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We give a geometric proof, in the particular case of nondegenerate first integrals,
of a theorem by Moser about the existence of periodic orbits on each level set of
the integral, in a neighbourhood of a singular point of a vector field satisfying a
nonresonance hypothesis. We use the same geometric approach to deal with the
resonance case, obtaining a generalization of previous results by Sweet. � 2001

Academic Press

1. INTRODUCTION

Let O be a singular point of a vector field X. Let us suppose that X
admits a first integral I in a neighbourhood of O. A classical problem is the
existence of periodic trajectories on each level manifold of the integral. In
the case of a linear Lagrangian system this gives rise to the study of normal
modes in small oscillations theory, while in the more general setting of
nonlinear and not necessarily Hamiltonian systems, it is the subject of the
Lyapunov centre theorem.

Weinstein [12] removed the nonresonance condition from the hypotheses
of the Lyapunov centre theorem in the case of a positive definite Hamilton
function. Moser [6] extended Weinstein's existence result to non-Hamiltonian
systems admitting a first integral and gave [7] an example of a Hamiltonian
system with a nondegenerate Hamilton function without nontrivial periodic
solutions of fixed energy. Actually, the theorem in [6] referred to below as
Theorem 1.1 can be considered as a refinement of previous results by Seifert
[8] and Fuller [3, 4]: the close relationship among these papers is a major
motivation for this article.

Moser's result in [6] can be formulated as follows:

Theorem 1.1 (Moser [6], Seifert�Fuller). Let X be a C1 vector field
in a neighbourhood of O # Rm. Let O be a singular point of X such that
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det DX(O){0, and Rm=E�F where E, F are DX(O)-invariant subspaces
of Rm. Let us suppose that X admits a C 2 first integral I such that
DI(O)=0. Let DX(O) | E be the infinitesimal generator of a linear flow which
is a multirotation of minimal period 2?, while none of the trajectories of the
linear flow generated by DX(O) | F is a (nontrivial ) periodic trajectory of (not
necessarily minimal ) period 2?. Assume, moreover, that the restricted
Hessian of the first integral D2I(O) | E is positive definite. Then for a suf-
ficiently small =>0 every level set I=I(O)+= contains at least one periodic
solution having minimal period close to 2?.

We will refer to the hypothesis in the above theorem concerning the periods
of the periodic solutions of the linear flows generated by DX(O) | E=A and
DX(O) | F=B (or equivalently on the spectra of A and B) as the nonresonance
blocks condition.

In this paper we consider a (more) geometric approach to Moser's
theorem in order to obtain a simpler proof of it in the particular but signifi-
cant case of a nondegenerate first integral. As a consequence of that we will
be able to deal with the case of vector fields violating the nonresonance
blocks condition, and we obtain the following theorem which can be con-
sidered a generalization of results obtained by Sweet in [9]. Let A/J 3

0X
be a family of the 3-jets at O of C4 vector fields satisfying the hypotheses
in Moser's theorem except the nonresonance blocks condition, i.e., for
instance each element of A satisfies DX(O)=A�B where both A and B
generate a 1-parameter group which is a multirotation with the same
(minimal) period, say 2?. Then if I is a smooth��say C3��regular function,
such that I(O)=0, DI(O)=0, and D2I(O){0, we have

Theorem 1.2. There exists a family A of 3-jets of the above specified
type such that all the extensions of an element of A, which still admit I as
a nondegenerate first integral, have a periodic orbit of (minimal ) period close
to 2? for each level set of the first integral [I=c], c sufficiently small; the
family A is a semialgebraic subset of the 3-jet space of vector fields at O.

Remark. The proof of the above theorem gives a geometric insight of
the quoted result by Sweet [9]: moreover, that result is improved��even
if an extra hypothesis of non-degeneration of the first integral has been
introduced��by removing any condition on the resonance type (Sweet's
result exclude the case of resonance blocks with the same minimal periods,
i.e., the case of weakly coupled linear oscillators with the same frequencies)
and on the dimension of the resonance blocks (in [9] only 2-dimensional
resonance blocks are considered).

We end this section by giving a sketch of the proof of Theorem 2.3, i.e.,
Moser's theorem in the case of nondegenerate first integrals, and of the
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corresponding idea leading to the proof of Theorem 3.1. We begin by
considering a particular situation, when m=2n and

I(x)=x2
1+ } } } +x2

2n ,

i.e., D2I(O) is positive definite. We choose such a situation because it
makes evident and easy to expose the two arguments on which the proof
is based, still being a case of interest; see, for instance, Weinstein's theorem
in [12]. The two mentioned arguments of the proof are a blow up adapted
to the first integral and the use of a topological argument, namely the
Fuller index of periodic orbits. In the case we are now considering, the
adapted blow up is just the spherical one, of course. After blowing up we
obtain a phase space fibered by S2n&1-spheres, each invariant by the flow
generated by the blown up vector field X� . In particular, X� has an extension
up to the divisor D of the blow up��again diffeomorphic to a S 2n&1 sphere.
The resulting dynamics of X� on D, in the hypothesis that DX(O) generates
a multirotation and if n>1, defines the Hopf fibration of D&S2n&1.
Moreover, if Mh &S 2n&1 is the pull-back through the blow up of the level-
spheres [I=h], the vector field X� defines a smooth 1-parameter family of
vector fields

X� h=X� | Mh
: S 2n&1&Mh [ TS2n&1

h�0. Of course, X� 0 is the restriction of X� along the divisor.
It is well known [3, 4] and easily understood by homotopically perturb-

ing the Hopf fibration that the Fuller index of X� 0 with respect to the set
0=S2n&1_]?, 3?[ is i(X� 0 , 0)=/(CPn&1)=n: here ]?, 3?[ concerns the
periods of the periodic orbits we are detecting by Fuller index, while
/(CPn&1) is the Euler characteristic of the n&1-dimensional complex
projective space, which is the orbit space of the Hopf fibration. Therefore
for sufficiently small h we still have that n=i(X� 0 , 0)=i(X� h , 0), hence
implying that there exists at least one periodic trajectory on each level set
of the first integral. Actually we will show that ``generically'' we get n periodic
trajectories of minimal period approximatly 2? on each level set. The proof in
the general nondegenerate case follows the same lines, with some technical
parts due to the generalization of the standard blowing up to non-spherical
cases, and with the use of the nonresonance blocks condition, which is here
immaterial. The resonance case, i.e., Theorem 3.1, then follows regarding
an appropriate choice of a family of 3-jets as the nonlinear analogous of the
nonresonance linear part of the vector field in the proof of Theorem 2.3.

The paper is organized as follows: in the next section we introduce the
adapted blow up and recall the definition and the used properties of the
Fuller index. We use these tools to give the proof of Theorem 2.3 (the non-
resonance case) and state some consequences concerning the generic case.
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In the third section we state and prove Theorem 3.1 (the resonance case),
while in the fourth section we collect some technical parts on regularity
properties of the blowing up of vector fields.

2. PERIODIC ORBITS WITH FIXED ENERGY

Let X : Rm [ TRm be a Ck vector field, m�31, k�2, and let O be a
singular point of X. We denote by DX(O) the linear part of X at O: we will
always suppose that det DX(O){0. Let I: Rm [ R be a Ck first integral of
X, i.e., let

LX I#0.

We will always suppose that I(O)=0��this is not restrictive, of course��
and that DI(O)=0��a justification for that being the relevant Hamiltonian
case. We will suppose that I is nondegenerate at O, i.e., that the Hessian
D2I(O) is a nondegenerate bilinear form. We denote by Mh=[I=h] the
level sets of the integral: if h{0 is sufficiently small and in a sufficiently
small neighbourhood of O they are actually codimension one manifolds.
Let Rm=E�F be the splitting induced by DX(O)=A�B, where E and
F are respectively A and B invariant subspaces. We will suppose that
D2I(O) | E is positive definite��therefore dim E=2k��and that etA is a (proper)
multirotation. As a consequence of the last assumption, all the eigenvalues of
A must be purely imaginary and rationally dependent numbers, and A must
be diagonalizable. We will always suppose that A has eigenvalues \i : the
general case could be treated by the same arguments and is only notationally
more involved.

As a consequence of nondegeneracy of D2I(O) and of the Morse lemma,
in a sufficiently small neighbourhood U of O we can choose coordinates in
such a way that x(O)=0 and (here one should read p=2k in the situations
relevant for this article)

I(x)=x2
1+ } } } +x2

p&x2
p+1& } } } &x2

m .

Throughout all the rest of the paper we will consider our differential system
inside the neighbourhood U and refer to the above specified coordinate
system. In particular this choice of coordinates makes clear the topological
features of the level set of the integral: let us call Mh=[I=h], then2

379PERIODIC ORBITS FOR VECTOR FIELDS

1 In the two-dimensional case the questions considered are trivial as a consequence of the
classical Poincare� centre theorem and some generalizations of it [11].

2 It is probably worthwhile specifying that in the following claim, in the case p=1, S0 stays
for the 0-dimensional manifold consisting of two points.



(i) if h>0 then Mh &S p&1_Rm& p

(ii) if h<0 then Mh &R p_Sm& p&1

(iii) if h=0 then M0 is singular at 0, and M0&[0]&S p&1_
(Rm& p&[0]).

Let 1=[I>0] and let 1� =[I�0] be its closure: 1=[I>0] is a
manifold foliated by the Mh 's, while 1� =[I�0] is a piecewise-regular
manifold, carrying a singular foliation by the Mh 's, h�0. A fundamental
tool in the local study of vector fields is the blow up technique: in view of
our applications we will use a pseudospherical blow up which will turn out
to be well suited for the geometry of the level sets of the first integral. Let
us define

?: R+
0 _M1 &R+

0 _S p&1_Rm& p [ 1� =[I�0]

where

x1=h - 1+w2
2k+2+ } } } +w2

m u1 cosh /

b

xp=h - 1+w2
2k+2+ } } } +w2

m up cosh /

xp+1=h - 1+w2
2k+2+ } } } +w2

m sinh /

xp+2=hwp+2

b

xm=hwm ,

where p=2k and S p&1=[u2
1+ } } } +u2

p=1], h # R+
0 and (/, wp+2 , ..., wm)

# Rm& p. We leave the details of this transformation to Section 4: to help
the geometric intuition of it, we remark that M1 is the manifold defined by

w2
1+ } } } +w2

p&w2
p+1& } } } &w2

m=1.

Namely it is the standard hyperquadric diffeomorphic to S p&1_Rm& p,
and the region 1 is foliated by the homogeneous deformations of M1 . The
blow up ? simply realizes such a deformation: it is an analytic diffeo-
morphism when restricted to positive values of the h-variable, having in
this case 1 as image. Mathematical objects originally defined in 1 and
pulled back by ? will be denoted by an added tilde: for instance, the
domain where ? is invertible is foliated by manifolds M� h=?&1(Mh). The
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divisor of this blow up is 4=?&1(M0): it is a regular manifold, diffeo-
morphic to S p&1_Rm& p. Finally we define the submanifold of the divisor 4

S p&1=[0]_S p&1_[(0, ..., 0)].

In the fourth section we will prove:

Lemma 2.1. Let X� be the pull-back of the original C r vector field X,
having a singular point at the origin. The following propositions hold :

(i) the vector field X� has a C r&1 extension up to the divisor [h=0]=4:
we still name such an extension X� .

(ii) For a vector field X admitting a first integral of the type specified
above the divisor 4 is an invariant set of X� .

(iii) If the hypotheses in Theorem 2.3 on DX(0) are assumed, with
dim E=2k= p, the vector field X� is invariant on the (2k&1)-dimensional
sphere S2k&1, where the flow X� defines the Hopf fibration of the sphere.

In order to give the proof of the main result of this section, we need now
to recall the definition and basic properties of an important homotopy
invariant of periodic trajectories, the Fuller index [2, 3]. Let M be a
manifold and Y be a vector field on it, with everything at least C 1-regular.
Let 0 be a bounded set in M_R+ such that its projection on M is
bounded away from the set of singular points of Y: 0 is named an
admissible neighbourhood if it satisfies the following property. Let

6(Y )=[( p, t) # M_R+ : .( p, t)= p],

where . denotes the flow of Y. We ask for 0 to satisfy

�0 & 6(Y)=<.

Let # be the image in the phase space M of a (nontrivial) hyperbolic
periodic trajectory of Y, with minimal period T# , and let V be a
neighbourhood of # in M, not containing any other closed trajectory
having minimal period close to 2?. Then for any positive integer k we
define for 0=V_[kT#] the Fuller index

i(Y, 0)=
(&1)_

k
,

where _ is the number of the eigenvalues of the differential of the Poincare�
map of # which lie in the open half line (1, +�). If = [ Y= is a smooth
homotopy we ask that

�0 & 6(Y=)=<
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for every 0�=�1: in this case we say that 0 is admissible for that
homotopy. It is well known that:

Theorem 2.2 [3]. i(Y, 0) is a rational-valued function of Y and 0,
which is invariant for C1-homotopies = [ Y= , until �0 & 6(Y=)=<. More-
over i(Y, 0) is additive, meaning that if 01 , 02 are two compactly disjoint
subsets of M_R+, then

i(Y, 01)+i(Y, 02)=i(Y, (01 _ 02)).

We are now in position to state and prove, in a geometrical way different
from the one used in the original Moser proof, the following result that is
a particular case of Theorem 1.1.

Theorem 2.3 [6]. Let X and I be as in Theorem (1.1), except for the
hypothesis that I is nondegenerate and X is a C2 vector field. Then for h
sufficiently small and for each level manifold [I=h] of the first integral
there exists at least one closed orbit #h/[I=h] of X, with minimal period
of #h tending to 2? and with #h tending to the singular point (Hausdorff
topology) when h tends to zero.

Proof. During this proof we will consider the region 1 only as our
original phase space: moreover, to keep the same notations as in the
previous section, here we will always consider p=2k. We perform the
adapted blow up as specified in Lemma 2.1, hence obtaining a pulled-back
vector field X� of class Ck&1 defined in R+

0 _M1&R+
0 _S p&1_Rm& p, for

sufficiently small values of the parameters h, / and wp+2 , ..., wm ; see the
fourth section for the definitions. The phase space of X� is foliated by
X� -invariant manifolds

M� h=[h]_M1 &[h]_S p&1_Rm& p.

Therefore we can define a smooth 1-parameter family of vector fields on M1

X� h=X� |[h]_M1
.

The vector field X� 0 is the pull-back of the linear vector field defined by
DX(O), therefore C=S p&1_[0

�
] is a compact of periodic orbits for X� 0 .

We are going to show that the nonresonance blocks condition permit us to
find an admissible neighbourhood 0 of C which turns out to be stable with
respect to the smooth homotopy

h [ Xh .
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Then a computation will show that the Fuller index i(X� h , 0) is nonzero for
h�0, h sufficiently small, and this implies that on each level set Mh of the
first integral there exists a periodic orbit of period approximately 2?, thus
concluding the proof.

The manifold M1 is a trivial fiber bundle diffeomorphic to an open
subset of S p&1_Rm& p. Let

p: M1 [ Rm& p

be the canonical projection of this bundle: then in suitable local coordinates
p(C)=0

�
. Let Br be an open ball of radius3 r in Rm& p centered at 0

�
. Let

0� = p&1(Br) and let us define 0=0� _]?, 3?[. Hence 0� &S p&1_Br ;
therefore

�0& (S p&1_�Br_]?, 3?[) _ (0� _[?]) _ (0� _[3?]).

By elementary considerations [3] on the vector fields of the smooth homotopy
h [ Xh it is easy to realize that to prove that 0 is an admissible neighbourhood
for the homotopy it is enough to show that for a sufficiently small h we have
(up to a diffeomorphism of the first set on the left member of the following
equality)

S p&1_�Br_]?, 3?[ & 6(Xh)=<.

More explicitly, we must prove that for sufficiently small h there are no
closed orbits with periods between ? and 3? passing through points q # M1

such that p(q) # �Br . Let .h
t be the flow of Xh . The nonresonance blocks

condition implies that

min[&.0
t (q)&q&: q # �0� , ?�t�3?]=2c>0.

Moreover

X� h(q)=X� 0(q)+F(q, h),

where F(q, 0)#0 and F(q, h)=O(h) uniformly with respect to q # 0�� . A
straightforward application of Gronwall's lemma, gives that, for sufficiently
small h,

&.h
t (q)&.0

t (q)&<c

383PERIODIC ORBITS FOR VECTOR FIELDS

3 The choice of r is of no importance as long as a nonresonance hypothesis is assumed.



for each 0<t<4? and each q # 0�� . Therefore for h sufficently small and for
q # �0� and ?�t�3?, we get

&.h
t (q)&q&�&.0

t (q)&q&&&.h
t (q)&.0

t (q)&�c

showing that 0� is an admissible neighbourhood for the homotopy h [ Xh .
To end the proof we must compute i(X� 0 , 0) and prove that it is not

zero. This can be accomplished generalizing a geometrical argument given
in [3, 4]. We consider first the case k>1: the case k=1, namely the case
when Lyapunov's theorem holds true, will be considered later and in a
similar way. Let L=DX(O) and let X0 be its restriction to M1 . Let us
recall that (here and in the following we use that p=2k) if

S2k&1=S 2k&1_[(0, ..., 0)]

then S2k&1 is X0 -invariant and its flow on S 2k&1 generates the Hopf
fibration _: S 2k&1 [ CPk&1. Let us consider the smooth homotopy

= [ X0, =

defined as follows. The trivial fiber bundle structure p: M1 &S2k&1_Rm&2k

[ Rm&2k induces the decomposition of the tangent spaces in vertical and
horizontal components

TqM1=TqS2k&1_TqRm&2k

and

X0, ==X0+X hor
0, =+X ver

0, = ,

where X0 is the linear vector field restricted to M1 and

X ver
0, ===_*($)

and

X hor
0, ==&=p*(Em&2k),

where $ is a gradient field4 on CPk&1 and Em&2k is the identity on Rm&2k.
Moreover, _*($) and p*(Em&2k) are two vector fields, having for instance
zero components along the S1-fiber or, respectively, the S2k&1-fiber, and

384 MASSIMO VILLARINI

4 $ can be defined as follows: we embed CPk&1 as a 2(k&1)-dimensional real manifold in
a Euclidean space and choose in this space a coordinate system such that the height of the
points of CPk&1 with respect to one coordinate of the ambient pace is a Morse function f and
define $={f. It turns out that this vector field has exactly k hyperbolic singular points each
of index 1.



projecting to the base spaces CPk&1 and Rm&2k onto $ and Em&2k : their
existence easily follows from standard differential geometric arguments (see
[3, 4]). It is easy to check that for initial data in 0 and for sufficiently
small =>0 the vector field X0, = has only k hyperbolic periodic orbits
#1 , ..., #k , each of minimal period 2?: these trajectories correspond to the
pull-back through _ of the k singular points of $. If Uj is a sufficiently small
tubular neighbourhood of #j , a simple computation in local trivializing
coordinates permits us to conclude that

i(X0, = ,Uj_]?, 3?[)=i($, _(#j ))=1,

where i($, _(#j)) is the Poincare� index of $ at _(#j). Moreover, the same
argument based on the nonresonance blocks condition, used to claim that
h [ Xh has 0 as an admissible neighbourhood, permits us to consider 0 as
an admissible neighbourhood of X0, = , too, when = is sufficiently small. Hence

i(X0, = , 0)=k

and this ends the proof when k>1. In the case k=1 the same argument
applies with the obvious substitutions M1=S 1_Rm&2, X vert

0, = =0 and X hor
0, =

=&=p*(Em&2). K

Remark. The nondegeneracy hypothesis of the first integral has been
used in the above proof in the description of the topology of the level
manifolds of the first integral. If we assume only the hypotheses of Theorem
1.1, a similar description of the codimension one foliation defined by the
first integral in full generality is a hopeless problem of singularity theory.
Nevertheless the approach we just exposed to the problem of existence of
closed orbit on level sets of the integral can be useful to deal with the
resonance case, as we will see in the next section, as well as in particular
examples, of specific interest, when more degenerate singularities are
considered: this could be an object of further research.

We end this section considering the ``generic'' situation in the case of
positive definite first integral, namely in the case when the first integral in
Morse normal form is

I(x)=x2
1+ } } } +x2n .

The analogous general case should be dealt in the same way, when one has
obtained a pseudospherical version of the following theorem by Takens

Theorem 2.4 [10]. Let X� be a vector field on S2k&1_R of the form

X� = :
l�N

h lg l (u) R� + :
k�N

:
2n

i, j=1

hkf i, j, k(u) V� i, j ,
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where S2k&1=[u2
1+ } } } +u2

2k=1], h is a coordinate on R, R=�2n
j=1 xj(���xj),

Vi, j=
1
2 (x i(���x j )&x j(���xi )) and R� =?*(R), V� i, j=?*(Vi, j), where ? is the

spherical blow up map. Let T : S 2k&1_R [ TS2k&1_R be the involution

T(u1 , ..., u2n , h)=(&u1 , ..., &u2n , &h).

If T
*

(X� )=X� then there is a vector field X on R2n and an integer m such that

X� =hm?*(X ).

We will say that a vector field X=Lx+R2(x), with L generating the
2?-periodic rotation given in complex coordinates by

t [ (eit, e&it, ..., eit, e&it),

is generic if X� =?*(X ) can be written in local trivializing coordinates of the
Hopf bundle as (here ==h)

.* =1+=f (., P, =)

P4 ==g(., P, =)

=* =0,

where . is a coordinate on S1=R�2?Z, P is a coordinate on CPn&1, and,
as follows from the argument of Theorem 2.4, f and g are ?-periodic with
respect to .; moreover, if

g(., P, =)= g(0)(., P)+=[ } } } ]

we ask that the averaged vector field

G: CPn&1 [ TCPn&1

defined in local coordinates by

G(P)=
1

2? |
2?

0
g(0)(., P) d.

has only a finite number (hence at least n) of nondegenerate zeroes:
G(P0)=0 and

det
�

�P |P=P0

G{0.

From Theorem 2.4 it easily follows that, for instance, the subset of infinitely
smooth vector fields Y such that their blow up Y� satisfies the above condition
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is an open dense subset, for instance in the C2-topology, of the set of vector
fields of the type X=Lx+R2(x), with L generating a 2?-periodic rotation:
this remark justifies the used terminology. Then a straightforward application
of basic results of averaging theory (see Theorem 2 in [5] or paragraph 2.3
in [1]) permit us to state:

Theorem 2.5. Let X(x)=Lx+[ } } } ] be a generic vector field satisfying
the hypotheses of Theorem 2.3. Then there exist at least n hyperbolic closed
orbits of X for each level manifold [I=h], h>0.

3. THE RESONANCE CASE

The existence of periodic orbits on the level manifolds of the first integral
in the nonresonance case (i.e., when the nonresonance blocks condition is
satisfied) is based on the interpretation of the vector field X near the
singular point as a perturbation of the linear vector field Lx, L=DX(O):
the nonresonance hypothesis implies that Lx has nonzero Fuller index with
respect to an admissible neighbourhood of a compact set of closed orbits,
as a vector field on a manifold diffeomorphic to the typical leaf of the
foliation induced by the first integral. In the resonance case such a property
of the linear vector field is no longer true: to obtain an existence result for
periodic orbits on the level sets of the first integral we must substitute the
linear part of X with a suitable jet of it, and we must prove that any exten-
sion of that jet has a nonzero Fuller index, with respect to some admissible
neighbourhood of a compact of periodic orbits. This is the argument on
which we will base the proof of Theorem 3.1.

Throughout this section we will always suppose that the vector fields are
C4. Let G 3 be the space of 3-jets at O # Rm. The 3-jet of a given vector field
X will be indicated as X� , while given a 3-jet X� an extension X of X� verifies
j3X=X� . Let

I(x)=x2
1+ } } } +x2

2k&(x2
2k+1+ } } } +x2

m)

be a fixed first integral in Morse normal form: if X is a smooth vector field
having I as a first integral and

X(x)=Lx+P2(x)+P3(x)+ } } } ,

where the Pj (x)'s are homogeneous vector polynomials, then

Lx } {I#P2(x) } {I#P3(x) } {I# } } } #0.
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Let A be the subset of G3 defined, in x-coordinates, by the following three
conditions:

(i) P2(x)#05

(ii) Lx } {I#P3(x) } {I#0

(iii) this condition has an elementary geometrical meaning: it is a
condition of dissipativity, e.g., in the sense of Levinson, on the base of
M1 viewed as a trivial fiber bundle M1 &S 2k&1_Rm&2k. Its precise
analytic expression is the following. If P3(x)=�m

i=1 P3, 1(x) ���x1+ } } } +
P3, m(x) ���xm then

P3, 2k+1(x) x2k+1+ } } } +P3, m(x) xm<0

if x2k+1 } } } xm {0.

Remark. It is easy to see that the above conditions do not depend on
the choice of the coordinates of the Morse normal form of I, in the sense
that they define a semialgebraic set in the 3-jet space of the vector fields at
O, independent of the choice of coordinates. We will also give concrete
examples of systems having 3-jet satisfying the above conditions.

Theorem 3.1. Let X be any smooth (or only C4) vector field which is an
extension of a 3-jet in A. Moreover, let X admit I as a first integral and let
DX(O)=L admit the decomposition L=A�B where A generates a multi-
rotation and defines a maximal invariant subspace E, D2I | E (O) is definite,
and A, B do not necessarily satisfy the nonresonance blocks condition. Then
X admits a family of periodic orbits #h satisfying the same properties in the
statement of Theorem 2.3.

Proof. As in the proof of Theorem 2.3 we consider 1 as the phase
space. We prove the theorem in the worst case, namely the case of com-
plete resonance, when B generates the same multirotation as A: all the
other cases reduce to this one by simple considerations. Let us remark that in
the considered situation m=2n. Let us consider M1 as the trivial fiber bundle

p: M1 &S2k&1_R2(n&k) [ R2(n&k)

with fiber diffeomorphic to S2k&1. Condition (ii) in the definition of A

implies that the vector field

Z(x)=Lx+P3(x)
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admits I as a first integral. With a slight abuse of notation we will denote
by Z(x) the 3-jet class at O of vector fields to which Z(x) belongs. We will
show that for any extension X of Z

j3X=Z

such that X still admits I as a first integral and for every 0<h<h� the
vector field Xh has a periodic orbit of period approximately 2?, hence
concluding the proof. We begin defining the smooth homotopy = [ Z= ,
where =�0, satisfying Z0=Z, and such that any Z= still admits I as a first
integral. It is easier to carry on such construction for the blown up vector
fields Z� = . Let

Z� h=Z� | M� h
: M1 [ TM1

and

Z� h, ==Z� h+Zvert
= +Zhor

= ,

where the vertical and horizontal vector fields

Zvert
= ==_*($)

Zhor
= =&=p*(E2(n&k)

are defined as the analogous vector fields in the proof of Theorem 2.3.
Writing X # A as X=Z+N, we define

= [ Z=+(1&=) N=X= .

The particular homogeneous form of I implies that it is a first integral for
X= , too. For every h>0 let X� h, = : M1 [ TM1 be defined as

X� h, ==X� = | M� h
=Z� h, =+(1&=) ?

*
&1N.

If p: M1 &S2k&1_R2(n&k) [ R2(n&k) is the projection of the bundle we
consider6

Dr, h=[v # R2(n&k) : v2
1+ } } } +v2

2(n&k)<r2]

and define

0� = p&1(Dr, h).
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Let us consider as usual the splitting

TqM1=TqS2k&1_TqRm&2k

induced by the trivial bundle structure of M1 . Hypothesis (iii), together
with the fact that ?

*
&1(N)=o(h2) uniformly in the closure of 0� , imply that

for sufficiently small h the vector field X� h=X� | M� h
has component along

TqRm&2k forming an angle with �Dr, h which is always greater of a given
positive number (say one half of the minimum angle formed by the compo-
nent of Z� 0, 0 along TqRm&2k with �Dr, h). Therefore if q # �0� , or equiv-
alently if p(q) # �Dr, h and if .h

t is the flow of X� h then p(.h
t (q)) # Dr, h for

every positive t. The definition of Zhor
= implies that this conclusion still

holds true for the flow of X� h, = for 0�=�1 and for every sufficiently small
h. Therefore no closed orbit of period close to 2? of X� h, = can pass through
�0� , and it follows that there exists h� >0 such that for 0<h<h� the set
0=0� _]?, 3?[ is admissible for the smooth homotopy = [ X� h, = . If we
prove that for a fixed 0<=<1 there exists h(=)<h� such that if 0<h<h(=),
then i(X� h, = , 0)=k, we can conclude that i(X | Mh

, ?(0))=k, and this ends
the proof. Let L� =?

*
&1L be the lifted linear vector field. The perturbation

L� ==L� +Zvert
= +Zhor

=

has exactly k periodic hyperbolic orbits with minimal period 2? (see [3, 4]),
#1h , ..., #kh , contained in M� h &S2k&1_R2(n&k). Let us remark that X� h, ==
L� =+o(1), o(1) [ 0 as h [ 0, and that this vector field defines, in local
coordinates near one of the #jh 's, the system

u* =Au+=$� (u)+hF(=, u, v, h)

v* =(B&=E2(n&k)) v+hG(=, u, v, h)

where u=(u1 , ..., u2k), u2
1+ } } } u2

2k=1, v=(v1 , ..., v2(n&k)), =$� =Zvert
= and

F, G=o(1) as h [ 0. Let us stress the fact that for a fixed positive = and for
h=0, such a system has k hyperbolic 2?-periodic orbits. Therefore for a
fixed positive =, there exists h(=), h(=)<h� , such that for 0<h<h(=), X� h, =

has k hyperbolic periodic orbits #jh(=) of approximate period 2?. Moreover,
it is easy to check that, at least if h(=) is sufficiently small, X� h, = has no other
closed orbit having period in ]?, 3?[. Therefore i(X� h, = , 0)=i(X� h , 0)=k.
The case of general B exhibiting a resonance relation with A needs only
some obvious modifications of the above arguments. Finally, the case when
k=1 is covered by the same argument, where the perturbed vector field Z=

is obtained through a horizontal perturbation Zhor
= only, as in the proof of

Theorem 2.3. K
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Remark. It is probably worthwhile to observe that the conditions
(i)�(iii) are rather crude and can be substituted, as the reader can easily
understand, by less restrictive, but more cumbersome, ones: for instance
the conditions of types (ii) and (iii) could be expressed through the averaged
vector field along a time interval of length 2?, etc. We content ourselves with
the above considerations, having in mind mostly the geometric interpretation
of the results in [9] and the already given improvements of it with respect to
the generality of the permitted resonances. For instance the geometric inter-
pretation given by (iii) explains why the condition for the existence of period
orbits is given on the 3-jets and not on the 2-jet: in fact the analogous of
(iii) for the 2-jets leads to a condition of definitiveness for a 3-form, which
is impossible. On the other hand the hypotheses (i)�(iii) are semialgebraic
and they are consistent, as the following example shows. We consider the
class of 3-jets at O of vector fields in R4, with the first integral in Morse
normal form I(x)=x2

1+ } } } +x2
4 and with the linear part given by the two

standard uncoupled oscillators

L=I1 �I2 ,

where

I1=I2=\0
1

&1
0+

satisfying

P2#0

P3, 1(x)=x1(x2
3+x2

4)

P3, 2(x)=x2(x2
3+x2

4)

P3, 3(x)=&x3(x2
1+x2

2)

P3, 4(x)=&x4(x2
1+x2

2).

This 3-jet satifies the conditions (i)�(iii); hence every extension of it, still
admitting I as a first integral, has a periodic orbit on each level manifold
of the integral.

4. PSEUDOSPHERICAL BLOW UP

The aim of this section is to give a proof of Lemma 2.1. Of course in
this section we refer to the analogous tractation given by Takens in [10]
for the spherical blow up, even if our arguments will be slightly different
��obviously only from the computational point of view��from those of
Takens. We recall the definition of the pseudospherical blow up as it has
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been given in the first section: the pseudospherical blow up map is (here as
usual p=2k)

?: R+
0 _M1 &R+

0 _S p&1_Rm& p [ 1� =[I�0],

where

x1=h - 1+w2
p+2+ } } } +w2

m u1 cosh /

b

xp=h - 1+w2
p+2+ } } } +w2

m up cosh /

xp+1=h - 1+w2
p+2+ } } } +w2

m sinh /

xp+2=hwp+2

b

xm=hwm ,

where S p&1=[u2
1+ } } } +u2

p=1], h # R+, and (/, wp+2 , ..., wm) # Rm& p.
We study now the vector field

X� =?*X

which is defined a priori only for h>0. We will prove that X� admits a C r&1

extension up to the divisor h=0. Let � be the complex of the variables
after the blow up: �=?&1(x). The computation of ?

*
&1 leads to the follow-

ing expression, valid for h>0

X� (�)=?
*
&1Lx(�)+?

*
&1P2(x(�))+ } } } +?

*
&1Pk(x(�))+?

*
&1Rk(x(�)),

where Rk(x)=o(&x&k). From direct computation we get

?
*
&1(x(�))=h&13,

where 3 is the matrix

ha(w) u1 cosh(/) } } } ha(w) u2k cosh(/) ha(w) sinh(/) &hw2k+2 } } } &hwm

(1&u2
1)F } } } &u1u2kF 0 0 } } } 0

b b b b b

&u2ku1 F } } } (1&u2
2k)F 0 0 } } } 0

f1 } } } f2k f2k+1 f2k+2 } } } fm

M1, l } } } Mlp N1 1&w2
2k+2 } } } &w2k+2wm

b b b b b

Mm&2, l } } } Mm&2, p &wmNp &wm w2k+2 } } } (1&w2
m)
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where a, F, fj , Mke , N are real analytic functions of �, not depending on
h; their explicit expressions of are no importance for us. We observe that
the �-coordinates are homogeneous in h; hence

X� (�)=L*(�)+hP2*(�) } } } +hk&1Pk*(�)+h&13Rk ,

where L* and each Pj* is regular up to h=0, and the regularity problem
reduces to prove that

Lemma 4.1. h&13Rk is Ck&1-regular and verifies

h&13Rk=o(hk&1).

Proof. Let G=h&13Rk : the statement of the lemma is proved if we
prove that for each differential operator DS

�

(l ) in the variables of �, of
order l, l�k&1 we get

lim
h [ 0

Ds
�

(l )G(�)=0

when - 1+w2
2k+2+ } } } +w2

m<constant, |/&/0 |<constant or, in other
words, that the (k&1)th order jet of G is zero along the divisor

J k&1
[h=0]G=0.

This is a classical argument of division lemma type (see [11] for details):
the key step is the proof (by an easy induction) of the equality

�l

�hl

Rk

h
=

R (l )
k

h2 l ,

where

R(l )
k =o(h2 l+k&1&l )

from which the statement easily follows. K
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Remark. From the above lemma it follows that the pseudospherical
blow up leads to a lifted vector field X� defined up to the divisor. It is
worthwhile observing explicitly the following two facts. First, as we already
said the above proof is only slightly different from the analogous one given
by Takens in [10] in the case of the spherical blow up, nevertheless it
shows a difference between spherical and pseudospherical blow up, namely
the non-uniformity of the limit

lim
h [ 0

D (l )
S
�

G(�)=0

in the pseudospherical case: the condition that in the above limit

|/&/0 |<constant

simply reflects the fact that the pseudospherical blow up corresponds to a
pseudo-Riemannian metric and points at zero distance��with respect to
this metric��from the origin O need not be topologically close to O. Second,
and not unrelated to the previous remark, in the case of pseudospherical blow
up the dynamics of X� along the divisor [h=0] do not reflect the dynamics
of the original vector field X along the 0-level set of the first integral (they
are the dynamics of the linear part).

Finally let us observe that, from the expression of the Jacobian matrix
h&13 of the pseudospherical change of coordinates, we easily get that the
submanifold of M1 given by [x2k+1= } } } =xm=0]&S2k&1 is invariant
by the flow of X� 0 , and this flow generates on [x2k+1= } } } =xm=0] the
Hopf fibration on the sphere S 2k&1, with periodic orbits of period 2?. This
concludes the proof of Lemma 2.1.
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