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Abstract: The gut microbiota (GM) plays a crucial role in human health. The bidirectional interaction
between GM and the central nervous system may occur via the microbiota–gut–brain axis, possibly
regulating the sleep/wake cycle. Recent reports highlight associations between intestinal dysbiosis
and sleep disorders, suggesting that probiotics could ameliorate this condition. However, data
are poor and inconsistent. The aim of this quantitative metanalytic study is to assess the GM
composition in sleep disturbances and evaluate probiotics’ effectiveness for managing sleep disorders.
A systematic review was carried out until July 2022 in online databases, limiting the literature research
to human studies and English language articles. No significant GM diversity between patients with
sleep disturbances versus healthy controls was found, revealed by α-diversity, while β-diversity is
missing due to lack of proper reporting. However, probiotics supplementation significantly reduced
the self-assessed parameter of sleep quality and disturbances Pittsburgh Sleep Quality Index (PSQI)
score compared with the placebo. No difference in the Epworth Sleepiness Scale (ESS) score was
found. While available data suggest that GM diversity is not related to sleep disturbances, probiotics
administration strongly improves sleep quality as a subjective perception. However, heterogeneity of
data reporting in the scientific literature should be considered as a limitation.

Keywords: microbiome; probiotics; sleep disorders; sleep quality; gut microbiota

1. Introduction

The gut microbiota (GM) is a community of intestinal microorganisms, including
bacteria, archaea, and eukarya, constituting the intestinal flora [1]. Physiologically, GM
shows (i) metabolic properties, being able to produce essential nutrients, (ii) protective
functions through the regulation of mucus production, (iii) structural actions, mediating
the expression of tight junction proteins, and (iv) neurological properties, interacting with
the peripheral and the central nervous system [2]. It is accepted that GM has broad impacts
on human health, impacting the colonization and the resistance to pathogens, maintain-
ing the intestinal epithelium, metabolizing dietary and pharmaceutical compounds, and
controlling immune function [3]. The GM composition is heterogeneous and represents
an individual signature, reflecting dietary habits [4]. In humans, more than two thousand
prokaryotic species distributed in 11 different phyla have been recognized [5,6], among
which the large dominant phyla are Firmicutes and Bacteroidetes [7,8]. Derangement of mi-
crobiota may impact its metabolic activities, leading to dysbiosis, which, in turn, could lead
to several dysfunctions. Therefore, the evaluation of GM composition gathered increasing
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relevance [9–13]. GM heterogeneity is described by the α- and β-diversity parameters
as measures of species diversity within a community at a local scale and between differ-
ent communities, respectively [14]. In particular, α-diversity is a measure of microbiome
diversity applicable to a single sample, whereas β-diversity quantifies the similarity or
dissimilarity between two communities.

In the last decade, the link between GM composition and pathological conditions has
gathered increasing interest, suggesting possible connections with infectious and autoim-
mune diseases, metabolic dysfunctions, neurocognitive disorders, and cancer [15–21]. The
mutual relationship between GM and the host is expected to modulate additional physio-
logical processes, such as sleep, which could be perturbed in the case of dysbiosis [22]. Sleep
disturbances are classified into major categories, such as insomnia, sleep-related breathing
disorders, central disorders of hypersomnolence, circadian rhythm sleep–wake disorders,
sleep-related movement disorders, and parasomnias [23]. Sleep could be described both
quantitatively and qualitatively using multiple tools [24]. Polysomnography (PSG) remains
the gold standard approach to quality and quantitatively assess sleep, providing detailed
information about brain activity, sleep stages, patterns, oxygen saturation, and eye and leg
movements [25]. However, PSG is scarcely used in large-scale investigations due to its cost
and invasiveness. Alternatively, actigraphy is based on small wrist-watch digital devices
monitoring motor activity data for extended periods [26] and is frequently employed in
population-based epidemiologic studies [27]. However, it is not recommended for the
routine management of sleep disturbances. Thus, several alternative subjective tools, such
as direct observations, sleep diaries, and questionnaires, are largely used as well [28].
In particular, validated questionnaires are common tools because of the advantageous
cost/benefit ratio despite the less accurate data collection [29]. Among these, the Pittsburgh
Sleep Quality Index (PSQI) is a 19-items questionnaire assessing sleep quality [30], while the
Epworth Sleepiness Scale (ESS) is an 8-item self-administered questionnaire evaluating the
perceived propensity to fall asleep [31,32]. Finally, the nature and severity of insomnia may
be assessed by the Insomnia Severity Index (ISI), determined by a 7-item questionnaire [29].

Several pieces of evidence suggest that GM is essential for the maintenance of nor-
mal sleep physiology, modulating the production of metabolites involved in sleep home-
ostasis, such as interleukin (IL)-1β, short-chain fatty acids (SCFAs), serotonin (5-HT),
γ-aminobutyric acid (GABA), and melatonin [1,33–35]. Experiments in mouse models
demonstrated that the SCFA butyric acid modulates the expression of the clock genes Per2
and Bmal1, potentially disrupting circadian rhythms [36,37]. A recent study identified the
GM signature of good sleepers, which would be abundant in Firmicutes, low in Prevotella,
and with a high α-diversity index [38]. These data suggest that sleep disorders may be
treated by acting on the GM composition using probiotics. They are defined as “live mi-
croorganisms which, when administered in adequate amounts, confer a health benefit on
the host” [39–41] and may be used to treat dysbiosis [39]. Probiotic preparations are largely
heterogeneous, and their effects depend, for instance, on dosage, supplementation duration,
and bacterial strains [42–44]. However, the possible beneficial impact of probiotics on sleep
disorders is a matter of debate. In particular, few pieces of evidence are available so far to
apply these compounds in clinical practice.

This systematic review and meta-analytic study has two aims: (i) to evaluate differ-
ences in GM composition between subjects with sleep disturbances versus healthy controls
and (ii) to investigate the effectiveness of probiotics in treating sleep disorders.

2. Materials and Methods

The systematic review and meta-analysis were performed according to criteria de-
scribed in the Preferred Reporting Items for Systematic Reviews and Meta-Analysis
(PRISMA) 2015 Statement. Two separate literature searches were carried out from the
first available study on probiotics until July 2022, querying the online databases PubMed
(MEDLINE), Embase, the Cochrane Library, and Scopus. Then, two different meta-analyses
were performed in sequence.
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2.1. Study Selection and Inclusion Criteria

The first literature search evaluated all published articles concerning the relationship
between sleep disorders and GM composition, using the following keywords: microbiota
OR microbiome OR (gut microbiota) OR (gut microbiome) OR (gut microflora) OR dysbiosis
AND sleep OR (sleep disorder) OR (sleep disturbance) OR (sleep problem). Studies were
considered eligible when investigating patients with sleep disorders and reporting GM
composition. No restrictions on age, sex, study design (i.e., observational or interventional),
year of publication, or tool used to evaluate sleep dysfunctions were applied.

The second literature search was designed to identify all studies in which oral daily
supplements containing probiotics (live bacteria) or para-probiotics (heat-inactivated/killed
probiotic bacteria) were administered to human subjects with sleep disorders. The following
search strategy was applied: probiotic AND sleep OR (sleep disorder) OR (sleep distur-
bance) OR (sleep problem). Interventional studies in which probiotics or para-probiotics
were administered together with other substances were excluded to avoid potential bi-
ases. A first screening collected all the interventional studies available, but subsequently,
only placebo-controlled studies (probiotic treatment versus placebo) were selected. The
randomization was not considered an inclusion criterion.

For both literature searches, two authors (FC and VD) independently collected the
eligible articles, and conflicts were resolved by a third investigator (DS). A preliminary
screening identified potentially relevant studies based on their titles and/or abstracts. The
selected studies were systematically screened for inclusion by full text, according to the
aforementioned criteria.

2.2. Data Extraction and Analysis

In the first literature search, all extracted data were included in a single dataset, con-
sidering authors, year of publication, journal, study design, subjects’ age, patient’s number,
microbiota profiling method, sleep assessment methods, criteria for group subdivision
according to sleep disorder, α–diversity, β–diversity, and Firmicutes to Bacteroidetes ratio,
representing a clinical biomarker of dysbiosis [45]. The α-diversity index was considered
as the primary endpoint. The main outcome was the comparison of the α-diversity index
between subjects with vs. without sleep disorders, as it was the parameter reported across
almost all studies, while it was not for β–diversity. When studies reported the median and
the interquartile range (IQR) of the index, the corresponding mean ± standard deviation
(SD) was calculated [46,47].

In the second literature search, the following data types were extracted: authors, year
of publication, journal, study design, subjects’ age and body mass index (BMI), patients’
number, microbiota profiling method, sleep assessment methods, intervention(s), probiotic
bacteria used and colony forming unit (CFU), placebo treatment, treatment duration, and
sleep data (both pre- and post-treatment). Since the most used tool to assess sleep quality
was PSQI, it was considered the primary endpoint. The PSQI mean ± SD before and
after treatment was used to quantify the probiotics’ effect on sleep quality. When articles
reported the standard error of mean (σ), SD was calculated using the following equation:

SEM = σ/
√

n; σ = SEM ×
√

n (1)

where n indicates the number of subjects.
Meta-analyses were performed only when more than three studies were available.

The parameter indicating heterogeneity among studies (I2) was considered as “low,” “mod-
erate,” and “high” for values of 25, 50, and 75%, respectively [48]. Considering the high
heterogeneity expected for the outcomes selected, the random effect model was applied to
evaluate the mean difference (MD) among continuous data when available. The Review
Manager (RevMan) 5.3 software (Version 5.3.1 Copenhagen: The Nordic Cochrane Centre,
The Cochrane Collaboration, 2014) was used to perform meta-analyses. When a significant
difference was detected by meta-analysis, meta-regression analyses were performed using
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“Statistical Package for the Social Science” software for Windows (version 28.0; SPSS Inc.,
Chicago, IL, USA). Statistical significance was considered for p values < 0.05.

3. Results
3.1. Overview of Included Studies

The first literature search evaluated the relationship between sleep disorders and GM
composition. Among 16846 studies detected, fifty-eight potentially relevant studies were
extracted, and eighteen articles were finally included (Figure 1). Table 1 summarizes data
from studies analyzed during the first literature search.
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Table 1. Studies detected during the first literature search.

Common Features Study Group (Altered) Control Group (Healthy)

Authors Year
Type

of
Study

Microbiota
Profiling
Method

Microbiota Detected Method
(Sleep)

Inclusion
Criteria Number Age

(Years ± SD) Relative Abundance Number Age
(Years ± SD) Relative Abundance

Evans 2017
[49] CCS

16S rRNA
amplicon

sequencing (V4
region) using

Illumina MiSeq

Phyla Bacteroidetes.
Firmicutes.

Verrucomicrobia.
Actinobacteria.

Genera Bacteroides.
Facealibacterium.

Prevotella. Roswburia.
Akkermansia. Alistipes.

Bifidobacterium.
Parabacteroides. Blautia.
Phascolarctobacterium.

Alistipes

PSQI BD 115 50.2 ± 12.8

Phylum:
Faecalibacterium

5.1 ± 4.3%
unclassified Firmicutes

0.6 ± 1%

64 48.6 ± 16.6

Phylum:
Faecalibacterium

7.7 ± 5.0%;
unclassified Firmicutes

1.1 ± 1.2%

Ko 2019
[50] CCS

16S rRNA
pyrosequencing
(V3–V4 regions)
using Illumina

Miseq

Genera Bacteroides.
Ruminococcus. Prevotella PSG

AHI score
> 5 health
controls

52 NA NA 61 NA NA

Collado 2019
[51] CCS

16S rRNA
amplicon

sequencing
(V3–V4 region)

using
MiSeqIllumina

protocols

Phylum Tenericutes.
Firmicutes. TM7.

Lentisphaerae.
Fusobacteria.

Proteobacteria.
Verrucomicrobacteria.

Actinobacteria.
Bacteroidetes.

Porphyromonadaceae.
Peptospreptococcaceae and

other clostriales

Snoring
assessed by
interview

Snoring
frequency

(< or
≥3/week)

27 2.0 ± 0.0 Proteobacteria 1.1% 16 2.0 ± 0.0 Proteobacteria 0.4%

Zhang 2021
[52] CCS

16S rRNA
amplicon

sequencing
(V4–V5 region)
using qIllumina

Phyla Bacteroidetes.
Firmicutes

Orders Pasteurellales and
Actinomycetes

Families Bacteroidaceae.
Prevotellaceae.

Porphyromonadaceae.
Rikenellaceae

Genera Bacteroides.
Prevotella. Parabacteroides.

Escherichia.
Flavonifractora.
Alloprevotella.

Parabacteroides.
Hungatella

PSQI MDD
diagnosis 36 36.81 ± 13.5

GENUS: Bacteroides
40.0% Prevotella 5.9%
Parabacteroides 2.8%

Escherichia 2.5%
Alistipes 2.2%

Alloprevotella 0.5%
Tyzzerella 0.3%

Paraprevotella 0.2%
Haemophilus 0.1%
Flavonifractor 0.2%
Anaerotruncus 0.1%

45 39.29 ± 11.44

GENUS: Bacteroides
25.0% Prevotella 24.3%
Parabacteroides 1.7%

Escherichia 0.7%
Alistipes 0.8%.

Alloprevotella 0.18%
Tyzzerella 0.2%.

Paraprevotella 0.2%
Haemophilus 0.2%
Flavonifractor 0.1%
Anaerotruncus 0.1%

Weissella 0.02.
Eisenbergiella 0.01
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Table 1. Cont.

Common Features Study Group (Altered) Control Group (Healthy)

Authors Year
Type

of
Study

Microbiota
Profiling
Method

Microbiota Detected Method
(Sleep)

Inclusion
Criteria Number Age

(Years ± SD) Relative Abundance Number Age
(Years ± SD) Relative Abundance

Fei 2021
[53] CCS

16S rRNA
pyrosequencing

(V4 regions)
using Illumina

Miseq

Family Ruminococcaceae
Erysipelotrichaceae
Genera Bacteroides.

Oscillospira.
Catenibacterium.

Prevotella. Dialister

Questionnaire

Sleep
lenght
(short
≤ 7 h.

normal
7–9 h long
≥ 9 h)

Short
154

Long
248

Short
35.6 ± 6.2

Long
33.6 ± 6.3

GENUS: Streptococcus
0.7% Coprococcus 1.0%

Dorea 0.3
Bamasiella 0.9%

Intestinibacter 0.1%
SPECIES:

Blautia_obeum 0.7%
Streptococ-

cus_salivarius 0.7%
Clostridium_sp 0.1%

Dorea_formicigenerans
0.2%

Coprococcus_sp 0.2%
Ruminococcus_lactaris

0.7%

250 35.7 ± 6.4 NA

Valentini 2020
[54] CCS

16S rRNA
amplicon

sequencing

Phyla Bacteroidetes
Actinobacteria Firmicutes

Bacteroidetes
Proteobacteria Families

Clostridiaceae
Lactobacillaceae
Lachnospiraceae
Oscillospiraceae

Erysipelotrichaceae
Coriobacteriaceae

Desulfovibrionaceae
Enterobacteriaceae

Erwiniaceae
Enterobacteriaceae.

Erwiniaceae
Bacteroidaceae
Prevotellaceae

Lactobacillaceae
Prevotellaceae
Sutterellaceae

Flavobacteriaceae
Genera Colinsella.

Eubacterium.
Faecalibacterium

Colinsella Escherichia
Klebsiella Clostridium

Lactobacillus Oscillobacter
Clostridium Ruminococcus

Oscillospira Veillonella
Klebsiella

Sleep
Clinical
Record

PSG

OSAHS 7 5.0 ± 1.9 NA 8 8.7 ± 3.6 NA
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Table 1. Cont.

Common Features Study Group (Altered) Control Group (Healthy)

Authors Year
Type

of
Study

Microbiota
Profiling
Method

Microbiota Detected Method
(Sleep)

Inclusion
Criteria Number Age

(Years ± SD) Relative Abundance Number Age
(Years ± SD) Relative Abundance

Zhang 2021
[55] CCS

16S rRNA
amplicon

sequencing
(V3–V4 region)
using Illumina

Order Coriobacteriales
Class Coriobacteria

Family Barnesiellaceae.
Genera Klebsiella.

Barnesiella.
Ruminiclostridium.

Phocea. Blautia.
Lactococcus. Bilophila

PSG
ESS

MSLT
NT1 20 19.0 NA 16 26.0

LDA score:
More abundant in HC

individuals
Class Coriobacteriia

2.26%. Order
Coriobacteriales 2.26%.
Family Barnesiellaceae

2.52%. Genus
Lactococcus 2.37%.

Genus Phocea 2.39%.
Genus

Ruminiclostridium
2.00%.

Genus Barnesiella
2.46%. Genus Blautia

3.25%. Genus
Bilophila 2.00%

Mercado 2021
[56] CCS

16s rDNA
amplificon
sequencing

(V3–V4 region)
using the MiSeq

Illumina

Ezakiella. Clostridium
sensu stricto.

Porphyromonas and
Barnesiella (family

Porphyromonadaceae).
Coriobacteriales Incertae

Sedis. Synergis-
taceae/Synergistales/

Synergistia/Synergistestes.
Escherichia-Shigella.

Turicibacter

PROMIS-
SD

PROMIS-
SD. T-score

> 55

19 high-
occurring
symp-
toms

60.9 ± 16.0
LDA score:

More abundant in NT1
individuals

Genus Klebsiella 3.19

22 low-
occurring

symp-
toms

56.4 ± 7.9 NA

Agrawal 2021
[57] CCS

16S rRNA
amplicon

sequencing (V4
region) using

Illumina MiSeq

Phyla Firmicutes.
Bacteroidetes

Order Rhodospirillales
Families

Acidaminococcaceae.
Rikenellaceae. Sutterel-

laceae.Acidaminococcaceae.
Rikenellaceae. Alcalige-

naceae.Desulfovibrionaceae.
Pseudomonadaceae.

Pasteurellaceae
Genera Lachnoclostridium.

Sutterella. Bilophila.
Phascolarctobacterium.

Alistipes. Pseudomonas

Sleep
length (self-
reported)

Sleep
length

< 6 h short
sleepers,

6–8 normal
sleepers

16 59.4 ± 7.5 NA 47 62.7 ± 5.8

FIRMICUTES 40%
BACTEROIDOTA 36%

Lachnoclostridium
1.5%

Sutterella 1.25%
Alistipes 1.3%

Bilophila 0.61%
Phascolarctobac-

terium 0.5%
UBA1819 0.13%

Paraprevotella 0. 29%
Pseudomonas 0.06%

Eubacterium_siraeum
0.006%
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Table 1. Cont.

Common Features Study Group (Altered) Control Group (Healthy)

Authors Year
Type

of
Study

Microbiota
Profiling
Method

Microbiota Detected Method
(Sleep)

Inclusion
Criteria Number Age

(Years ± SD) Relative Abundance Number Age
(Years ± SD) Relative Abundance

Hua 2020
[58] CCS

16S rRNA
amplicon

sequencing
using Illumina

MiSeq

Phyla Firmicutes.
Actinobacteria.

Bacteroidetes. Proteobacte-
ria.Verrucomicrobia

Genera Faecalibacterium.
Agathobacter

CSHQ CSHQ < 41 60 4.0 ± 0.2

FIRMICUTES 34%
BACTEROIDOTA 39%.

Lachnoclostridium
0.40% Sutterella 0.38%

Alistipes 0.48%
Bilophila 0.25%.

Phascolarctobacterium
0.20%

UBA1819 0.03%
Paraprevotella 0.11%
Pseudomonas 0.08%

Eubacterium_siraeum
0.13%

60 3.9 ± 0.1

Predominant phyla:
Firmicutes 43.3%.

Actinobacteria 28.3%.
Bacteroidetes 20.7%.
Proteobacteria 5.6%.

Verrucomicrobia 1.3%

Buschart 2018
[59] CCS

16S and 18S
rRNA amplicon
sequencing (V4
regions) using
Illumina HiSeq

Families
Corynobacteriaceae.

Lachnospiraceae.
Rumnococcaceae.
Bacteroidaceae.
Prevotellaceae.

Porphyromonadaceae.
Enterobacteriaceae.
Phylobacteriaceae.
Streptococcaceae.

Comamonadaceae.
Moraxellaceae.

ESS
PSG PD or iRBD

97
(76 PD
and 21
iRBD)

PD:
68.0 ± 9.7

iRBD:
66.1 ± 7.9

Predominant phyla:
Firmicutes 43.15%

Actinobacteria 25.88%
Bacteroidetes 22.57%
Proteobacteria 6.34%

Verrucomicrobia1.62%

78 68.4 ± 6.7

Zhang 2020
[60] CCS

16S rRNA gene
sequencing (V4

region)

Phyla Actinobacteria.
Proteobacteria. Firmicutes.

Bacteroidetes
Orders Coriobacteriales.

Sphingobacteriales
Genera Vagococcus.

Adlercreutzia.
Bifidobacterium.
Parascardovia.
Metascardovia.
Ruminococcus

Species Anaerostipes
caccae

OSHAS

OSHAS/
OSHAS +
cerebral

infarction
diagnosis

Cerebral
infarc-
tion

group:
28

OSAHS
+

cerebral
infarc-
tion

group:
28

NA NA 30 NA NA

Aizawa 2019
[61] CCS

16S or 23S
rRNA-targeted

RT-qPCR
Genera Bifidobacterium.

Lactobacillus
HAM-D
subscale BD 39 40.3 ± 9.2 NA 58 43.1 ± 12.9 NP
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Table 1. Cont.

Common Features Study Group (Altered) Control Group (Healthy)

Authors Year
Type

of
Study

Microbiota
Profiling
Method

Microbiota Detected Method
(Sleep)

Inclusion
Criteria Number Age

(Years ± SD) Relative Abundance Number Age
(Years ± SD) Relative Abundance

Tang 2022
[62] CCS

16S rRNA gene
sequencing

(V3–V4 region)

Phyla Firmicutes.
Proteobacteria

Genera
Escherichia-Shigella.

Faecalibacterium.
Streptococcus.
Haemophilus.

Phascolarctobacterium.
Oscillibacter

AHI OSHAS +
T2DM 27 47.6 ± 5.2 NP 26 45.6 ± 8.8 NA

Masyutina 2021
[63] CCS 16S rRNA gene

sequencing

Phyla Actinobacteria
Genera Faecalibacterium.
Prevotella 9. Lachnospira.
Blautia. Faecalibacterium.

Lachnospira
Species Eubacterium hallii

PSQI
ISI

CI
diagnosis 55 31.6 ± 7.4 NA 50 33.2 ± 6.6 NA

Grosicki 2020
[38] CCS

16S rRNA gene
sequencing

(V3–V4 region)

Phyla Firmicutes.
Bacteroidetes.
Proteobacteria

Classes Clostridia.
Clostridia. Negativicutes

Orders Clostridiales.
Bacteroidales

Families Bacteroidales.
Lachnospiraceae.
Ruminococcaceae

Genera Blautia. Prevotella.
Faecalibacterium.

Ruminococcus. Bacteroides

PSQI PSQI > 5 9 28.8 ± 10

Euryachaeota
2.41 × 104

Actinobacteria
9.06 × 103

Bacteriodetes 3.16 × 101

Chloroflexi 1.47 × 106

Cyanobacteria
1.84 × 103

Elusimicrobia
1.66 × 104

Firmicutes 5.99 × 101

Fusobacteria 1.36 × 104

Lentisphaerae
6.21 × 105

Proteobacteria
4.19 × 102

Spirochaetes 7.35 × 107

Synergistetes 6.25 × 105

TM7 1.23 × 105

Tenericutes 9.26 × 104

Verrucomicrobia
3.10 × 102

Thermi 2.20 × 106

19 30.3 ± 10.8

Phylum Firmicutes
38.0 ± 10.3

Bacteroidetes
34.6 ± 11.8

Proteobacteria
2.8 ± 1.8

Class Clostridia
32.0 ± 9.9

Bacteroidia
34.6 ± 11.8

Negativicutes 2.2 ± 1.5
Order Clostridiales

32.0 ± 9.9
Bacteroidales

34.6 ± 11.8
Family Bacteroidaceae

13.9 ± 9.3
Lachnospiraceae

9.6 ± 4.2
Ruminococcaceae

12.2 ± 5.5
Genus Blautia

2.2 ± 1.1
Prevotella 16.0 ± 19.1

Faecalibacterium
8.7 ± 4.2

Bacteroides 13.9 ± 9.3
Ruminococcus

2.3 ± 2.6
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Table 1. Cont.

Common Features Study Group (Altered) Control Group (Healthy)

Authors Year
Type

of
Study

Microbiota
Profiling
Method

Microbiota Detected Method
(Sleep)

Inclusion
Criteria Number Age

(Years ± SD) Relative Abundance Number Age
(Years ± SD) Relative Abundance

Bikov 2022
[64] CCS

16S rRNA gene
sequencing

(V3–V4 region)

Phyla Actinobacteria.
Proteobacteria

Class
Gammaproteobacteria

Families Prevotellaceae.
Lactobacillae

Genera Porphyromonas.
Lachnosporaceae.

Lactobacillus. Roseburia

PSG OSAHS 19 55 ± 12

Phylum Firmicutes
38.0 ± 10.3

Bacteroidetes
34.6 ± 11.8

Proteobacteria 2.8 ± 1.8
Class Clostridia

32.0 ± 9.9
Bacteroidia 34.6 ± 11.8
Negativicutes 2.2 ± 1.5

Order Clostridiales
32.0 ± 9.9

Bacteroidales
34.6 ± 11.8

Family Bacteroidaceae
13.9 ± 9.3

Lachnospiraceae
9.6 ± 4.2

Ruminococcaceae
12.2 ± 5.5

Genus Blautia 2.2 ± 1.1
Prevotella 16.0 ± 19.1

Faecalibacterium
8.7 ± 4.2

Bacteroides 13.9 ± 9.3
Ruminococcus 2.3 ± 2.6

20 43 ± 16 NA

Cai 2021
[65]

rRNA gene
sequencing PSQI Healthy

controls 157 22.3 ± 2.4 NP

AHI: Apnea-Hypopnea index; ASD: Autism Spectrum Disorder; BD: Bipolar disorder; CSHQ: Children’s Sleep Habits Questionnaire; CCS: case-control study; CI: chronic insomnia;
ESS: Epworth Sleepiness Scale; HAM-D: Hamilton Depression Rating scale; ISI: Insomnia Severity Index; MDD: Major Depressive Disorder; MSLT: Multiple Sleep Latency Test; NA: not
available; NR: not reported; NT1: Narcolepsy type 1 OSAHS: Obstructive Sleep Apnea/Hypopnea Syndrome; PD: Parkinson disease; PROMIS-SD: PROMIS Sleep Disturbance;
PSG: polysomnography; PSQI: Pittsburgh Sleep Quality Index; T2DM: type 2 diabetes mellitus.
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While not statistically quantifiable, visual assessment of the number of GM compo-
nents reported in studies shows high variability across studies. The mean age of patients
considered was 35.7 ± 22.1 years, ranging from a minimum of 2-year-old children [54] to
adults of 68.0 years [62] (Table 1). Similarly, high variability in sleep disorders was detected
among studies. Indeed, sleep disturbance pattern includes several conditions of different
nature, such as insomnia, reduced sleep quantity, obstructive sleep hypopnea/apnoea
syndrome (OSHAS) [54,62], and narcolepsy type 1 [55], not allowing clear conclusions
about associations between GM and sleep disturbances (Table 1). Relatively high study
heterogeneity is also characterized by the tool used to evaluate sleep quality, which includes
PSQI [65], sleep clinical record (SCR) [54], PSG [54,55], ESS [55], and multiple sleep latency
test (MSLT) [55], while all studies considered the 16S ribosomal subunit mRNA to profile
the microbiota (Table 1).

Eighteen eligible studies [38,49–65] were included in the systematic review, accounting
for 236 patients with sleep disorders compared with 233 healthy controls. The α-diversity
index was assessed in sixteen of them, while the β-diversity index was assessed in thir-
teen. However, three different α-diversity indexes were used: the “Shannon” index was
evaluated in all the studies, while “Simpson” [55,62,65] and “Chao” [54,55,65] indexes
were not. Therefore, α-diversity indexes were used for quantitative analyses. The Firmi-
cutes/Bacteroidetes ratio is generally reported, although this is not enough to establish clear
differences in sleep patterns in all the populations [54,66,67].

The second literature collection included studies describing oral daily supplements
of probiotics or para-probiotics administered to individuals with sleep disorders. Among
5684 studies, thirty were evaluated and twenty-four finally included [68–91] (Figure 1). Fi-
nally, eight studies were eligible to be quantitatively analyzed for PSQI score [68,71,80,87,88,90,91]
and three for ESS [87–89]. Table 2 summarizes data from studies extracted during the sec-
ond literature search.
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Table 2. Studies detected during the second literature search.

Common Features Study Group (Probiotic) Control Group (Placebo)

Authors Year Study
Design

Microbiota
Profiling
Method

Sleep
Assessment

Method
Inclusion
Criteria

Treatment
Duration

Participants
(n)

Age
(y ± SD)

Intervention
Treatment Probiotic Bacteria CFU Participants

(n)
Age

(y ± SD)
Placebo

Treatment

Nishida
et al. [81] 2017 R/DB/

PC/P NP PSQI
EEG

Healthy 6th-year
Japanese medical

students
12 weeks 34 25.1 ± 2.37

200 mL
Fermented
Milk/Day

Heat—inactivated L.
gasseri CP2305 1 × 1010 35 25.1 ± 2.4

Milk:
high-fructose
corn syrup,

powdered skim
milk, lactic acid,

soybean
polysaccharide,
pectin, sodium
citrate, flavors,

sweeteners

Kato-
Kataoka
et al. [82]

2016 R/DB/
PC/P NP PSQI

Healthy 4th-year
medical students
undertaking an
examination for

promotion

6 or 8 weeks 24 23.0 ± 0.4
100 mL

Fermented
Milk/Day

L. casei strain Shirota 1 × 109/
mL 23 22.7 ± 0.4

Milk: similar
composition

with the addition
of lactic acid

Nakakita
et al. [83] 2016 NR/DB/

PC/CO NP
EEG, AIS,

Sleep
journals

Healthy males
suffering from

sleep challenges
(AIS ≥ 6)

10 days 6 53.9 ± 8.8 1 × Cap-
sule/Day

Heat-killed L. brevis
SBC8803 NS 8 53.9 ± 8.8

Capsules:
caramel pigment,
finely powdered

silica, calcium
stearate, starch,

cellulose

Sawada et al.
[84] 2017 R/DB/

PC/CO

Gene
expression

analysis
PSQI

Male medical
students

undertaking the
cadaver

dissection course

4 weeks NS 24 1 × Bag/
Day L. gasseri CP2305 1 × 1010 NS 24

Lyophilized
powder: skim

milk (20%), yeast
extract (0.50%)

Yamamura
et al. [85] 2009 R/DB/

PC/CO NP Actigraphy,
SHRI Healthy subjects 3 weeks 14 72.1 ± 21.2

100 g
Fermented
Milk/Day

L. helveticus NS 15 70.7 ± 21.9

Artificially
acidified milk
added with
L-lactic acid

Calandre
et al. [86] 2021 R/DB/

PC/P NP ISI Fibromyalgia
patients 12 weeks 28 56.0 ± 7.5 4 × Sa-

chets/Day

S. thermophilus
BT01

B. breve BB02
B. animalis subsp.

lactis BL03
B. animalis subsp.

lactis BI04
L. acidophilus BA05
L. plantarum BP06
L. paracasei BP07
L. helveticus BD08

4.5 × 1014 35 55.5 ± 8.6
Sachets: maltose,

cornstarch,
silicon dioxide
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Table 2. Cont.

Common Features Study Group (Probiotic) Control Group (Placebo)

Authors Year Study
Design

Microbiota
Profiling
Method

Sleep
Assessment

Method
Inclusion
Criteria

Treatment
Duration

Participants
(n)

Age
(y ± SD)

Intervention
Treatment Probiotic Bacteria CFU Participants

(n)
Age

(y ± SD)
Placebo

Treatment

Dhiman
et al. [87] 2014 R/DB/

PC/P NP PSQI, ESS Cirrhosis
patients 24 weeks 16 48.0 ± 1.4 1 × VSL#3

Sachet/Day

L. paracasei DSM
24733

L. plantarum DSM
24730

L acidophilus DSM
24735,

L. delbrueckii
bulgaricus DSM

24734)
B. longum DSM

24736
B. infantis DSM

24737
B. breve DSM 24732

Streptococcus
thermophilus DSM

24731

9 × 1011 11 50.1 ± 9.8 Sachets: corn
flour

Wong et al.
[88] 2015 R/DB/

PC/P NP PSQI, ESS IBS 6 weeks 20 53.3 ± 18.6 8 Cap-
sules/Day

L. acidophilus
L. casei

L. delbrueckii
bulgaricus

L. plantarum
B. longum
B. infantis
B. breve

Streptococcus
salivarius

thermophilus

1.125 × 1011 22 40.9 ± 16.5 Capsules: NS

Majeed et al.
[89] 2018 R/DB/PC/P NP mESS MDD and IBS 90 days 20 40.4 ± 10.3 1 × Tablet/

Day
B. coagulans MTCC

5856 2 × 109 20 43.9 ± 9.8

Tablets:
microcrystalline
cellulose, starch,
sodium starch

glycolate,
magnesium

stearate

Shafie et al.
[90] 2022 R/DB/PC/P NP PSQI Post-menopausal

women 6 weeks 33 51.8 ± 2.3 100 g
Yogurt/Day

B. lactis
L. acidophilus

1 × 108 C
CFU/g 33 52.4 ± 2.4

Yogurt: containing
L. bulgaricus and

Streptococcus
thermophilus

AIS: Athena Insomnia Scale; CO: cross-over design; DB: double blinded; ECG: electrocardiography; EEG: Electroencephalography; ESS: Epworth sleepiness scale; HE: hepatic
encephalopathy; HLPCQ: Healthy Lifestyle and Personal Control Questionnaire; IBS: Irritable Bowel Syndrome; ISI: Insomnia Severity Index; MDD: Major Depressive Disorder;
mESS: modified Epworth sleepiness scale; MEQ: Morningness-Eveningness Questionnaire; NP: not performed; NR: non-randomized; OSHAS: obstructive sleep apnea; P: parallel design;
PC: placebo-controlled; PCR: polymerase chain reaction; PLA: placebo group; PRO: probiotic group; PSG: Polysomnography; PSQI: Pittsburgh Sleep Quality Index; R: randomized;
SD: standard deviation; SHRI: Sleep-Health Risk Index; VAS: Visual analog scales. Italics are used for bacterial and viral taxa at the level of family and below.
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Overall, 274 subjects treated with probiotics were compared with 261 subjects receiv-
ing a placebo. Only one study showed a cross-over design, whereas others employed
a randomized approach. Five studies recruited healthy individuals [68,71,78,82], one
study [87] enrolled cirrhosis patients recovered from hepatic encephalopathy (HE), one
employed [88] patients with irritable bowel syndrome (IBS) and sleep complaints, and
one [90] recruited post-menopausal women. Moreover, three studies [71,87,88] reported
baseline BMI, and one study enrolled patients with overweight (BMI > 25 kg/m2). Re-
garding the use of probiotics, three studies employed single strains of bacteria [68,78,82]
and five multiple strains [71,87,88,90,91] (Table 2). Typically, probiotics were administered
within the 108–1011 CFU dose range for a variable duration of 3 [71] to 24 weeks [68,87].
Different media were used to convey the treatment, such as capsules [78,88,91], tablets [68],
powder sachets [71,87], fermented milk [82], or yogurt [90], revealing a certain grade of
variability among studies for probiotic administration. Compliance with supplementation
protocols, if shown, was higher than 95% [82,87,91], except for one study [68], reporting
92%. Thus, as occurred in the first literature search, a high heterogeneity among studies was
expected for the aforementioned reasons. Among these, the patient’s compliance with the
probiotic consumption protocol should be considered as a further source of heterogeneity.
However, none of the studies reported side effects or adverse events, suggesting general
good tolerance to the treatment.

3.2. Meta-Analyses

Meta-analysis to compare GM composition between sleep disorders vs. healthy
individuals was performed using α-diversity data (Figure 2). α-diversity was not different
between patients with and without sleep disorders, considering the Shannon (p = 0.580,
Figure 2A), Simpson (p = 0.160, Figure 2B), and Chao (p = 0.410, Figure 2C) indexes. Instead,
β-diversity was not considered due to lack of reporting in more than three (i.e., 13) studies.
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in figure: Valentini 2020 [54]; Cai 2021 [65]; Zhang 2021 [52]; Tang 2022 [66].
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For the meta-analytic investigation of probiotics effectiveness in sleep disorders and
health, only PSQI and ESS data were accessible in more than three articles. Other sleep
measures were not suitable for meta-analysis. Probiotic consumption significantly reduced
PSQI score compared with placebo administration (p = 0.04, Figure 3).
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Figure 3. Forrest plot for standard mean difference of PSQI between study (probiotic) and control
(placebo) groups. References in figure: Dhiman 2014 [87]; Wong 2015 [88]; Kato-Kataoka 2016 [82];
Kelly 2017 [78]; Nishida 2019 [68]; Marotta 2019 [71]; Lee 2021 [91]; Shafie 2022 [90].

Meta-regression analysis was performed using patients’ age as a covariate and the
PSQI as the dependent variable. The difference between the study and control group was
significantly related to patients’ age (Chi-squared 10.9, p = 0.012).

The use of probiotics was linked to ESS score reduction vs. placebo, although it was
not statistically significant (p = 0.070, Figure 4). Finally, the mean age of subjects did not
differ between the study and control groups (−0.06; 95%CI: −0.05, 0.54 years, p = 0.850),
excluding the age as a potential source for differences in PSQI score.
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4. Discussion

This meta-analysis demonstrates that the use of probiotics improves sleep quality, as
established by self-assessment questionnaires. However, the self-assessed propensity to fall
asleep does not change after probiotics consumption, suggesting that the GM–sleep quality
relationship could be only slightly influenced by this therapeutic intervention. Indeed, here
we demonstrate that the GM diversity is not different between patients with vs. without
sleep disorders, suggesting that there is not a stable substrate on which probiotics could
act to improve sleep quality. Results were obtained using α-diversity data, which does not
provide a measure of the specific abundance of taxa or species in the gut. Moreover, β-
diversity is missing due to a lack of reporting in more than three studies. This is a limitation
depending on the heterogeneity of the current literature and precludes the meta-analysis of
individual microbiome taxa and/or species. Further, we have considered GM modulation
by therapeutic measures on sleep quality as a topic recently explored in a meta-analytics
study [92], where authors evaluated the efficacy of probiotic or prebiotic intervention on
sleep characteristics. In this study, people with type 2 diabetes mellitus, dementia, and bone
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fracture were included, and no improvements in sleep quality (eighteen trials analyzed)
and sleep duration (five trials analyzed) were found [92]. These results contrast with our
results since we found improvement in sleep quality parameters with probiotics adminis-
tration versus placebo. This discrepancy could be due to the subject analyzed since only
healthy subjects or subjects with specific diseases, such as inflammatory bowel disease and
fibromyalgia, were included in the present study. Moreover, the authors considered sleep
quality parameters using both standardized questionnaires and self-reported information.
In the present work, only PSQI reported significant improvement of sleep disturbances
compared with the placebo. ESS score seems to be not significantly different, although is
shows a trend similar to what observed by PSQI analysis. Unfortunately, heterogeneity of
patient’s characteristics with sleep disorders, and wide variability in study experimental
settings, make it difficult to generalize further about these results. The role of GM in sleep
disorder was recently discussed and converging findings indicated that microbiota could
be targeted by interventions aimed at improving sleep [93]. However, we found that sleep
disorders could not be associated with GM composition, irrespective to the index used to
measure its diversity. On the contrary, PSQI offers the subjective perspective that probiotics
administration, obviously influencing GM, improves sleep quality. We may assume that
GM could impact sleep behavior, even if possibly weakly, and that this issue requires
specific clinical studies with well-selected populations to be addressed.

The scientific interest in the relationship between GM and human functions’ homeosta-
sis has been increasing in recent decades [94,95]. In fact, several lines of evidence indicate
the existence of a connection between GM and the central nervous system, leading to the
definition of the gut–brain axis (GBA) [96]. The bidirectional flow of information between
the GM and the central nervous system is poorly understood and probably works through
different mechanisms, such as the hypothalamic pituitary adrenal (HPA) axis [2], the im-
mune system [33,97,98], the intestinal neuroendocrine cells [99], the vagus nerve [100]
and the enteric nervous system [2]. The GBA influences sleep status in close interaction
with emotions, physiological stress, and circadian rhythms [96]. While the existence of
these connections is overall clear, the potential impact of GM on sleep physiology has not
been completely unraveled. Sleep patterns could be modulated by changes in intestinal
permeability, inflammation, immune system activation, energy harvest, and bacterial diver-
sity [101,102]. However, the relationship between either GM composition or the effect of GM
changes after probiotics consumption and sleep patterns remains questionable [103]. Our
meta-analysis was not able to quantify the relationship between GM composition and sleep
disturbance pattern since no differences in α-diversity were found by any indexes used,
such as Shannon, Simpson, and Chao. However, taken individually, authors found reduced
α- and β-diversity of GM in specific groups with sleep disturbances [38,51,53,54,57,61]. For
example, total GM diversity is positively correlated with increased sleep efficiency and
total sleep time when otherwise healthy subjects were considered [104]. Thus, we could
speculate that the relationship between GM composition and sleep must be considered,
evaluating each group of sleep disturbances separately.

The beneficial effect of probiotics supplementation on sleep disturbance seems to be
weak but relatively well established, taking the present study into account with previous
analyses [105]. In fact, our findings confirmed that probiotics consumption improves the
subjective measure of sleep quality in patients with sleep disturbances when compared
with placebo groups. Also, in this case, both sleep disturbance patterns and probiotic
composition are extremely variable among studies. Despite this heterogeneity, PSQI is
statistically different between the two groups considered, suggesting that the beneficial
effect of probiotics could be stronger overall than expected, overcoming potential biases,
such as selection and detection biases. Moreover, the mean age of participants is similar
between the two groups, excluding the role of age in the observed differential composition
of microbial community under probiotics administration. Other subjective sleep question-
naires could be less indicative than PSQI of effects obtained upon probiotics administration.
For instance, ESS investigates general parameters such as day time sleepiness, instead of
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straightly the sleep quality [106]. These considerations might explain why we found no
significant improvement in ESS after probiotics administration. However, it is worthy of
note that only three studies evaluated ESS [87–89], limiting the statistical power of this
subgroup meta-analysis. This is a drawback that may be improved by increasing the
number of clinical trials on this specific topic. Interestingly, one study was performed on
subjects with bipolar disorder, reporting a negative correlation between Lactobacillus count
and sleep [61]. This finding, obtained in a specific and limited set of subjects, is suggestive
of a possible effect of this bacterial strain on sleep health.

It is intriguing that major benefits on sleep were observed among university students
exposed to stressful conditions (e.g., academic examinations or courses), as indicated
by some of the studies evaluated [68,71,82]. We may speculate that, in these groups,
probiotics mitigate markedly the physiological response to stress exposure, via modulation
of glucocorticoid action. A perceived environmental threat, such as a stressful event,
triggers the HPA axis to secrete glucocorticoids and the sympathetic nervous system,
leading to catecholamine release [107]. Moreover, increasing glucocorticoid levels were
detected even in short sleep conditions [103]. Some studies indicated that probiotics
administration attenuates the physiological increase in salivary glucocorticoids [82,106],
potentially promoting sleep enhancement. This hypothesis suggests a beneficial role of
probiotics for the general management of sleep disturbances, although subgroup analyses
would be useful to establish firm conclusions.

Gender should be considered among potential determinants for high heterogeneity.
Women were enrolled in only one study of those considered [90], whereas other trials
included mixed groups of both males and females. Since sex-related differences in the
effect of probiotics on sleep were suggested [74,84], we may assume that the heterogeneous
gender composition of studies meta-analyzed could be a limitation. According to these
studies, we could speculate that better outcomes occurred in men than women after Lacto-
bacillus gasseri supplementation, although the limited availability of data prevented more
accurate evaluations. Second, the participant’s health status varied among trials, including
either healthy subjects or individuals affected by different pathological conditions [87,88].
Last, the experimental intervention differed for the type of probiotic bacteria, i.e., species,
single vs. multiple strains, dosage, duration of the supplementation, and delivery method.
In conclusion, methodological biases should be carefully considered by other studies on
this topic.

The present study shows several limitations. The number of trials using the same
methodological approach to evaluate sleep disturbance, GM composition, and probiotics
type is low. Moreover, studies are highly heterogeneous, including participants with
different ages and health statuses and assessment methods to evaluate sleep quality (i.e.,
subjective or objective measures). In this context, we were not able to collect data useful
to adjust the analyses performed. The only available parameter was the patient’s age,
which, as demonstrated by meta-regression analysis, potentially influenced the final result
of the meta-analysis. Moreover, we could collect only α-diversity data, while β-diversity is
missing due to lack of proper reporting, limiting the analysis of how individual microbiome
taxa or species may contribute to mitigate sleep disturbances. In particular, the variability
in Systematic Reviewpatients’ ages should be carefully considered since it is well-known
that sleep patterns undergo physiological changes with aging [108,109]. In our study, the
limited number of studies detected does not allow subgroup analyses based on age and
gender. Third, the evaluation of sleep quality by questionnaires is obviously influenced by
the subjectivity of these instruments. Although self-reported questionnaires are broadly
used for clinical and research purposes, they do not provide objective parameters. Thus,
data collected could be less accurate than those obtained by objective sleep assessment
tools, such as PSG or actigraphy. Finally, only gut microbial genera/species significantly
associated with the outcome are likely to be reported in the literature. This would introduce
publication bias and limit the number of included studies. Further clinical trials with
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randomized placebo-controlled designs and objective measurements are required to achieve
solid conclusions.

In conclusion, the connection between sleep disturbances and GM homeostasis re-
mains to be established since major drawbacks prevent definitive conclusions about this
issue. Promising results based on subjective assessment of sleep quality suggested that pro-
biotics could represent an effective clinical intervention to manage sleep disorders targeting
GM. The understanding of variables impacting GM, such as diet, physical activity, stress,
and pathological conditions, will be crucial to clarify the relationship between intestinal
bacteria and sleep.
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