent result [27]. Furthermore, the assumption of uniformly convex dual for the Banach 
space X, as in our paper, is a common practice. However, it’s worth noting that under Lipschitz conditions 
on F ([1]), or additional requirements on the operator A such as compactness of the generated semigroup 
([15] and [29]), or complete continuity ([27]), Banach spaces without uniformly convex dual can be con-
sidered. For instance, in Theorem 7.2.1 in [15] A is assumed to be a m-ω-dissipative operator (a stronger 
assumption than m-dissipativity), generator of a compact semigroup and F is an almost strong-weak upper 
semicontinuous multivalued map.

We decided to assume the uniform convexity of the dual of X, in order to analyze more general operators 
A and nonlinearities F . More precisely, compared to Theorem 7.2.1 in [15] we can consider a non necessarily 
m-ω-dissipative operator that generates a non-compact semigroup and with weaker regularity assumptions 
on F . Indeed, we consider that F is strong-weak upper Carathéodory (see assumptions (H1

F ), (H2
F )), a 

weaker assumption than the one assumed in the cited theorem. For an example of a multivalued map that 
is upper Carathéodory, but not almost upper semicontinuous see Example 4 in [5]. Moreover, we point out 
that in most applications the natural framework is the space Lp(Ω) with 1 < p < ∞ that has a uniformly 
convex dual.

The motivation for these studies is that nonlocal Cauchy problems may have better effects in applications 
than the classical initial value problem u(0) = u0. For example, it is used to represent mathematical models 
for evolution of various phenomena, such as nonlocal neural networks, nonlocal pharmacokinetics, nonlocal 
pollution and nonlocal combustion, see the monograph [28].

In this paper we assume that A is a m-dissipative operator generating an equicontinuous, but not neces-
sarily compact, semigroup. Our main goal is to prove the existence of solutions of (1.1) under very general 
growth conditions on the nonlinear term F and on the nonlocal initial condition g. In particular, we have 
F (t, ·) Lipschitz with respect to a measure of non compactness (see condition (H4

F )). The growth condition 
on F allows us to handle a class of nonlinear terms F which could exhibit superlinear growth, see Exam-
ple 4.8. Our main result is presented in Theorem 4.10. We note that in the case of F having compact values, 
the Lipschitz continuity assumed, for instance, in [1], constitutes a stronger condition than our Lipschitz 
condition (H4

F ), as detailed in Remark 4.5.
We solve (1.1) by introducing a suitable operator G : [0, 1] × C([0, T ]; D(A)) � C([0, T ]; D(A)), such 

that the fixed points of G(1, ·) are integral solutions of (1.1). We construct an homotopy between the map 
G at level 1, that is G(1, ·), and the map G at level zero, i.e. G(0, ·), that coincides with the zero function; 
thus, by exploiting the properties of the index for condensing operators, we get the existence of at least one 
integral solution of (1.1).

The Lipschizianity with respect to a measure of non compactness of the nonlinear term F , are used 
also in [24] for single valued nonlinearities and in [34] for upper Carathéodory multimaps. In particular, 
in [24] the equicontinuity of the semigroup is not required, but the nonlinearity is a single valued map 
F : L1([0, T ], X) → L1([0, T ], X). The main novelty of our paper with respect to the cited results consists 
in the fact that we assume more general growth conditions on the nonlocal function g and on the nonlinear 
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term F . Indeed, in both papers the map g and the nonlinear term F are required to have a sublinear growth 
condition with coefficients strictly smaller than one. Here, we are able to relax these growth hypotheses by 
requiring the map g only to send a ball into itself and, by imposing the so called transversality condition, 
see condition (H5

F ) below, on the multimap F . We would like to point out the fact that we require the 
transversality condition only for one element z ∈ F (t, x) and not for every z ∈ F (t, x) as is usually done in 
literature, for instance see again Theorem 7.2.1 in [15]. On the other side, to consider these general growths, 
we are compelled to introduce the assumption of compactness of the values for the nonlinear term.

We will apply the existence result in Theorem 4.10 to the following class of partial parabolic differential 
inclusions in a domain Ω ⊂ Rn with smooth boundary ∂Ω⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ut ∈ aΔu(t, x) − ∂ϕ(u(t, x)) − bu(t, x) + [f1(t, u(t, x)), f2(t, u(t, x))] in ΩT

−∂u

∂μ
(t, x) ∈ ∂j(u(t, x)) in ∂ΩT

u(0, x) =
T∫

0

∫
Ω

h(s, x, ξ, u(s, ξ)) dξ ds in Ω

(1.2)

where ΩT = Ω×]0, T [, ∂ΩT = ∂Ω × [0, T ], ∂ϕ is the subdifferential of ϕ, Δu(t, x) is the Laplacian of 

u(t, ·), a ≥ 0 and 
∂u

∂μ
(t, x) is the normal derivative of u(t, ·) at x ∈ ∂Ω, see Theorem 6.1. Being A in a 

subdifferential form, it is possible to prove that it is the generator of a nonlinear semigroup. We point out 
the fact that, under the hypotheses required on (1.2), such semigroup it is not necessarily compact. We 
provide, in particular, a simple example of map ϕ : R → R ∪ {+∞}, whose subdifferential generates a non 
compact semigroup, see Example 6.3.

The paper is divided into six sections. In Section 2 we recall the definition and the properties of the degree 
for condensing operator. In Section 3 we give the notion of integral solution and we recall the definition and 
the properties of m-dissipative operators and nonlinear semigroups. In Section 4 we formulate the problem 
and we state the main result, i.e. Theorem 4.10. In Section 5 we prove the main result, while in the last 
Section 6 we analyze the example presented above.

In the whole paper, we denote with ‖ · ‖p the norm in Lp(Ω; R), 1 ≤ p ≤ ∞, where Ω is a domain in Rn, 
n ≥ 1, with ‖ · ‖0 the norm in C([0, T ]; X) and with Br(x) the ball in X of radius r > 0 and center x ∈ X.

2. Index for condensing operators

First we briefly recall some useful properties of the multivalued operators (see e.g. [26]).
Let X and Y be two topological spaces.

Definition 2.1. A multimap F : D ⊆ X � Y is said to be upper semicontinuous at x ∈ D if for every 
open set W ⊆ Y such that F (x) ⊂ W , there exists a neighbourhood V (x) of x with the property that 
F (V (x)) ⊂ W . It is said to be upper semicontinuous if it is upper semicontinuous at every point x ∈ X.

Definition 2.2. A multimap F : D ⊆ X � Y is said to be

(a) sequentially closed: if for any sequences {xn} ⊂ D, {zn} ⊂ X, if xn → x0 and zn ∈ F (xn), zn → z0, 
then z0 ∈ F (x0);

(b) closed: if its graph is a closed subset of X × Y .

If X and Y are metric spaces (a) and (b) in the above definition are equivalent.

Definition 2.3. A multimap F : D ⊆ X � Y is said to be
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1. compact: if F (D) is compact in Y ;
2. quasicompact: if its restriction to any compact set K ⊂ X is compact.

Proposition 2.4. A closed quasicompact multimap with compact values F : D ⊆ X � Y is upper semicon-
tinuous.

Proposition 2.5. If Y is a Hausdorff topological space, an upper semicontinuous multimap with closed values 
F : D ⊆ X � Y is closed.

Let now X be a real Banach space. We recall the notion of measure of non compactness.

Definition 2.6. Given a partially ordered set N , a function β : P (X) → N is said to be a measure of non-
compactness (m.n.c.) in X if β(co(Ω)) = β(Ω) for all Ω ⊂ X, where co(Ω) denotes the closed convex hull of 
Ω.

A m.n.c. β is called:

(i) monotone: if β(Ω0) ≤ β(Ω1) for every Ω0 ⊂ Ω1 ⊂ X;
(ii) nonsingular : if β({x} ∪ Ω) = β(Ω) for every x ∈ X and Ω ⊂ X;
(iii) regular : when β(Ω) = 0 if and only if Ω ⊂ X is relatively compact.

The Hausdorff measure of non-compactness, defined as

χ(Ω) = inf{ε : ∃ x1, . . . , xn ∈ X, Ω ⊂
n⋃

i=1
Bε(xi)},

is a typical example of monotone, nonsingular and regular m.n.c. Moreover by its definition

χ

⎛⎝ ⋃
λ∈[0,1]

λΩ

⎞⎠ = χ(Ω) (2.1)

for every Ω ⊂ X.
In the space of continuous functions we consider the following measure of noncompactness (see Example 

2.1.4 in [26])

ν(Ω) := max
{yn}∞

n=1⊂Ω
(γ({yn}∞n=1),modC({yn}∞n=1)) , (2.2)

where

γ({yn}∞n=1) = sup
t∈[0,T ]

e−Ltχ({yn(t)}∞n=1),

with L > 0 a suitable constant and

modC({yn}∞n=1) = lim
δ→0

sup
n∈N

max
|t1−t2|≤δ

‖yn(t1) − yn(t2)‖.

The ordering is induced by the positive cone in R2 and ν is a regular measure of non compactness.
We base our study of problem (1.1) on arguments related to the topological degree for upper-

semicontinuous and condensing multimaps with Rδ values. We introduce in the following the definition 



I. Benedetti et al. / J. Math. Anal. Appl. 539 (2024) 128484 5
of Rδ set, of condensing multioperator and the notion of the topological degree we are going to use. We 
refer to [4].

We say that a nonempty subset C of a metric space is contractible, provided there exist x0 ∈ C and a 
continuous map h : [0, 1] × C → C such that h(0, x) = x0 and h(1, x) = x for every x ∈ C; C is called 
an Rδ-set, provided there exists a decreasing sequence {Cn}∞n=1 of compact contractible sets such that 
C = ∩∞

n=1Cn.
Let Λ be a topological space.

Definition 2.7. A multimap F : D ⊆ X � X, or a family of multimaps G : Λ × D � X, is said to be 
condensing with respect to a measure of noncompactness β (β-condensing) if for every bounded set Ω ⊆ D

the inequality

β(F (Ω)) ≥ β(Ω), or β(G(Λ × Ω)) ≥ β(Ω),

implies Ω relatively compact.

Let D ⊆ X be closed and convex. Let F : D � D be an Rδ valued, upper semicontinuous and β-
condensing multimap with respect to a monotone, nonsingular m.n.c. β. Let U ⊂ D be open and the 
boundary ∂U be fixed point free for F . In this case, one can associate to F an integer defined as the index 
of F with respect to U , ind(F, D, U), with the following properties:

(i) Normalization property. If F ≡ u0 /∈ ∂U , then

ind(F,D,U) =
{

1 u0 ∈ U

0 u0 /∈ U

(ii) Homotopy invariance. Assume that two upper semicontinuous β-condensing operators F1 : D � X

and F2 : D � X are homotopic, i.e. there exists an upper semicontinuous, condensing operator G :
[0, 1] ×D � X with Rδ-values such that
(a) u /∈ G(λ, u) for every λ ∈ [0, 1] and u ∈ ∂U ;
(b) G(0, ·) = F1, G(1, ·) = F2.
Then

ind(F1, D, U) = ind(F2, D, U).

(iii) Existence. If ind(F, D, U) �= 0, then F admits a fixed point, that is there exists u ∈ U such that 
u ∈ F (u).

3. Definition of integral solutions

In this section we list some definitions, results and examples related to dissipative operators, duality 
maps, and integral solutions for linear problems. We refer to [32] for more details.

Let (X, ‖ · ‖) be a real Banach space and X∗ its dual, let x, y ∈ X, h ∈ R \ {0}, define

(x, y)h := 1
2h
(
‖x + hy‖2 − ‖x‖2) .

The limits (x, y)+ = limh↓0(x, y)h and (x, y)− = limh↑0(x, y)h exist and are finite; the function (·, ·)+ is 
called the upper semi-inner product on X and (·, ·)− is called the lower semi-inner product on X. Denoting 
with J : X � X∗ the duality map, i.e.
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J(x) = {x∗ ∈ X∗ : ‖x∗‖X∗ = ‖x‖ and 〈x∗, x〉 = ‖x‖2}

we have that for every x, y ∈ X, x �= 0

(x, y)+ = sup{〈x∗, y〉 : x∗ ∈ J(x)},

and

(x, y)− = inf{〈x∗, y〉 : x∗ ∈ J(x)},

see Lemma 1.4.3 and 1.4.2 in [32]. In particular, if X∗ is strictly convex then J is a single valued map, thus, 
we have that

(x, y)+ = (x, y)− = 〈J(x), y〉.

Furthermore, if X is a Hilbert space then,

(x, y)+ = (x, y)− = 〈x, y〉.

If moreover X∗ is uniformly convex, as in this framework, then J is also continuous (see [20, Proposition 
8.10]).

If Ω, is a bounded measurable subset of Rn, n ≥ 1 and p ∈]1, +∞[, then X = Lp(Ω; R) endowed with 
the usual norm is uniformly convex. So, since for every p ∈]1, +∞[ the dual of X is X∗ = Lq(Ω; R) with 
1
p + 1

q = 1, we get that X = Lp(Ω; R), p ∈]1, +∞[ has a uniformly convex dual.

Definition 3.1. A multioperator A : D(A) ⊂ X � X is called dissipative if

(x1 − x2, y1 − y2)− ≤ 0

for any x1, x2 ∈ D(A) and y1 ∈ Ax1, y2 ∈ Ax2, and m-dissipative if it is dissipative and for every λ > 0 the 
range of the operator I − λA is equal to X.

Example 3.2. Given an Hilbert space H and a proper lower semicontinuous convex function φ : H →
R ∪ {+∞}, we recall that the subdifferential of φ at x is defined as

∂φ(x) := {z ∈ H : φ(x) ≤ φ(y) + 〈x− y, z〉 for every y ∈ H}.

Now, the multioperator A : D(A) ⊂ H � H defined as

D(A) = {x ∈ H : ∂φ(x) �= ∅}
Ax = −∂φ(x)

is an m-dissipative multioperator, see Theorem 1.6.2 in [32].

Example 3.3. Let Ω be a nonempty, bounded and open subset in Rd, d ≥ 1, with C2 boundary Σ, let 
p ∈ [2, +∞), let λ > 0, and let β : D(β) ⊆ R � R such that −β is an m-dissipative operator, with 0 ∈ D(β)
and 0 ∈ β(0). The p-Laplace operator Δλ

p : D(Δλ
p) ⊆ L2(Ω) → L2(Ω) is defined as

Δλ
pu =

d∑ ∂

∂xi

(∣∣∣∣ ∂u∂xi

∣∣∣∣p−2
∂u

∂xi

)
− λ|u|p−2u,
i=1
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D(Δλ
p) =

{
u ∈ W 1,p(Ω); Δλ

pu ∈ L2(Ω),− ∂u

∂νp
(x) ∈ β(u(x)) for a.a.x ∈ Σ

}
,

the p-conormal derivative of u, uνp
, being defined as

uνp
= ∂u

∂νp
=

d∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p−2
∂u

∂xi
cos(n, ei),

in the above formula n is the unitary exterior normal to Σ and {e1, e2, . . . , ed} is the canonical base in Rd.
It is possible to prove that the p-Laplace operator is an m-dissipative operator on L2(Ω), see Example 

1.5.4 in [32].
Notice that depending on the choice of the function β the condition

− ∂u

∂νp
(x) ∈ β(u(x)) for a.a.x ∈ Σ

incorporates the Dirichlet boundary conditions and the Neumann boundary conditions, see Remark 1.5.3 
in [32].

Now consider the following quasi-autonomous differential inclusion

u′(t) ∈ Au(t) + f(t), for a.e. t ∈ [0, T ], (3.1)

where A : D(A) ⊂ X � X is an m-dissipative multioperator and f : [0, T ] → X is a given map. Several 
notions of solution for (3.1) were introduced. We assume f ∈ L1([0, T ]; X) and consider the following one.

Definition 3.4. A function u : [0, T ] → X is called an integral solution of (3.1) on [0, T ] if u ∈ C([0, T ]; X), 
u(t) ∈ D(A) for every t ∈ [0, T ] and

‖u(t) − x‖2 ≤ ‖u(s) − x‖2 + 2
t∫

s

(u(τ) − x, f(τ) + y)+ dτ

for each x ∈ D(A), y ∈ Ax and 0 ≤ s ≤ t ≤ T .

In the whole paper a function u ∈ C([0, T ]; X), with u(t) ∈ D(A), will be denoted by u ∈ C([0, T ]; D(A)).
In this framework the integral solution is unique.

Theorem 3.5. Let A : D(A) ⊂ X � X be an m-dissipative operator, let f ∈ L1([0, T ]; X) and x ∈ D(A). 
There exists a unique integral solution u : [0, T ] → X of (3.1) on [0, T ] satisfying u(0) = x.

In this framework also the concept of limit solution has been introduced. Under the assumptions of the 
previous theorem the two definitions of solution are equivalent.

Lemma 3.6. Let A : D(A) ⊆ X � X be an m-dissipative operator, let f, g ∈ L1([0, T ], X) and u, v be two 
integral solutions of the equation in (3.1) corresponding to f and g respectively. Then

‖u(t) − v(t)‖ ≤ ‖u(s) − v(s)‖ +
t∫
‖f(τ) − g(τ)‖ dτ,
s
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and

‖u(t) − v(t)‖2 ≤ ‖u(s) − v(s)‖2 + 2
t∫

s

(u(τ) − v(τ), f(τ) − g(τ))+ dτ,

for each 0 ≤ s ≤ t ≤ T .

Let C ⊆ X be a nonempty subset of X.

Definition 3.7. A family of functions {S(t); S(t) : C → C, t ≥ 0} is called a semigroup of nonexpansive 
mappings on C if

(1) S(0) = I;
(2) S(t + s) = S(t)S(s);
(3) limt↓0 S(t)x = x for every x ∈ C;
(4) ‖S(t)x − S(t)y‖ ≤ ‖x − y‖ for each x, y ∈ C and t ≥ 0.

Theorem 3.8. Let A : D(A) ⊂ X � X be an m-dissipative operator, then

S(t)x = lim
n→∞

(
I + t

n
A

)−n

x (3.2)

exists for each x ∈ D(A) and uniformly for t in any compact subset of R+. In addition, {S(t)}t≥0 is a 
semigroup of non expansive mappings on D(A) and for each x ∈ D(A) we have

‖S(t)x− x‖ ≤ t|Ax|,

where |Ax| := inf{‖y‖ : y ∈ Ax}.

Definition 3.9. The semigroup {S(t)}t≥0 is said to be equicontinuous if {S(t)x, x ∈ D} is equicontinuous 
at any t > 0 for any bounded subset D ⊂ X, i.e. for every ε > 0 there exists δ(ε) such that for every 
t, s ∈ [0, T ], with |t − s| < δ(ε) it holds

‖S(t)x− S(s)x‖ < ε ∀ x ∈ D.

We recall that for each x ∈ D(A) the function u : [a, +∞) → D(A) defined by u(t) := S(t − a)x, for each 
t ∈ [a, +∞) is the unique integral solution of the Cauchy problem

{
u′(t) ∈ Au(t), a ≤ t < +∞
u(a) = x

Definition 3.10. Let S ⊆ R be a measurable subset. A subset D ⊂ L1(S, X) is called uniformly integrable if 
for every ε > 0 there is δ(ε) > 0 such that Ω ⊂ S and μ(Ω) < δ(ε) implies∫

Ω

‖f(s)‖ ds < ε for all f ∈ D,

where μ is the Lebesgue measure on R.
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Notice that, when S is compact, an uniformly integrable set D ⊂ L1(S, X) is also bounded. Moreover, 
the following weak compactness criterion holds.

Theorem 3.11. Let D ⊂ L1([0, T ]; X) be an uniformly integrable subset such that D(t) = {f(t), f ∈ D} is 
weakly relatively compact for a.e. t ∈ [0, T ]. Then D is weakly relatively compact in L1([0, T ]; X).

Let x ∈ D(A). We denote by Kx : L1([0, T ]; X) → C([0, T ]; D(A)) the solution operator of (3.1), i.e. for 
f ∈ L1([0, T ]; X),

Kxf = u, (3.3)

where u is the integral solution of (3.1) with u(0) = x.

Lemma 3.12 (Lemma 3.3 in [34]). If X∗ is uniformly convex and A is an m-dissipative multioperator 
generating an equicontinuous semigroup, then for any uniformly integrable sequence {wk}∞k=1 ⊂ L1([0, T ]; X)
and relatively compact subset {xk}∞k=1 ⊂ D(A), we have

χ({Kxk
wk)(t) : k ≥ 1}) ≤

t∫
0

χ({wk(s) : k ≥ 1}) ds, t ∈ [0, T ],

where χ is the Hausdorff measure of noncompactness.

Now we show an equicontinuity result for the solutions of (3.1). The result appeared in [25] in a special 
case (see also [33]).

Lemma 3.13 (Lemma 3.5 in [34]). If A generates an equicontinuous semigroup {S(t)}t≥0, B ⊂ L1([0, T ]; X)
is uniformly integrable and C ⊂ D(A) is compact, then the set

Π = {u : u is the integral solution of (3.1) with u(0) = x, for some f ∈ B and x ∈ C}

is bounded and equicontinuous in C([0, T ]; X).

Proof. At first we prove that Π is bounded.
Let u ∈ Π, so there exists f ∈ B such that u = Ku(0)f with u(0) ∈ C. Let now f ∈ B and u = Ku(0)f . 

By Lemma 3.6, we have that

‖u(t)‖ ≤ ‖u(t) − u(t)‖ + ‖u(t)‖ ≤ ‖u(0) − u(0)‖ +
t∫

0

‖f(s) − f(s)‖ ds + ‖u(t)‖

≤ ‖f‖1 + ‖f‖1 + ‖u(t)‖ for every t ∈ [0, T ]

and then Π is bounded since B is uniformly integrable and hence bounded.
Now we prove the equicontinuity of Π, i.e. we show that for every ε > 0 there exists δ(ε) > 0 such that 

for every 0 ≤ s ≤ t ≤ T , |t − s| ≤ δ(ε) it holds

‖u(t) − u(s)‖ ≤ ε for every u ∈ Π.

Let x ∈ C. First we prove the equicontinuity of the set

Π′ = {u = Kxf, f ∈ B},
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where Kx is defined in (3.3).
Fix ε > 0. By the uniform integrability of B, there exists γ(ε) > 0 such that for every measurable subset 

E ⊂ [0, T ] with Lebesgue measure μ(E) ≤ γ it holds∫
E

‖f(r)‖ dr ≤ ε for every f ∈ B.

Consider s = 0. By the continuity of {S(t)}t≥0 there exists β(ε) > 0 such that for every t ∈ [0, β(ε)]

‖S(t)x− x‖ ≤ ε.

Moreover, the unique integral solution of the following problem{
z′(t) ∈ Az(t), for a.e. t ≥ 0,
z(0) = x,

(3.4)

is given by z(t) = S(t)x. By Lemma 3.6, we have that for every t ∈ [0, γ(ε)]

‖u(t) − z(t)‖ ≤ ‖u(0) − z(0)‖ +
t∫

0

‖f(s)‖ ds ≤ ε,

uniformly with respect to f ∈ B. Therefore, denoting with δ(ε) = min{γ(ε), β(ε)}, for t ∈ [0, δ(ε)] we get

‖u(t) − u(0)‖ ≤ ‖u(t) − z(t)‖ + ‖z(t) − u(0)‖
= ‖u(t) − z(t)‖ + ‖S(t)x− x‖ ≤ 2ε,

uniformly with respect to u ∈ Π′.
Now let s > 0. Assume γ = γ(ε) < s. Let u ∈ Π′ and consider t, s ∈ [0, T ] such that |t − s| ≤ γ. Assume, 

without loss of generality, that t > s. The unique integral solution w ∈ C([s − γ, T ]; D(A)) of the problem{
w′(t) ∈ Aw(t), for a.e t ≥ s− γ

w(s− γ) = u(s− γ),
(3.5)

is given by w(t) = S(t − (s − γ))u(s − γ). By Lemma 3.6, we have that

‖u(s) − w(s)‖ ≤ ‖u(s− γ) − w(s− γ)‖ +
s∫

s−γ

‖f(r)‖ dr ≤ ε,

and also

‖u(t) − w(t)‖ ≤ ‖u(s− γ) − w(s− γ)‖ +
t∫

s−γ

‖f(r)‖ dr ≤
s∫

s−γ

‖f(r)‖ dr +
t∫

s

‖f(r)‖ dr ≤ 2ε.

Moreover, by the equicontinuity of the semigroup {S(t)}t≥0, applied to the bounded set

D = {z(t), z ∈ Π′, t ∈ [0, T ]},

there exists β(ε) > 0 such that for every t, s ∈ [0, T ], with |t − s| < β(ε) we have that
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‖S(t)η − S(s)η‖ ≤ ε ∀ η ∈ D.

Notice that u(s − γ) ∈ D. Thus, considering as above δ(ε) = min{γ(ε), β(ε)}, for every t, s ∈ [0, T ] such 
that |t − s| ≤ δ(ε) we get

‖u(t) − u(s)‖ ≤ ‖u(t) − w(t)‖ + ‖w(t) − w(s)‖ + ‖w(s) − u(s)‖
≤ 3ε + ‖S(t− s + γ)u(s− γ) − S(γ)u(s− γ)‖ ≤ 4ε,

uniformly with respect to u ∈ Π′.
Now we prove the equicontinuity of the set Π. Let ε > 0. By the compactness of C, there exists {xi}ni=1 ⊂

C such that C ⊂ ∪n
i=1B(xi, ε). Moreover by Lemma 3.6,

‖Kxf(t) −Kyf(t)‖ ≤ ‖x− y‖ for every x, y ∈ D(A).

By the equicontinuity of the set Π′ we have that there exists δx > 0 such that for every 0 ≤ s ≤ t ≤ T , 
|t − s| ≤ δx

‖Kxf(t) −Kxf(s)‖ ≤ ε.

Thus, denoting with δ = min{δxi
, i = 1, . . . , n} and letting x ∈ C, f ∈ B and u = Kxf , we obtain

‖u(t) − u(s)‖ = ‖Kxf(t) −Kxf(s)‖
≤ ‖Kxf(t) −Kxi

f(t)‖ + ‖Kxi
f(t) −Kxi

f(s)‖ + ‖Kxi
f(s) −Kxf(s)‖

≤ ‖x− xi‖ + ε + ‖xi − x‖ ≤ 3ε,

uniformly with respect to u ∈ Π. �
4. Problem statement

We consider the problem (1.1) in a Banach space (X, ‖ · ‖) with uniformly convex dual X∗. We recall 
that in this setting

(x, y)+ = (x, y)− = 〈J(x), y〉,

where J : X → X∗ is the duality map and we assume the following hypotheses on the problem (1.1).

(HA) A : D(A) ⊂ X � X is an m-dissipative operator satisfying the following assumptions:
(H0

A) A generates an equicontinuous semigroup;
(H1

A) D(A) is a convex subset of X.
(HF ) F : [0, T ] ×X � X satisfies the following assumptions:

(H0
F ) for every x ∈ X and every t ∈ [0, T ], F (t, x) is a nonempty, convex, compact set;

(H1
F ) for every x ∈ X the map F (·, x) : [0, T ] → X has a measurable selection;

(H2
F ) for a.e. t ∈ [0, T ] the map F (t, ·) : X → X is X −Xw upper semicontinuous;

(H3
F ) for every � > 0, there exists a map α� ∈ L1([0, T ]; R+) such that

‖F (t, x)‖ ≤ α�(t), for a.e. t ∈ [0, T ] and every x ∈ B�(0);

(H4
F ) there exists β ∈ L1([0, T ]; R+) such that

χ(F (t,D)) ≤ β(t)χ(D), for every bounded set D ⊂ X,
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where χ is the Hausdorff measure of non compactness defined in Section 2;
(H5

F ) transversality condition: there exist x ∈ D(A), y ∈ A(x), ε > 0 and

r > max
{
ε, sup

t∈[0,T ]
‖S(t)x− x‖, ‖x‖

}

such that for every x ∈ X, r − ε < ‖x − x‖ < r and for a.e. t ∈ [0, T ] there exists z ∈ F (t, x)
(possibly depending on t) such that

〈J(x− x), λz + y〉 ≤ 0 , for every λ ∈ (0, 1]. (4.1)

(Hg) g : C([0, T ]; X) → D(A) is a compact and continuous map such that

‖g(u) − x‖ ≤ r for every u ∈ C([0, T ];X), ‖u− x‖0 ≤ r,

where r and x are from (H5
F ).

Remark 4.1. If 0 ∈ D(A) and 0 ∈ A(0), in hypothesis (H5
F ) we can consider x = y = 0 and we can assume 

(4.1) only for λ = 1.

The uniform convexity of the dual X∗ implies that X is reflexive. Thus by Proposition 2.2 of [10] we get 
the following result.

Proposition 4.2. Under the conditions (H1
F ) − (H3

F ), for every q ∈ C([0, T ]; X) the set

Sq = {f ∈ L1([0, T ];X), f(s) ∈ F (s, q(s)), for a.e. s ∈ [0, T ]}

is a nonempty, closed and convex subset of L1([0, T ]; X).

For A ⊂ X we denote by Wε(A) the ε neighbourhood of A, i.e.

Wε(A) = {x ∈ X : d(x,A) < ε}

where d(x, A) = inf
y∈A

d(x, y). Now, denoting the Hausdorff metric by dH , i.e. for A, B ⊂ X

dH(A,B) = inf{ε : A ⊂ Wε(B), B ⊂ Wε(A)},

we will show some easy to check properties on the space X and on the multivalued map F : [0, T ] ×X � X

implying assumptions (H1
A) (H0

F ) and (H4
F ).

Remark 4.3. It is well known that if X is a uniformly convex Banach space, or if it is a reflexive Banach 
space with a Frechét differentiable dual X∗, then D(A) is convex (see [23, Remark 3.6]).

Remark 4.4. If F : [0, T ] × X � X has weakly compact values, F (·, x) is measurable for every x ∈ X, 
F (t, ·) is upper semicontinuous with respect to the weak topology for a.e. t ∈ [0, T ], then has a restriction 
F0 : [0, T ] ×X � X, defined as

F0(t, x) = {zλ ∈ X, zλ = λy1 + (1 − λ)y2, λ ∈ [0, 1], y1, y2 ∈ F (t, x)}
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that is measurable in the first variable, strong-weak upper semicontinuous in the second variable and that 
has strongly compact values. Notice that F0(t, x) ⊂ F (t, x) for every t ∈ [0, T ] and x ∈ X, so it is possible 
to obtain a solution of problem (1.1) considering F replaced by F0.

Remark 4.5. Trivially, if a multimap F : [0, T ] ×X � X is compact, satisfies (H4
F ) with β(t) ≡ 0.

Moreover, if F has compact values and there exists a map β ∈ L1([0, T ]; X) such that

dH(F (t, x), F (t, y)) ≤ β(t)‖x− y‖ (4.2)

for a.e. t ∈ [0, T ] and every x, y ∈ X, where dH is the Hausdorff distance, then the multimap F satisfies 
(H4

F ).
Indeed, let t ∈ [0, T ], D ⊂ X be a bounded set, ε > 0 and S be a finite χ(D) + ε-net of D, i.e. for every 

x ∈ D there exists y ∈ S such that

‖x− y‖ ≤ χ(D) + ε.

Thus, for every x ∈ D and z ∈ F (t, x) there exists z1 ∈ F (t, y) such that

‖z − z1‖ ≤ β(t)‖x− y‖ ≤ β(t)(χ(D) + ε).

Hence

F (t,D) ⊆
⋃
y∈S

F (t, y) + β(t)(χ(D) + ε)B1(0).

Now, since S is a finite set and F (t, y) is compact, it follows that the set 
⋃

y∈S F (t, y) is a compact set. 
Thus, by the subadditivity, regularity and semi-homogeneity of the Hausdorff measure of non compactness 
we get

χ(F (t,D) ≤ χ

⎛⎝⋃
y∈S

F (t, y)

⎞⎠+ χ (β(t)(χ(D) + ε)B1(0)) ≤ β(t)(χ(D) + ε),

and we obtain the claimed result by the arbitrariness of ε.
Finally, by the additive properties of the Hausdorff measure of non compactness, a multimap F : [0, T ] ×

X � X, F = F1 + F2, with F1 a compact multimap and F2 satisfying (4.2) verifies (H4
F ).

Here is an example of a map that is neither compact nor Lipschitz, but satisfies the hypothesis (H4
F ).

Example 4.6. Consider in �2 the map f : B1(0) →B1(0) defined as f(x1, x2, x3, . . . ) =(
√

1−‖x‖2
�2 , x1, x2, . . . ), 

where �2 is the space of square-summable sequences with values in R. The map f is the sum of the 
one dimensional mapping f1 : B1(0) → B1(0), f1(x) = (

√
1 − ‖x‖�2 , 0, . . . , 0, . . . ) and the isometry 

f2 : B1(0) → B1(0), f2(x1, x2, x3, . . . ) = (0, x1, x2, . . . ). Thus f1 is a compact map and f2 is Lipschitz, 
so the sum satisfies (H4

F ), but does not satisfy (4.2) in x ∈ �2 with ‖x‖�2 = 1.

Furthermore, below we show an example of a compact map, thus satisfying (H4
F ), but not necessarily 

Lipschitz, which arises from applications, precisely in population dynamics, representing the mortality rate 
of a population.

Example 4.7. Let Ω ⊂ Rn be an open domain with regular boundary, X = Lp(Ω), p > 1 and h : [0, T ] ×
Ω ×R → R be a map satisfying
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(h1) for every u ∈ R, h(·, ·, u) : [0, T ] × Ω → R is measurable;
(h2) for every (t, x) ∈ [0, T ] × Ω, h(t, x, ·) : R → R is continuous;
(h3) there exists a > 0 and b ∈ R such that

|h(t, x, u)| ≤ a + b|u| (t, x, u) ∈ [0, T ] × Ω ×R.

Then the operator f : [0, T ] × Lp(Ω) → Lp(Ω)

f(t, v)(x) = h

⎛⎝t, x,

∫
Ω

v(ξ) dξ

⎞⎠
is a Carathéodory map, sending bounded sets into relatively compact ones and so satisfying assumptions 
(H1

F ), (H2
F ) and also (H4

F ) with β(t) ≡ 0.

We will show now an example of a superlinear map satisfying the assumptions (H0
F ) − (H4

F ).

Example 4.8. Let Ω ⊂ Rn be an open domain with regular boundary, X = L2(Ω) and f : L2(Ω) → L2(Ω)
defined as f(u) = ‖u‖2

2 − bu with b > 0. Being the assumptions (H0
F ) − (H3

F ) trivially satisfied, we will 
check only condition (H4

F ). The map f is the sum of the maps f1 : L2(Ω) → L2(Ω), f1(u) = ‖u‖2
2 and 

f2 : L2(Ω) → L2(Ω), f2(u) = −bu. Thus, f is the sum of the compact map f1 and the Lipschitz map f2, so 
satisfies (H4

F ). Considering f the nonlinearity in (1.1), under condition HA we have that f may also satisfy 
(H5

F ). For instance, we can choose x = y = 0, and λ = 1, as in problem (6.2). Since L2(Ω) is a Hilbert 
space, we have that condition (4.1) reads as

〈J(u), f(u)〉 = 〈u, f(u)〉 ≤ 0

and we have that

〈u, f(u)〉 =
∫
Ω

u(ξ)f(u(ξ)) dξ =
∫
Ω

u(ξ)‖u‖2
2 dξ +

∫
Ω

u(ξ)(−bu(ξ)) dξ

≤ ‖u‖2
2‖u‖2

√
|Ω| − b‖u‖2

2 = ‖u‖2
2(‖u‖2

√
|Ω| − b) ≤ r2(r

√
|Ω| − b) ≤ 0

provided r ≤ b√
|Ω|

.

We want to prove the existence of at least one integral solution for the problem (1.1).

Definition 4.9. A function u ∈ C([0, T ]; D(A)) is said to be an integral solution to (1.1) if there exists 
f ∈ L1([0, T ]; X), f(τ) ∈ F (τ, u(τ)) for a.e. τ ∈ [0, T ] such that u is an integral solution of (3.1) in the sense 
of Definition 3.4 with u(0) = g(u).

The main result of this paper is the following.

Theorem 4.10. Under the assumptions (HF ), (HA) and (Hg) there exists at least one integral solution of the 
problem (1.1).

5. Existence results

In this section we prove the main result of the paper, i.e. the existence of at least one integral solution 
for problem (1.1).
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First of all, to overcome the fact that for every x ∈ X, r−ε < ‖x −x‖ < r, and a.e. t ∈ [0, T ], we assumed 
(H5

F ) for at least one element of F (t, x) and not for all elements of F (t, x), following a technique developed 
in [11], we introduce an auxiliary multimap. More precisely, denoting by

Bε
r = {x ∈ E : r − ε < ‖x− x‖ < r},

let B : X � X defined as

B(x) =
{
{z ∈ X : 〈J(x− x), λz + y〉 ≤ 0 ,∀λ ∈ (0, 1]} if x ∈ Bε

r(x),
X otherwise

where ε > 0 and r > 0 are from (H5
F ). Set FB : [0, T ] ×X � X, FB(t, x) = F (t, x) ∩B(x). Notice that, by 

(H5
F ), F (t, x) ∩ B(x) �= ∅ for every t ∈ [0, T ] and x ∈ X, thus FB is well defined and it is clear that the 

multimap FB satisfies (H5
F ) for every z ∈ FB(t, x). Moreover, FB satisfies also (H0

F ) − (H4
F ). We prove this 

assertion in the next proposition.

Proposition 5.1. The map FB : [0, T ] ×X � X satisfies assumptions (H0
F ) − (H4

F ).

Proof. It is easy to see that the set B(x) is closed and convex for every x ∈ X, therefore the set FB(t, x) is 
compact and convex for every t ∈ [0, T ] and x ∈ X. Notice that

FB(t, x) =
{
{z ∈ F (t, x) : 〈J(x− x), λz + y〉 ≤ 0 ,∀λ ∈ (0, 1]} if x ∈ Bε

r(x),
F (t, x) otherwise

Thus, for every x ∈ X the map FB(·, x) : [0, T ] � X has a measurable selection. Indeed for ‖x‖ ≤ r− ε, or 
‖x‖ ≥ r, it is true by (H1

F ) and for r − ε < ‖x − x‖ < r it is enough to define f : [0, T ] → X as f(t) ≡ z, 
with z ∈ F (t, x) from (H5

F ).
Moreover for a.e t ∈ [0, T ] the multimap FB : X � X is X −Xw upper semicontinuous. First of all we 

will show that the multimap B is a sequentially closed multimap from X to Xw. Indeed let xn → x0 and 
zn ⇀ z0 with zn ∈ B(xn) for any n ∈ N. We have the following cases:

1. there exists n > 0 such that xn /∈ Bε
r for every n > n.

In this case, we have also that x0 /∈ Bε
r , so B(xn) = B(x0) = X.

2. there exists n > 0 such that xn ∈ Bε
r for every n > n.

In this case, we have that r − ε ≤ ‖x0 − x‖ ≤ r. So, we have the following two subcases:
2.a ‖x0 − x‖ = r − ε or ‖x0 − x‖ = r.

In this case B(x0) = X and there is nothing to prove.
2.b r − ε < ‖x0 − x‖ < r.

Recalling that in our setting, the duality map J : X � X∗ is single valued and continuous we get

0 ≥ 〈J(xn − x), λzn + y〉 → 〈J(x0 − x), λz0 + y〉 , ∀ λ ∈ (0, 1].

It follows

〈J(x0 − x), λz0 + y〉 ≤ 0 , ∀ λ ∈ (0, 1].

Hence z0 ∈ B(x0).
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Moreover, by Proposition 2.5, for a.e. t ∈ [0, T ] the multimap F (t, ·) : X � X is X −Xw-closed. Therefore, 
for a.e. t ∈ [0, T ], FB(t, ·) : X � X is X − Xw-sequentially closed as intersection of a X − Xw-closed 
multimap and a X −Xw-sequentially closed multimap.

Clearly, for every x ∈ X, FB(t, x) ⊂ F (t, x), thus, by the monotonicity of the norm and of the Hausdorff 
measure of non compactness, for every t ∈ [0, T ], x ∈ X and every bounded set D ⊂ X it follows that

‖FB(t, x)‖ ≤ ‖F (t, x)‖,

and

χ(FB(t,D)) ≤ χ(F (t,D)),

thus, assumptions (H3
F ) and (H4

F ) are trivially satisfied. By (H3
F ) and the reflexivity of the space X, FB is 

also X −Xω quasi compact. Since, in a Banach space, the weak closure of a weakly relatively compact set 
coincides with its weak sequential closure (see [21, Theorem 8.12.1, p. 549]), by Proposition 2.4, we have 
that for a.e. t ∈ [0, T ], the multimap FB(t, ·) : X � X is X −Xw upper semicontinuous. �

Consider the following auxiliary problem

{
u′(t) ∈ Au(t) + FB(t, u(t)), for a.e. t ∈ [0, T ],
u(0) = g(u).

(5.1)

Clearly, all solutions of (5.1) are solutions of (1.1).
Moreover, for every λ ∈ [0, 1], we consider the following family of problems

{
u′(t) ∈ Au(t) + λFB(t, v(t)), for a.e. t ∈ [0, T ],
u(0) = λg(v) + (1 − λ)x

(5.2)

where v ∈ C([0, T ]; X) is a given map.
By Propositions 5.1 and 4.2 the set

SB
v = {f ∈ L1([0, T ];X), f(s) ∈ FB(s, v(s)), for a.e. s ∈ [0, T ]}

is nonempty, convex and closed for every v ∈ C([0, T ], X). Thus, by Theorem 3.5, the operator G : [0, 1] ×
C([0, T ]; D(A)) � C([0, T ]; D(A)) defined by

G(λ, v) = {u ∈ C([0, T ];D(A)) integral solution of (5.2)},

is well defined. Recalling the definition of the operator K given in Section 3 and defining g(λ, v) : [0, 1] ×
C([0, T ]; X) → X, g(λ, v) = λg(v) + (1 − λ)x, we have that

G(λ, v) = {Kg(λ,v)(λf), f ∈ SB
v }.

Clearly, a fixed point of the operator G(1, ·) is an integral solution of (5.1) and so an integral solution of 
(1.1).

Proposition 5.2. The operator G : [0, 1] × C([0, T ]; D(A)) � C([0, T ]; D(A)) is closed.
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Proof. Let {vn}∞n=1 ⊂ C([0, T ]; D(A)), λn ∈ [0, 1] and {un}∞n=1 ⊂ C([0, T ]; D(A)) with un ∈ G(λn, vn) such 
that vn → v, un → u in C([0, T ]; D(A)) and λn → λ we want to prove that u ∈ G(λ, v).

First of all, by the convergence of {vn}∞n=1 in C([0, T ]; D(A)) we have the existence of a constant M > 0
such that

‖vn(t)‖ ≤ M for every t ∈ [0, T ] and for every n ∈ N.

Denote with {hn}∞n=1 the sequence of functions hn : [0, T ] → X such that hn ∈ SB
vn , un = Kg(λn,vn)(λnhn). 

By assumption (H3
F ) we have that the sequence {hn}∞n=1 is uniformly integrable, moreover by (H4

F )

χ({hn(t)}∞n=1) ≤ β(t)χ({vn(t)}∞n=1) = 0.

Thus by Theorem 3.11, the sequence {hn}∞n=1 is weakly compact in L1([0, T ]; X), i.e. we can assume without 
loss of generality that there exists h0 ∈ L1([0, T ]; X) such that hn ⇀ h0. Moreover, by the continuity of the 
map g we get that g(λn, vn) → g(λ, v) in D(A). Denoting with w the solution corresponding to λh0 with 
w(0) = g(λ, v), i.e. w = Kg(λ,v)λh0, by Lemma 3.6 we have that

‖un(t) − w(t)‖2 ≤ ‖un(0) − w(0)‖2 + 2
t∫

0

〈J(un(τ) − w(τ)), λnhn(τ) − λh0(τ)〉 dτ

= ‖g(λn, vn) − g(λ, v)‖2 + 2
t∫

0

〈J(u(τ) − w(τ)), λnhn(τ) − λh0(τ)〉 dτ

+2
t∫

0

〈J(un(τ) − w(τ)) − J(u(τ) − w(τ)), λnhn(τ) − λh0(τ)〉 dτ.

Notice that in our hypotheses J : X → X∗ is a uniformly continuous operator on bounded subsets in X
and, by the strong convergence of un to u, we have

lim
n→∞

J(un(τ) − w(τ)) = J(u(τ) − w(τ)).

Thus, by the boundedness of {λn} and {hn} we have

lim
n→∞

2
t∫

0

〈J(un(τ) − w(τ)) − J(u(τ) − w(τ)), λnhn(τ) − λh0(τ)〉 dτ = 0, for every t ∈ [0, T ].

Moreover,

‖J(u(t) − w(t))‖X∗ = ‖u(t) − w(t)‖ ≤ ‖u‖0 + ‖w‖0 for every t ∈ [0, T ].

Thus, J(u(·) − w(·)) ∈ L∞([0, T ], X∗). So, by the weak convergence of hn to h0 in L1([0, T ], X) and the 
strong convergence of λn to λ in R, we get

lim
n→∞

t∫
0

〈J(u(τ) − w(τ)), λnhn(τ) − λh0(τ)〉 dτ = 0, for every t ∈ [0, T ].

Hence, we obtain that for every t ∈ [0, T ]
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lim
n→∞

‖un(t) − w(t)‖2 = 0.

Thus, by the uniqueness of the limit, we have w(t) ≡ u(t). To conclude, we have only to prove that 
h0(t) ∈ FB(t, v(t)) for a.a. t ∈ [0, T ]. By Mazur’s convexity Theorem (see e.g. [22]) we have a sequence

h̃m =
km∑
i=0

λmihm+i, λmi ≥ 0,
km∑
i=0

λmi = 1

satisfying h̃m → h0 in L1([0, T ]; X). Hence, up to subsequence, there is N0 ⊂ [0, T ] with Lebesgue measure 
zero such that h̃m(t) → h0(t) and FB(t, ·) is u.s.c for all t ∈ [0, T ] \ N0. Fix t0 �∈ N0 and assume, by 
contradiction, that h0(t0) /∈ FB(t0, v(t0)). Since FB(t0, v(t0)) is closed and convex, from the Hahn-Banach 
Theorem there is a weakly open convex set V ⊃ FB(t0, v(t0)) satisfying h0(t0) /∈ V

w. Since FB(t0, ·) is 
X − Xw u.s.c., we can also find a neighbourhood V1 of h0(t0) such that F (t0, x) ⊂ V for all x ∈ V1. 
The convergence vm(t0) → v(t0) as m → ∞ then implies the existence of m0 ∈ N such that vm(t0) ∈ V1
for all m > m0. Therefore hm(t0) ∈ FB(t0, vm(t0)) ⊂ V for all m > m0. The convexity of V implies 
that h̃m(t0) ∈ V for all m > m0 and, by the convergence, we arrive to the contradictory conclusion that 
h0(t0) ∈ V

w. We obtain that h0(t) ∈ FB(t, v(t)) for a.a. t ∈ [0, T ]. �
Proposition 5.3. The operator G : [0, 1] × C([0, T ]; D(A)) � C([0, T ]; D(A)) is upper semicontinuous.

Proof. By Proposition 5.2, the operator G is closed. Thus, to get the upper semicontinuity of G, we will 
prove that the operator G is quasi compact and we will apply Proposition 2.4. To this aim, let {vn}∞n=1 ⊂
C([0, T ]; D(A)), {λn}∞n=1 ⊂ [0, 1] be two convergent sequences and consider {un}∞n=1 ⊂ C([0, T ]; D(A)) with 
un ∈ G(λn, vn). As before, denote by {hn}∞n=1 the sequence of functions hn : [0, T ] → X, hn ∈ SB

vn and by 
{gn}∞n=1 ⊂ D(A) the sequence of functions defined as gn = g(λn, vn). We observe that {gn} is a convergent 
sequence, hence, applying Lemma 3.12, (H4

F ) and (2.1), we have

χ({un(t)}∞n=1) = χ({Kgn(λnhn)(t)}∞n=1) ≤
t∫

0

χ({λnhn(s)}∞n=1) ds

≤
t∫

0

χ({hn(s)}∞n=1) ds ≤
t∫

0

β(s)χ({vn(s)}∞n=1) ds = 0.

Thus, we have that γ({un}∞n=1) = supt∈[0,T ] e
−Ltχ({un(t)}∞n=1) = 0. Furthermore, by Lemma 3.13

we have that {un}∞n=1 is a sequence of equicontinuous functions, thus modC({un}∞n=1) = 0. Getting 
ν({un}∞n=1) = (0, 0). Obtaining the relative compactness of the sequence {un}∞n=1 and thus that G is a 
quasicompact operator.

Analogously, it is possible to prove that for every λ ∈ [0, 1] and v ∈ C([0, T ]; D(A)), the set G(λ, v) is 
relatively compact. Moreover, by Proposition 5.2 it follows that for every λ ∈ [0, 1] and v ∈ C([0, T ]; D(A)), 
the set G(λ, v) is closed and hence compact.

In conclusion, by Proposition 2.4 G is an upper semicontinuous multimap. �
Now we prove that G has Rδ values following the same lines of the proof of [34, Theorem 3.1].

Proposition 5.4. The operator G : [0, 1] × C([0, T ]; D(A)) � C([0, T ]; D(A)) has Rδ values.

Proof. In Proposition 5.3 we have proven that G has compact values.
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Next we will show that G has contractible values, thus obtaining that G has Rδ values. Let λ ∈ [0, 1], 
v ∈ C([0, T ]; D(A)) and let C = G(λ, v), fix f ∈ SB

v and define h : [0, 1] × C → C by

h(η, u)(t) =
{

u(t), if t ∈ [0, ηT ),
u(t; ηT, u(ηT )), if t ∈ [ηT, T ],

where u(·; t0, x0) is the solution of {
w′(t) ∈ Aw(t) + f(t) t ∈ [t0, T ]
w(t0) = x0.

Since u = Kg(λ,v)(λf) for some f ∈ SB
v , we have h(η, u) = Kg(λ,v)(λf̃) with f̃ := fχ[0,ηT ] + fχ[ηT,T ] ∈ SB

v , 
hence the range of h is contained in C. Indeed, let η ∈ [0, 1] and u ∈ C, the map h(η, u) is a continuous 
map and h(η, u)(t) ∈ D(A) for every t ∈ [0, T ]. Now we prove that h(η, u) is a solution of (3.1).

For the cases 0 ≤ s ≤ t ≤ ηT and ηT ≤ s ≤ t ≤ T is trivial by the definition of u and u(·; ηT, u(ηT )).
So, let 0 ≤ s ≤ ηT ≤ t ≤ T , x ∈ D(A) and y ∈ Ax, we have

‖h(η, u)(t) − x‖2 = ‖u(t; ηT, u(ηT )) − x‖2 ≤ ‖u(ηT ; ηT, u(ηT )) − x‖2

+2
t∫

ηT

〈J(u(τ ; ηT, u(ηT )) − x), λf(τ) + y〉 dτ

= ‖u(ηT ) − x‖2 + 2
t∫

ηT

〈J(u(τ ; ηT, u(ηT )) − x), λf(τ) + y〉 dτ

≤ ‖u(s) − x‖2 + 2
ηT∫
s

〈J(u(τ) − x), λf(τ) + y〉 dτ

+2
t∫

ηT

〈J(u(τ ; ηT, u(ηT )) − x), λf(τ) + y〉 dτ

= ‖h(η, u)(s) − x‖2 + 2
t∫

s

〈J(h(η, u)(τ) − x), λf̃(τ) + y〉 dτ.

We prove now that h is a continuous map. Let η1, η2 ∈ [0, 1], η2 > η1 and u1, u2 ∈ C.
For t ∈ [0, η1T ]

‖h(η1, u1)(t) − h(η2, u2)(t)‖ = ‖u1(t) − u2(t)‖;

for t ∈ [η1T, η2T ], by Lemma 3.6, we have

‖h(η1, u1)(t) − h(η2, u2)(t)‖ = ‖u(t; η1T, u1(η1T )) − u2(t)‖

≤ ‖u1(η1(T )) − u2(η1T )‖ +
t∫

η1T

‖f(s) − f2(s)‖ ds

By (H3
F ) with � = ‖v‖, we have that

‖h(η1, u1)(t) − h(η2, u2)(t)‖ ≤ ‖u1(η1T ) − u2(η1T )‖ + 2‖ν�‖L1[η1T,η2T ];
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for t ∈ [η2T, T ], again by Lemma 3.6, we have

‖h(η1, u1)(t) − h(η2, u2)(t)‖ = ‖u(t; η1T, u1(η1T )) − u(t; η2T, u2(η2T ))‖

≤ ‖u(η2T ; η1T, u1(η1T )) − u2(η2T )‖

≤ ‖u(η1T ; η1T, u1(η1T )) − u2(η1T )‖ +
η2T∫

η1T

‖f(s) − f2(s)‖ ds

≤ ‖u1(η1T ) − u2(η1T )‖ +
η2T∫

η1T

‖f(s) − f2(s)‖ ds

≤ ‖u1(η1T ) − u2(η1T )‖ + 2‖ν�‖L1[η1T,η2T ].

Now, by the absolute continuity of the integral function of ν�, for every ε > 0 there exists γ(ε) such that 
for every E ⊂ [0, T ] with Lebesgue measure μ(E) < γ(ε) it holds

2
∫
E

ν�(s) ds ≤ ε.

Moreover, C being compact is an equicontinuous set of functions, thus for every ε > 0 there exists β(ε) > 0
such that for every |t − s| ≤ β(ε)

‖u(t) − u(s)‖ ≤ ε, ∀ u ∈ C.

Thus, for every ε > 0, choosing η1, η2 ∈ [0, 1], η2 > η1 such that (η2−η1)T < min{β(ε), γ(ε)} and u1, u2 ∈ C

such that ‖u1 − u2‖0 < ε we obtain for every t ∈ [0, T ]

‖h(η1, u1)(t) − h(η2, u2)(t)‖ ≤ 2ε,

hence the continuity of the map h.
Moreover, h(0, u) = Kg(λ,v)(λf), h(1, u) = Kg(λ,v)(λf) = u. Therefore, C is contractible. �
We will prove that the operator G is condensing with respect to the measure of non compactness defined 

in (2.2).

Proposition 5.5. The operator G : [0, 1] × C([0, T ]; D(A)) → C([0, T ]; D(A)) is ν-condensing.

Proof. Let L > 0 such that

q := sup
t∈[0,T ]

t∫
0

e−L(t−s)β(s) ds < 1.

We notice that q < 1 for every L > 0 sufficiently big.
The set Ω ⊂ C([0, T ]; D(A)) is bounded and such that

ν(G([0, 1] × Ω)) ≥ ν(Ω),

we will prove that Ω is a relatively compact set.
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Let {wn}∞n=1 ⊂ G([0, 1] ×Ω) be a sequence which realizes the maximum in the definition of ν(G([0, 1] ×Ω)), 
i.e.

ν(G([0, 1] × Ω)) = (γ(wn),modC(wn)).

Since {wn}∞n=1 ⊂ G([0, 1] × Ω), there exist {vn}∞n=1 ⊂ Ω and {λn}∞n=1 ⊂ [0, 1] such that ‖vn(t)‖ ≤ M for 
some M > 0 and for every t ∈ [0, T ], wn ∈ G(λn, vn). Given the assumption that

ν(G([0, 1] × Ω)) ≥ ν(Ω)

and that vn ⊂ Ω, we then deduce that

(γ(wn),modC(wn)) ≥ (γ(vn),modC(vn))

and, in particular

γ(wn) ≥ γ(vn).

Denote by {hn}∞n=1 the sequence of functions hn : [0, T ] → X such that hn ∈ SB
vn . By assumption (H4

F )

χ({hn(s)}∞n=1)) ≤ β(s)χ({vn(s)}∞n=1) = eLsβ(s)e−Lsχ({vn(s)}∞n=1)
≤ eLsβ(s) sup

ξ∈[0,T ]
e−Lξχ({vn(ξ)}∞n=1)

= eLsβ(s)γ({vn}∞n=1).

By assumption (H3
F ) we have that the sequence {λnhn}∞n=1 is uniformly integrable. Moreover, by the 

compactness of g, it follows that the sequence {gn}∞n=1, defined as gn = g(λn, vn), is relatively compact in 
D(A). Hence, applying Lemma 3.12 we have

χ({wn(t)}∞n=1) = χ({Kgn(λnhn)(t)}∞n=1) ≤
t∫

0

χ({λnhn(s)}∞n=1) ds

≤
t∫

0

χ({hn(s)}∞n=1) ds

≤ γ({vn}∞n=1)
t∫

0

eLsβ(s) ds.

Now it follows that

γ({vn}∞n=1) ≤ γ({wn}∞n=1) = sup
t∈[0,T ]

e−Ltχ({wn(t)}∞n=1)

≤

⎛⎝ sup
t∈[0,T ]

t∫
0

e−L(t−s)β(s) ds

⎞⎠ γ({vn}∞n=1 = q γ({vn}∞n=1.

Since q < 1 we obtain γ({vn}∞n=1) = 0 and, as a consequence, γ({wn}∞n=1) = 0. Furthermore, by Lemma 3.13
we have that {wn}∞n=1 is a sequence of equicontinuous functions, thus modC({wn}∞n=1) = 0. Getting 
ν(G([0, 1] × Ω)) = (0, 0) and in conclusion ν(Ω) = (0, 0). �
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Notice that, by assumption D(A) is convex and, as a consequence, C([0, T ], D(A)) is convex. Following 
the notation of Section 2, let

D = X = C([0, T ], D(A)) U = {u ∈ C([0, T ], D(A)), : ‖u(t) − x‖ < r ∀ t ∈ [0, T ]}

with r > 0 and x from (H5
F ). By Propositions 5.3, 5.4 and 5.5 we have that the map G(1, ·) is upper 

semicontinuous and condensing with Rδ values. If there exists u ∈ ∂U such that u ∈ G(1, u) we get a fixed 
point of the multioperator G at level 1 and thus a solution of Problem (1.1), i.e. the claimed result. So, we 
can assume u �∈ G(1, u) for every u ∈ ∂U . Thus, the index ind(G(1, ·), X, U) is well defined.

Moreover, the unique integral solution of the problem{
u′(t) ∈ Au(t) t ∈ [0, T ]
u(0) = x

is given by u(t) = S(t)x. Being r > ‖S(t)x− x‖ we have that S(t)x ∈ U . Thus, ind(G(0, ·), X, U) = 1.

5.1. Proof of Theorem 4.10

We are able now to prove the existence of at least one mild solution of problem (1.1).
By Propositions 5.3, 5.4 and 5.5 we have that the map G is upper semicontinuous and condensing with Rδ

values. In order to prove that the map G is an homotopy between the map G(0, ·) ≡ 0 and G(1, ·) we have to 
show that FixG(λ, ·) ∩∂U = ∅ for every λ ∈ [0, 1). Assume by contradiction that there is u ∈ C([0, T ], D(A))
with ‖u − x‖0 = r and λ ∈ [0, 1) such that u ∈ G(λ, u). Notice that λ �= 0, indeed G(0, u) ≡ S(t)x and by 
assumption ‖S(t)x− x‖ < r. Thus, we can assume λ ∈ (0, 1). Let t0 ∈ [0, T ] be such that ‖u(t0) − x‖ = r. 
Notice that t0 �= 0. Indeed, since ‖x‖ < r, it follows

‖u(0) − x‖ = ‖λg(u) + (1 − λ)x− x‖
= λ‖g(u) − x‖ ≤ λr < r.

So, let t0 ∈ (0, T ]. By the continuity of u we can find t1 ∈ (0, t0] satisfying ‖u(t1) −x‖ = r and ‖u(t) −x‖ < r

for t ∈ [0, t1). In particular, corresponding to ε > 0 from (H5
F ) there exists δ > 0 such that

r − ε < ‖u(t) − x‖ < r

for every t ∈ [t1 − δ, t1).
Let h ∈ SB

u such that u = Kg(λ,u)(λh) and apply the definition of integral solution with x = x and y = y. 
We have

r2 = ‖u(t1) − x‖2 ≤ ‖u(t1 − δ) − x‖2 + 2
t1∫

t1−δ

〈J(u(τ) − x), λh(τ) + y〉 dτ

< r2 − η,

with −η = 2 

t1∫
t1−δ

〈J(u(τ) − x), λh(τ) + y〉 dτ ≤ 0 by (H5
F ), hence a contradiction. By the normalization and 

homotopy invariance property of the index we get

ind(G(1, ·), X, U) = ind(G(0, ·), X, U) = 1.

Thus we obtain a fixed point of G(1, ·), i.e. a solution of (5.1) and, as a consequence, a solution of (1.1).
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6. Applications

We will apply the existence result in Theorem 4.10 to the following class of partial differential inclusions 
in a domain Ω ⊂ Rn with smooth boundary:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ut ∈ aΔu(t, x) − ∂ϕ(u(t, x)) − bu(t, x) + [f1(t, u(t, x)), f2(t, u(t, x))] in ΩT

−∂u

∂μ
(t, x) ∈ ∂j(u(t, x)) in ∂ΩT

u(0, x) =
T∫

0

∫
Ω

h(s, x, ξ, u(s, ξ)) dξ ds in Ω

(6.1)

where ΩT = Ω×]0, T [, ∂ΩT = ∂Ω × [0, T ], ∂ϕ is the subdifferential of ϕ, Δu(t, x) is the Laplacian of u(t, ·), 
a ≥ 0 and 

∂u

∂μ
(t, x) is the normal derivative of u(t, ·) at x ∈ ∂Ω.

We consider problem (6.1) under the following assumptions:

(1) ϕ : R → R ∪ {+∞} is a proper, convex, lower semicontinuous function such that
(1i) ϕ(0) = 0 = min

s∈R
ϕ(s);

(1ii) for every v ∈ L2(Ω) ϕ ◦ v ∈ L1(Ω);
(2) j : R → R is a nonnegative, convex, continuous function such that

(2i) j(0) = min
s∈R

j(s);
(2ii) there exists a constant C > 0 such that

0 ≤ j(s) ≤ C(1 + s2), s ∈ R;

(3) f1, f2 : [0, T ] ×R → R satisfy
(3i) f1(t, u) ≤ f2(t, u) for every (t, u) ∈ [0, T ] ×R;
(3ii) for every u ∈ R, f1(·, u) : R → R is measurable and f1(·, 0) : R → R is continuous with 

L = max
t∈[0,T ]

|f1(t, 0)|;

(3iii) for every u ∈ R, f2(·, u) : R → R is measurable and f2(·, 0) ∈ L1([0, T ]);
(3iv) there exist α1 > 0 and α2 ∈ L1([0, T ], R+) such that

|f1(t, u1) − f1(t, u2)| ≤ α1|u1 − u2|

and

|f2(t, u1) − f2(t, u2)| ≤ α2(t)|u1 − u2|,

for a.e. t ∈ [0, T ] and for every u1, u2 ∈ R;
(4) h : [0, T ] × Ω × Ω ×R → R is such that

(4i) for a.e (t, ξ) ∈ [0, T ] × Ω the map h(t, ·, ξ, ·) : Ω ×R → R is continuous;
(4ii) for every (x, u) ∈ Ω ×R the map h(·, x, ·, u) : [0, T ] × Ω → R is measurable;
(4iii) there exists a function η ∈ L1([0, T ], R+), with ‖η‖1 ≤ 1

|Ω| , such that

|h(t, x, ξ, u)| ≤ η(t)(1 + |u|) for every (t, x, ξ, u) ∈ [0, T ] × Ω × Ω ×R.
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Theorem 6.1. If b > α1, for every r > max
{
‖η‖1|Ω|

√
|Ω|

1 − ‖η‖1|Ω| ,
L
√

|Ω|
b− α1

}
, the nonlocal problem (6.1) has a 

solution u ∈ C([0, T ], L2(Ω)), with ‖u(t)‖2 ≤ r for every t ∈ [0, T ].

Proof. Let X = L2(Ω). Consider the operators Φ : X → R and Ψ : X → R ∪ {+∞} defined respectively as

Φ(v) =
∫
Ω

ϕ(v(x)) dx

and

Ψ(v) =

⎧⎪⎪⎨⎪⎪⎩
1
2 a

∫
Ω

|∇v(x)|2 dx + a

∫
∂Ω

j(v(x)) dx, v ∈ H1(Ω),

+∞ otherwise.

It is possible to prove that they are proper, convex, lower semicontinuous functionals with

D(Φ) = {v ∈ L2(Ω), ϕ ◦ v ∈ L1(Ω)} = L2(Ω) D(Ψ) = H1(Ω).

Notice that D(Φ) = L2(Ω), comes directly from assumption (1ii). Moreover, f ∈ ∂Φ(v) if and only if

v, f ∈ L2(Ω), f(x) ∈ ∂ϕ(v(x)), a.e. x ∈ Ω

and ψ ∈ ∂Ψ(v) if and only if

ψ = −aΔv in L2(Ω) and 0 ∈ ∂v

∂μ
(t, x) + ∂j(v) in L2(∂Ω),

see [31, Example 2B, 2E, pp. 163-165] and [32, Example 1.6.2]. Furthermore, ∂Φ + ∂Ψ is m-accretive and 
equal to ∂(Φ + Ψ), see [31, Example 2F, p. 167].

We write problem (6.1) as the following abstract problem

{
u′(t) ∈ A(u(t)) + F (t, u(t)) t ∈]0, T [
u(0) = g(u)

(6.2)

where A = −∂(Φ + Ψ), the multimap F : [0, T ] ×L2(Ω) → L2(Ω) is defined as F (t, u) = −bu +G(t, u) with

G(t, u) =
{
v ∈ L2(Ω) : ∃λ ∈ [0, 1] such that v(x) = λf1(t, u(x)) + (1 − λ)f2(t, u(x))

}
and g : L2(Ω) → L2(Ω)

g(u)(x) =
T∫

0

∫
Ω

h(s, x, ξ, u(ξ)) dξ ds, x ∈ Ω.

By Theorem 1.6.1 in [32], we have that D(A) is a dense subset of D(Ψ + Φ), thus

D(A) = D(Ψ + Φ) = D(Ψ) ∩D(Φ) = H1(Ω) = L2(Ω).
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Clearly, D(A) is a convex set and, since A is in the form of a subdifferential, by Theorem 1.6.2, Theorem 
1.8.1 and Corollary 1.9.1 in [32], it is a m-dissipative operator generating an equicontinuous semigroup 
{S(t)}t≥0. So, the operator A : D(A) ⊂ L2(Ω) → L2(Ω) satisfies the assumption (HA).

Now, we prove that the multimap F satisfies the properties (H0
F ) − (H4

F ) of Theorem 4.10. Notice that, 
according to its definition, it is enough to show that G satisfies such properties.

Let u ∈ L2(Ω) and t ∈ [0, T ]. We have that∫
Ω

‖f1(t, u(x))‖2 dx ≤ 2
∫
Ω

‖f1(t, u(x)) − f1(t, 0)‖2 dx + 2
∫
Ω

‖f1(t, 0)‖2 dx

≤ 2α2
1

∫
Ω

‖u(x)‖2 dx + 2L2|Ω|

≤ 2α2
1‖u‖2

2 + 2L2|Ω|,

(6.3)

thus f1(t, u(·)) ∈ L2(Ω) and so the set G(t, u) is nonempty.
The set G(t, u) is compact. Indeed, since given {vn} ∈ G(t, u), we have that there exists a sequence 

{λn} ⊂ [0, 1] such that

vn(x) = λnf1(t, u(x)) + (1 − λn)f2(t, u(x)) for a.e. x ∈ Ω.

The sequence {λn} has a convergent subsequence, λnk
→ λ. Thus, the corresponding subsequence, {vnk

}, 
defined as

vnk
(x) = λnk

f1(t, u(x)) + (1 − λnk
)f2(t, u(x)) for a.e. x ∈ Ω,

converges in L2(Ω) to v : Ω → R defined as

v(x) = λf1(t, u(x)) + (1 − λ)f2(t, u(x)) for a.e. x ∈ Ω.

Reasoning as for f1(t, u(·)) we can prove that f2(t, u(·)) ∈ L2(Ω), getting v ∈ G(t, u). Now, let η ∈ (0, 1) and 
consider v1, v2 ∈ G(t, u), we have that ηv1 + (1 − η)v2 ∈ L2(Ω) as a convex combination of L2− functions. 
Moreover it is easy to show that ηv1 + (1 − η)v2 ∈ G(t, u), implying that G(t, u) is a convex set and so 
condition (H0

F ) is satisfied.
For every u ∈ L2(Ω), the function fu

1 : [0, T ] → L2(Ω) defined as

fu
1 (t)(x) = f1(t, u(x)) for a.e. x ∈ Ω

is a measurable selection of G(t, u). Indeed, by (6.3) we have for a.e. t ∈ [0, T ] that fu
1 (t)(·) ∈ L2(Ω) and, by 

assumptions (3ii) and (3iv), for every g ∈ L2(Ω) the map gfu
1 ∈ L1([0, T ] ×Ω). Hence, by Fubini’s Theorem, 

the map

t → 〈g, fu
1 (t)〉 =

∫
Ω

g(x)f1(t, u(x)) dx

is measurable. In conclusion, since L2(Ω) is separable, by the Pettis measurability Theorem (see [31, Theorem 
1.1, p. 103]), the map fu

1 : [0, T ] → L2(Ω) is measurable. Moreover, by previous reasonings we have that 
fu
1 (t) ∈ G(t, u) for a.e. t ∈ [0, T ]. Hence condition (H1

F ) holds.
To prove assumption (H2

F ), let t ∈ [0, T ]. Consider {un} ⊂ L2(Ω), un → u and {vn} ⊂ L2(Ω), vn ∈
G(t, un). The fact that vn ∈ G(t, un) implies that there exists a sequence {λn} ⊂ [0, 1] such that
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vn(x) = λnf1(t, un(x)) + (1 − λn)f2(t, un(x)) for a.e. x ∈ Ω.

By the compactness of the interval [0, 1], we have that there exists a convergent subsequence {λnk
}, λnk

→ λ, 
moreover there exist a subsequence {unk

} a.e. convergent to u and a function � ∈ L2(Ω) such that

|unk
(x)| < �(x) for every k and for a.e. x ∈ Ω.

So, by the continuity of the maps f1(t, ·), f2(t, ·), it follows that

vnk
(x) = λnk

f1(t, unk
(x)) + (1 − λnk

)f2(t, unk
(x)) → λf1(t, u(x)) + (1 − λ)f2(t, u(x)), a.e. in Ω.

Thus, we have

|λnk
f1(t, unk

(x)) + (1 − λnk
)f2(t, unk

(x))| ≤ α1|unk
(x)| + |f1(t, 0)| + α2(t)|unk

(x)| + |f2(t, 0)|
≤ (α1 + α2(t))�(x) + |f1(t, 0)| + |f2(t, 0)|.

Hence, by the Lebesgue Convergence Theorem, {vnk
} converges in L2(Ω), obtaining that G(t, ·) is a quasi-

compact map. Moreover, notice that {vnk
} converges to v, defined as

v(x) = λf1(t, u(x)) + (1 − λ)f2(t, u(x)) for a.e. x ∈ Ω,

hence v ∈ G(t, u). Thus the graph of G(t, ·) is closed in L2(Ω) × L2(Ω). Finally, by Proposition 2.4, G(t, ·)
is u.s.c., then it is u.s.c. from L2(Ω) to (L2(Ω))w.

Now, let � > 0, u ∈ B�(0) and t ∈ [0, T ]. For every v ∈ G(t, u), by (3iv) we have

‖v‖2
2 =

∫
Ω

|v(x)|2 dx =
∫
Ω

|λf1(t, u(x)) + (1 − λ)|f2(t, u(x))|2 dx

≤ 2
∫
Ω

(
|f1(t, u(x))|2 + |f2(t, u(x))|2

)
dx

≤ 4
∫
Ω

(|f1(t, u(x)) − f1(t, 0)|2 + |f1(t, 0)|2) dx

+4
∫
Ω

(|f2(t, u(x)) − f2(t, 0)|2 + |f2(t, 0)|2) dx

≤ 4(α2
1 + α2

2(t))‖u‖2
2 + 4|f1(t, 0)|2|Ω| + 4|f2(t, 0)|2|Ω|

≤ 4(α2
1 + α2

2(t))�2 + 4(|f1(t, 0)|2 + 4|f2(t, 0)|2)|Ω|,

thus, by conditions (3ii) and (3iii), assumption (H3
F ) is satisfied as well, with α� ∈ L1([0, T ]), α�(t) =

4(α2
1 + α2(t))�2 + 4L + 4|f2(t, 0)|2|Ω|, t ∈ [0, T ].

Now we prove assumption (H4
F ). Let t ∈ [0, T ], D ⊂ L2(Ω) be a bounded set, by Remark 4.5 we have 

that

χ(f1(t,D)) ≤ α1χ(D) and χ(f2(t,D)) ≤ α2(t)χ(D).

Hence, by (2.1), we have

χ(G(t,D)) ≤ χ
(
∪λ∈[0,1](λf1(t,D) + (1 − λ)f2(t,D)

)
≤ χ(f (t,D)) + χ(f (t,D)) ≤ (α + α (t))χ(D),
1 2 1 2
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and then (H4
F ) is satisfied, with β(·) = α1 + α(·). In order to prove condition (H5

F ), we recall that for 
w ∈ L2(Ω) with ‖w‖2 > 0, we have

〈J(w), v〉 =
∫
Ω

w(ξ) v(ξ) dξ.

Moreover, 0 ∈ D(A) and 0 ∈ A(0). Indeed, since

∂ϕ(x) = {z ∈ R ; ϕ(x) ≤ ϕ(y) + (x− y)z, for every y ∈ R}

and by (1i), 0 = ϕ(0) = minϕ, we have that 0 ∈ ∂ϕ(0) and so 0 ∈ ∂Φ(0). Similarly by (2i), we can prove 
that 0 ∈ ∂j(0). So, since for v ≡ 0, −aΔv = 0, we have that 0 ∈ ∂Ψ(0) as well, obtaining the claimed 
result. Moreover, we have that ‖S(t)0 − 0‖ = 0. Indeed, by Theorem 1.8.1 [32], ‖S(t)0 − 0‖ ≤ t|A0| and 
|A0| = inf{‖y‖; y ∈ A0} = 0.

Therefore, given r >
L
√
|Ω|

b−α1
, for a.e. t ∈ [0, 1] and w ∈ L2(Ω), 0 < ‖w‖2 < r:

〈J(w), f1(t, w)〉 =
∫
Ω

w(ξ)f1(t, w(ξ)) dξ

≤
∫
Ω

|w(ξ)|(α1|w(ξ)| + |f1(t, 0)|) dξ ≤ α1‖w‖2
2 + |f1(t, 0)|‖w‖2

√
|Ω|

≤ α1‖w‖2
2 + L‖w‖2

√
|Ω|.

Consequently,

〈J(w),−bw + f1(t, w)〉 = 〈J(w),−bw〉 + 〈J(w), f1(t, w)〉
≤ −‖w‖2

(
(b− α1)‖w‖2 − L

√
|Ω|
)
≤ 0,

provided

L
√

|Ω|
b− α1

< ‖w‖2 < r.

So assumption (H5
F ) is satisfied with x = y = 0 and λ = 1 (see Remark 4.1).

By the above reasonings the assumptions (HA) and (H0
F ) −(H5

F ) of Theorem 4.10 are satisfied. Moreover, 
applying Proposition 4.1, Chapter 5 of [28], we have that g is a compact and continuous map from L2(Ω)
to L2(Ω) = D(A). Finally, for every u ∈ L2(Ω) such that ‖u‖2 ≤ r

‖g(u)‖2 =

⎛⎜⎝∫
Ω

∣∣∣∣∣∣
T∫

0

∫
Ω

h(t, x, ξ, u(ξ)) dξ dt

∣∣∣∣∣∣
2

dx

⎞⎟⎠
1/2

≤

⎛⎜⎝∫
Ω

∣∣∣∣∣∣
T∫

0

∫
Ω

η(t)(1 + |u(ξ)|) dξ dt

∣∣∣∣∣∣
2

dx

⎞⎟⎠
1/2

=
√
|Ω|

⎛⎝ T∫
0

∫
Ω

η(t) dξ dt +
T∫

0

∫
Ω

η(t)|u(ξ)| dξ dt

⎞⎠
≤
√
|Ω|
(
‖η‖1|Ω| + ‖η‖1‖u‖2

√
|Ω|
)

≤
√
|Ω|
(
‖η‖1|Ω| + ‖η‖1r

√
|Ω|
)
≤ r.
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Exploiting the fact that ‖η‖1 < 1
|Ω| (see condition (4iii)), the last inequality holds for r sufficiently big. 

Thus, also the assumption (Hg) holds and we get the claimed result. �
Remark 6.2. Notice that if ϕ : R → R is such that

0 ≤ ϕ(s) ≤ D(1 + s2), s ∈ R

for some constant D > 0, the assumption (1ii) is satisfied.

We will see now an example of an operator Φ : X → R such that ∂Φ does not generate a compact 
semigroup. Hence, assuming a = 0 in problem (6.1), we obtain that the operator A = −∂Φ generates an 
equicontinuous non compact semigroup.

Example 6.3. Let K = {v ∈ L2(Ω) : v(x) ≥ 0 a.e. x ∈ Ω} and

Φ(v) =
{

0 v ∈ K

+∞ v /∈ K

In this case D(Φ) = D(∂Φ) = K and

∂Φ(u) = {w ∈ L2(Ω) : 〈u− v, w〉 ≥ 0, ∀v ∈ K}.

Thus, let k > 0 we have that the level set

{u ∈ K : ‖u‖2 + Φ(u) ≤ k} = BL2(Ω)(k)

is not relatively compact in X. Hence, by Proposition 2.2.2 in [32], the semigroup generated by ∂Φ is non 
compact. In this case the map ϕ : R → R ∪ {±∞} is defined as

ϕ(v) =
{

0 v ≥ 0
+∞ v < 0

Remark 6.4. The function ϕ in Example 6.3 does not satisfy the property (1ii). However, such a condition 
is only needed to guarantee that the nonlocal initial condition g : L2(Ω) → L2(Ω) takes values in D(A). In 
Example 6.3 this property can be alternatively obtained when assuming that h : [0, T ] × Ω × Ω × R → R

has non negative values. Indeed, in this case, g(u) ∈ K = D(Φ) = D(A) = D(A) for every u ∈ L2(Ω).
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