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The properties of metallic systems with important and structured excitations at low energies, such
as Cu, are challenging to describe with simple models like the plasmon pole approximation (PPA),
and more accurate and sometimes prohibitive full frequency approaches are usually required. In
this paper we propose a numerical approach to GW calculations on metals that takes into account
the frequency dependence of the screening via the multipole approximation (MPA), an accurate and
efficient alternative to current full-frequency methods that was recently developed and validated
for semiconductors and overcomes several limitations of PPA. We now demonstrate that MPA
can be successfully extended to metallic systems by optimizing the frequency sampling for this
class of materials and introducing a simple method to include the q → 0 limit of the intra-band
contributions. The good agreement between MPA and full frequency results for the calculations of
quasi-particle energies, polarizability, self-energy and spectral functions in different metallic systems
confirms the accuracy and computational efficiency of the method. Finally, we discuss the physical
interpretation of the MPA poles through a comparison with experimental electron energy loss spectra
for Cu.

I. INTRODUCTION

Many-body perturbation theory provides accurate
methods to study the spectroscopic properties of con-
densed matter systems from first principles [1–3]. Cal-
culations often adopt the so-called GW approxima-
tion [2, 4–8], for which the frequency integration in the
evaluation of the self-energy is crucial to the deploy-
ment of the method. The frequency dependence of the
screened potential, W , is often described within the plas-
mon pole approximation (PPA) [9–14], successfully ap-
plied to the calculation of quasi-particle energies of semi-
conductors [9], the homogeneous electron gas [15] and
simple metals as Al and Na [16–19], especially for quasi-
particles with energies close to the Fermi level. However,
the description of the self-energy and the spectral func-
tions for the whole range of frequencies is still challenging
and requires expensive full frequency (FF) approaches.

Despite its success, the use of PPA is problematic when
complex metals are concerned, even for the calculations
of quasi-particle energies [6]. Its applicability for tran-
sition and noble metals has often been disputed [6, 20],
since the approximation is based on the homogeneous
electron gas, for which PPA becomes exact in the long
wave-length limit [4, 21, 22], while it is in principle
not strictly valid in the presence of strongly localized
d-bands. In fact, these metals present complex screen-
ing effects due to collective excitations [23, 24], which
result in highly structured energy-loss spectra whose de-
scription is unattainable with a single plasmon peak [24].
Moreover, metals with relevant excitations at low ener-
gies, such as Cu, require a specially accurate description
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of the low frequency regime, which makes it difficult to
determine the PPA parameters since it requires sampling
the polarizability at zero frequency [20].

In this context, we have recently developed a multipole
approach (MPA) that naturally bridges from PPA to FF
treatments of the GW self-energy [25]. The method has
been implemented in the yambo code [26, 27] and was
validated for bulk semiconductors. We have shown that,
for semiconductors, MPA attains an accuracy compara-
ble to that of FF methods at a much lower computational
cost, while also circumventing several of the PPA short-
comings. Here we extend the assessment of MPA valid-
ity and performance to the case of metals. We do so by
computing quasi-particle energies, together with the full
frequency dependence of the self-energy and the spectral
function. The approach is similar to the one used for
semiconductors [25], with only slight changes in the fre-
quency sampling strategy used in the multipole interpo-
lation. In the following, we show that MPA is accurate
for metallic systems, even in cases in which the use of
PPA is challenging. In addition to MPA, we also propose
a simple ab-initio method to include intra-band contri-
butions [28–32] to the dielectric function in the q → 0
limit, absent in semiconductors. Despite its virtually
zero computational cost, it significantly accelerates the
convergence of quasi-particle energies with respect to the
k-points grid, in systems where the intra-band contribu-
tions are dominant.

The paper is organized as follows: In Sec. II, we briefly
summarize the GW approximation and the MPA ap-
proach. In the same Section, we further extend the
strategy used in the frequency sampling for the multipole
interpolation, with respect to the MPA implementation
presented in Ref. [25] for semiconductors. We also dis-
cuss the relevance of the inclusion of the intra-band con-
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tribution to the dielectric function in the limit q→ 0. In
Sec. III we first present MPA calculations for simple met-
als and propose a simple way of including the aforemen-
tioned intra-band limit. We then describe in detail the
results obtained for Cu, a prototype challenging system
for PPA. Finally, in Sec. IV we summarize and discuss
the main conclusions of this work.

II. METHODS

A. Quasi-particle energies within GW

We adopt the GW approximation [2, 4–8] for the eval-
uation of the electron-electron self-energy, which is com-
puted via a frequency convolution of the one-particle
Green’s function G(ω) and the dynamical screened in-
teraction potential W (ω):

ΣGW (ω) =
i

2π

∫ +∞

−∞
dω′e−iω

′ηG(ω − ω′)W (ω′). (1)

In the present work we limit ourselves to the G0W0

approximation, although MPA, the method we want
to discuss here, can be exploited also within more
advanced approaches such as different self-consistent
GW schemes [33–39], or methods including vertex-
corrections [35, 40–43] and cumulant expansions [44]. A
more comprehensive discussion of these aspects can be
found e.g. in Refs. [7, 8]. The present implementation
uses as a starting point single-particle energies and wave-
functions computed within Kohn-Sham (KS) density fun-
tional theory (DFT) to then build the non-interacting
single-particle Green’s functionG0(ω) and the irreducible
polarizability, X0(ω).

The dressed polarizability, X(ω), and the screened in-
teraction, W (ω), are then numerically evaluated by solv-
ing the Dyson equation for each given frequency:

X(ω) = X0(ω) +X0(ω)vX(ω) (2)

W (ω) = ε−1(ω)v = v + vX(ω)v,

where v is the bare Coulomb potential, ε the dielectric
function and, for simplicity, we have omitted the spatial,
non-local, degrees of freedom. All the quantities have
to be thought as frequency dependent operators or ma-
trices of the form X(ω) = X(r, r′, ω), or, when using
a plane-wave basis set, XGG′(q, ω). The quasi-particle
(QP) energies εQP

m are then computed either by numeri-
cally solving the exact QP equation,

εQP
m = εKS

m + 〈ψKS
m |Σ(εQP

m )− vKS
xc |ψKS

m 〉, (3)

or its linearized form:

εQP
m ≈ εKS

m + Zm〈ψKS|Σ(εKS
m )− vKS

xc |ψKS
m 〉, (4)

with the renormalization factors Zm given by

Zm =

[
1− 〈ψKS

m |
∂Σ(ω)

∂ω

∣∣∣∣
ω=εKS

m

|ψKS
m 〉
]−1

. (5)

In the above equations we have made reference to the
Kohn-Sham eigelvaues and eigenvectors, εKS

m and |ψKS
m 〉,

respectively.
A key quantity in the above formulation is the dy-

namical part of the inverse dielectric function, Y ≡
ε−1 − I = vX, which determines the correlation part
of W , Wc ≡W − v = Y v, and, through Eq. (1), the cor-
relation part of the self-energy, Σc. With the purpose of
avoiding the expensive numerical evaluation of the fre-
quency convolution in Σc, Eq. (1), as required e.g. by
full frequency real axis (FF-RA) approaches [20, 45] or
contour deformation (FF-CD) techniques [34, 46, 47], Y
or X have been the target of several analytical simplifica-
tions like the plasmon pole approximation (PPA) [9–13]
or the multipole approach (MPA) [25], briefly sketched
below.

B. The multipole approach

The multipole approximation is inspired by the
Lehmann representation of the polarizability X. At the
independent particle level, X (equal to X0) is written in
a compact way as a sum of poles with vanishing imag-
inary part corresponding to all possible single particle
transitions (here considered at the Kohn-Sham level for
simplicity) of energy ΩKS and probability amplitudeRKS:

X0(ω) =

NT∑

n

2RKS
n ΩKS

n

ω2 − (ΩKS
n )2

, (6)

where Re[ΩKSn ] is positive defined and Im[ΩKSn ]→ 0− to
ensure the correct time ordering. The sum is truncated
at a finite number of transitions (NT ) determined by the
number of bands included in the calculation.

The MPA approach provides an analytic continuation
for the dressed polarizability X to the complex frequency
plane, z ≡ ω + i$, by representing it as a sum of a few
complex poles np (usually of the order of 10 to 15), as

XMP(z) =

np∑

n

2RnΩn
z2 − Ω2

n

. (7)

Note that this representation is applied to each matrix
element in reciprocal space, XMP

GG′(q, z).
By considering Eq. (7) and the Lehmann representa-

tion for G0, the correlation part of the GW self-energy is
then integrated analytically and reads:

ΣMP
c (ω) =

NB∑

m

np∑

n

PmvRn

[
fm

ω − Em + Ωn − iη
+

+
(1− fm)

ω − Em − Ωn + iη

]
v. (8)

where Pm are projectors over KS states, Em their
eigenenergies, and fm their occupations. The sum-over-
states is truncated at the maximum number of bands,
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NB . This expression generalises the PPA solution to the
case of a multipole expansion for X(z), and bridges be-
tween PPA and an exact full-frequency approach by in-
creasing the number of poles in X. More details about
this procedure can be found in Ref. [25].

C. MPA sampling for metals

The poles and residues in Eq. (7) are obtained by nu-
merically evaluating X for a number of frequencies equal
to twice the number of poles and solving the resulting sys-
tem of equations (see details in Ref. [25]). Since the num-
ber of poles used in the MPA model, np, is much smaller
than the total number of electron-hole transitions of the
target polarizability, NT , the representation, and there-
fore the efficiency of the method, depends critically on the
frequency sampling used in the interpolation. For semi-
conductors, the so-called double parallel sampling proved
to be the most robust and accurate with respect to FF
calculations, with the fastest convergence with respect
to the number of poles. It runs along two parallel lines
above the real axis:

sDP =

{
z1: z1n = ωn + i$1

z2: z2n = ωn + i$2,
n = 1, .., np (9)

The first of the two branches is closer to the real axis (e.g.
with $1 = 0.1 Ha), except for the first point, set exactly
at the origin of coordinates, z11 = 0. The second branch
is located further away, typically at $2 = 1 Ha. In a
simplified view, X sampled along the first line preserves
some of the structure of X in a region close to its poles,
while X sampled along the second line is simple enough
to be described with a few poles, and accounts for the
overall structure of X. A more detailed description can
be found in Ref. [25].

In order to obtain a numerically stable and effective
sampling for metals we found that, at variance with the
semiconductor case [25], a small shift of the z11 point (in
the origin) along the imaginary axis is needed, resulting
in z11 = i$1, where $1 = 10−5 Ha. The shift is done in
order to avoid numerical instabilities due to intra-band
transitions with energies close to zero. This is similar to
the PPA implementation for metals [26, 27], which adopts
a 10−8 Ha shift, but in this case along the positive real
axis instead of the imaginary axis.

A second difference with respect the strategy used
for semiconductors concerns the distribution of the fre-
quency sampling of X along the real axis. For semi-
conductors [25], the frequency sampling is done in non-
uniform grids, in particular, a semi-homogeneous parti-
tion in powers of 2 that ranges from 0 to ωm, called linear
partition. Here, we generalize it to any possible exponent

α:

{ωn}α :
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(10)

The distribution described on Ref. [25] corresponds to
α = 1. As discussed below, there are cases (see for exam-
ple the case of copper in Fig. 4), in which X presents a
more complex structure at low frequencies and therefore
a denser sampling grid in that region is convenient. The
distribution corresponding to α = 2 concentrates more
points at low frequencies than the linear case, α = 1,
and permits to increase the accuracy of the X descrip-
tion without changing the frequency range, ωm, or in-
crease the number of poles used in MPA. In this work,
we adopt a quadratic partition, corresponding to α = 2,
for Al and Cu, and a linear one, α = 1, for Na.

D. Intra-band contributions

Despite the success of the GW approximation, systems
with metallic screening present specific methodological
challenges, one being the inclusion of intra-band transi-
tions [31, 48]. Specifically, for partially filled bands, there
is a non-vanishing probability that an electron is excited
within the same band, i.e. within states with quantum
numbers k, n and k− q,m, with n = m. Notably, these
transitions play an important role, for example, in noble
metals [20, 49]. Both inter- and intra-band transitions
contribute to the irreducible polarizability as defined in
Eq. (6). However, the energy of the pole corresponding
to intra-band transitions decreases with q until it van-
ishes in the q → 0 limit. Despite this behaviour, the
contribution to the inverse dielectric function in the case
of bulk metals is still finite, due to the divergence of the
Coulomb potential, which makes Y = vX not vanish-
ing for q → 0. For this reason, in the case of metals
it is important to properly take this term into account,
since it cannot be simply evaluated as in the case of the
inter-band contributions.

In principle, it is possible to decrease the weight of
the q = 0 element, that contains only inter-band terms,
by systematically increasing the number of k-points in
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the Brillouin zone (BZ) sampling. However, the con-
tributions from the Fermi surface can dramatically slow
down the convergence with respect to the k-space sam-
pling [29], resulting in spurious gaps at the Fermi level
that vanish very slowly with increasing number of k-
points [32]. Several approaches to include the intra-
band limit have been proposed. The ones based on ex-
plicit Fermi-surface integration [28, 30, 31] are, as ex-
plained above, computationally expensive since they re-
quire dense k-grids. Alternatively, analytical models
based on a Taylor expansion of the dielectric function in
the small-q region, avoiding explicit Fermi-surface calcu-
lations, are able to remove the spurious gap at the Fermi
level with a limited number of k-points [32, 50, 51]. Nev-
ertheless, some of them may depend on ad hoc external
parameters.

A common approach to include the missing intra-band
contribution relies on the use of a phenomenological
Drude-like term added to the head of the irreducible
dielectric matrix in the q → 0 limit, YG=G′=0(q =
0, ω) [30]. In the long-wavelength limit, q→ 0, the Drude
term for the independent particle dielectric function can
be written in the form [24, 28, 30, 52, 53]

YD(ω) =
ω2
D

ω(ω + iγ)
+O[q2], (11)

where the Drude frequency, ωD (see Table II), is an input
parameter of the model and the relaxation frequency γ
is usually a free parameter set typically to γ = 0.1 eV. In
principle ωD can be determined fully ab-initio, resorting
to very dense k-point grids [20, 30] or to an interpolation
of the BZ, for instance with Wannier functions [54–57] or
the tetrahedron method [29, 30, 39, 58]. Alternatively,
experimental values can also be used when available.

In the next Sections we will discuss the possibility
to extrapolate a complex plasmon frequency (see Ta-
ble II) in the q → 0 limit from the frequency structure
of Y (q, ω) at finite q, which in general is a superposi-
tion of intra- and inter-band contributions. In a second
step, we will use a f -sum rule [24] in the same spirit of
Ref. [30], in order to estimate the intra-band contribu-
tion to the plasmon frequency. We will also propose a
simple and virtually zero-cost method to include an ap-
proximate treatment of the missing intra-band limit from
first-principles, without the need to resort to any add-on
model.

III. RESULTS AND DISCUSSION

In the following, we present the results for three
bulk metallic systems highlighting different issues arising
when applying the GW approach to metals. We start
by studying the case of two simple metals, Al and Na
(see e.g. Refs. [59–61] for a description of their band
structures). Next, we focus our attention on Cu, a more
challenging system whose electronic structure has been

DFT-PBE GW-PPA GW-MPA

Al Γ1 -11.12 -10.79 -10.94
Γ25′ 12.71 12.30 12.48
X4′ -2.93 -2.91 -2.86
W3 -0.85 -0.83 -0.82

Na Γ1 -3.27 -2.85 -2.97
Γ25′ 11.76 11.19 10.81

TABLE I. Al and Na quasi-particle energies (eV) with respect
the Fermi level computed within DFT-PBE, GW-PPA, and
GW-MPA using a 16 × 16 × 16 k-grid including the q → 0
intra-band contribution through the CA method.

thoroughly studied, both experimentally [62, 63] and the-
oretically [20, 64–66]. The use of PPA for Cu has been
shown to be problematic [20] and, for this reason, copper
is not only an important test case for the application of
MPA and the description of intra-band effects, but also
provides a better understanding of the applicability of
PPA.

As a starting point for our GW simulations, we use
DFT calculations performed at the PBE [67] level using
scalar-relativistic optimized norm-conserving Vanderbilt
pseudopotentials [68], as implemented in the Quantum
ESPRESSO package [69, 70]. The kinetic energy cut-off
is set to 100, 70, and 150 Ry for Al, Na, and Cu, respec-
tively. The k-grids were determined by the convergence
requirements of the GW calculations, considering, in par-
ticular, the specific treatment of the intra-band limit.
When reporting quasi-particle energies, we use k-point
grids of 16 × 16 × 16 for Al and Na, and 12 × 12 × 12
for Cu. Moreover, the GW correction to the Fermi level
is linearly interpolated from the corresponding correc-
tions to the closer quasi-particles present in the specific
k-mesh.

The DFT results are in good agreement with previ-
ous results obtained with the same method [65], and in
reasonable agreement with the results reported for Cu in
Ref. [20], performed using LDA [31]. In fact, the GW re-
sults for Cu have shown to be very sensitive to the choice
of the DFT starting point [65], though we will not address
this point here. The GW calculations were done using
the yambo [26, 27] code. The numerical convergence of
the GW results has been checked with care, and the re-
sulting parameters, being system dependent, are detailed
in the sections below when discussing the results.

A. MPA for simple metals

We start by computing quasi-particle energies of Al
and Na using MPA. Here the frequency dependence of the
polarizability presents a structure with mainly one strong
plasmon peak, similar to that of silicon computed in
Ref. [25]. As expected, the double parallel sampling en-
sures convergence with a similar number of poles, np = 8.
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FIG. 1. Frequency dependence of the real part of the self-energy (panels a) and c)) and spectral function (panels b) and d))
computed with MPA for three quasi-particles of Al (panels a) and b)) and two of Na (panels c) and d)), including the intra-band
limit using CA (see text). In the case of Na, we also show the corresponding curves without any intra-band correction (nD).

The present results were obtained considering 300 bands
for both X and Σ and an energy cut-off for X of 20 and
15 Ry for Al and Na respectively.

In Table I we report the quasi-particle energies for Al
and Na, including Γ1 (the lowest QP peak at Γ, corre-
sponding to the valence bandwidth) and other reference
quasi-particles, computed using PPA and MPA. MPA
QPs are generally in very good agreement with FF val-
ues from the literature (see e.g. Ref. [19] and references
therein). According to our calculations, the computed
quasi-particles values for Al and Na with MPA are esti-
mate to differ by less than 8 meV from the correspond-
ing FF-RA results (comparison done using 10 Ry cutoff
to represent X0 for both MPA and FF-RA), as found
for semiconductors [25]. Instead, PPA QPs show devia-
tions that are systematically larger for states further from
Fermi.

Previous GW calculations for Al and Na [19] have
shown that PPA describes well the tail of the self-energy,
i.e. the frequency region around the Kohn-Sham ener-
gies, and gives reasonable QP solutions for both Al and
Na. However, if we consider the whole frequency range,
the agreement between PPA and FF-CD is less satisfac-
tory. PPA shows sharp fluctuations in the self-energy
and spectral functions, that result in several spurious so-
lutions of the quasi-particle equation, evidenced by mul-
tiple small peaks in the spectral function (see e.g. Fig. 4 of
Ref [19]). In Fig. 1 we show the self-energy and spectral
function for Al and Na, this time computed with MPA.
The comparison with results obtained within FF-CD [19]

shows that MPA not only describes well the tail of the
X(ω) and Σ(ω) functions, but also correctly describes
the positions of the peaks and their relative intensities in
the whole frequency range.

In the left panels of Fig. 1 we focus on Al and
plot, as a function of the frequency, the MPA self-
energy, 〈ψmk|Σ(ω)|ψmk〉, and the spectral function,
〈ψmk|Im[G(ω)]|ψmk〉. These quantities have been pro-
jected on three Al states, one corresponding to the bot-
tom of the valence band at Γ and two other Kohn-Sham
states closer to the Fermi level. Comparing the three
self-energy functions, there is a more effective pole su-
perposition for states at energies further away from the
Fermi level. Indeed, for the lowest energy state with
EKS = −11.2 eV, this leads to a frequency dependence
of Σ with an intense single pole (at about -15 eV with
respect to EKS) and consequently a very broad and shal-
low QP peak in the corresponding spectral function. At
the same time the satellite structure is enhanced to the
point of becoming a second peak, originating from a sec-
ond solution of the quasi-particle equation (intersections
of the dashed line with the self-energy function in the
upper panel). This scenario is consistent with the so-
called ”plasmaron” peak, a sharp satellite feature emerg-
ing as an artefact of the G0W0 approximation to the self-
energy [2, 44, 71].

The situation is similar for the two QPs computed for
Na shown in the rights panel of Fig. 1, with the lowest
state presenting again two solutions for the QP equation.
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B. Analysis of the intra-band contribution

In common GW implementations, especially those tar-
geting semiconductors, the intra-band contribution to the
dielectric function in the q → 0 limit, Eq. (6), is often
not included, as explained in Sec. II D. In the case of
Al, where a substantial part of the Fermi surface is very
close to the BZ boundary, one can expect [32] that many
of the metallic contributions are effectively inter- rather
than intra-band terms, resulting in a small error when
the intra-band term is neglected [32], while for Na the
intra-band terms are found to be more relevant.

For both Al and Na, in Fig. 2 we show how this af-
fects the frequency dependence of the YG=G’=0 matrix
elements computed for different q-vectors along an arbi-
trary direction. The curves in green shades correspond
to Y (ω) computed for finite but small q. The orange
curve corresponds to the q → 0 limit evaluated only for
the inter-band term. There are two main differences be-
tween the green and orange curves. The first difference is
the limit of Re[Y ] as the frequency tends to zero (static
limit), that evolves smoothly for finite q but in general
tends to a value different from the one corresponding to
q = 0. As shown in the insets of Fig. 2, the smallest fi-
nite q provides a static limit very similar to the value for
q = 0 in the case of Al, while it is considerably larger in
the case of Na (both results in agreement with previous
studies [32]).

This difference has been commonly used as a measure
of the missing intra-band term [19, 32], since for metals
in the limit q→ 0, ε−1G=G′=0(q, ω = 0) vanishes, meaning
that Y00(q, ω = 0) → −1, as apparent from the progres-
sion of the curves with finite q, that include intra-band
transitions. In fact, in the independent particle picture,
the q → 0 limit of Re[Y ] at ω = 0 is related to a non-
vanishing probability of vertical transitions within the
same band [30], and can therefore be used to estimate a
Drude frequency [74, 75]. However, this probability alone
does not determine the plasmon frequency (see Table II
for a summary of the nomenclature) or the position of
the pole of Re[Y ] for q→ 0.

In fact, the second difference between the orange (q =
0, no intra-band contribution) and the green curves (fi-
nite q, intra-band included) in Fig. 2 is the position of
the main pole of Y (ω), here called Ωp, or in the case of
Na, to the apparent absence of poles for q = 0, whose
small amplitudes cannot be seen in the plot. If the whole
frequency range is considered, we see that the behaviour
of Re[Y (ω → 0)] depends on the position of Ωp. Follow-
ing the green curves at finite q, it is clear that YG=G′=0

for both Al and Na change smoothly with q. The curves
present a pole, Ωp(q), of decreasing energy and increasing
amplitude, just above 0.5 Ha for Al and 0.2 Ha for Na.
As shown in Fig. 2(e), both the real and imaginary part
of this pole can be easily extrapolated to q = 0, by means
of the Lindhard plasmon dispersion [30, 32, 72, 73].

In the same plot we show, as a reference, the Drude
frequency corresponding to the q→ 0 limit of the intra-

band contributions, ωA (see Table II), as computed in
Ref. [19] for Al and Na, in addition to the experimental
plasmon frequency ωp of Al [53, 72, 76–79] and Na [72].
In the simulations we can also extrapolate, already with
a 8×8×8 k-point mesh, the plasmon frequency at q→ 0
from the position of the main structure of the response
functions, namely ωp ≡ Re[Ωp]. This procedure provides
ωp = 0.55 Ha (15.01 eV) for Al, in excellent agreement
with the experimental value of 15.0 eV [30]. Similarly,
the value extrapolated for Na, ωp = 0.21 Ha (5.79 eV),
matches very well the experimental value of 5.9 eV [72]
and both compare well with the Drude intra-band fre-
quency computed in Ref. [19] (6.18 eV). The small dif-
ference between our theoretical result and Ref. [19] can be
attributed to methodological differences (e.g., the DFT
functional on top of which the GW calculations are per-
formed). In contrast, the difference between ωp and
ωA for Al is larger than 2.5 eV since the plasmon fre-
quency ωp has non-negligible contributions from both
intra- and inter-band transitions, as previously reported
in Refs. [30, 53]. Note however that the inter-band con-
tributions are not included in the Drude frequency com-
puted in Ref. [19].

In order to discriminate between the intra- and inter-
band contributions to the plasmon frequency, we have
used a simple expression based on the f -sum rule [2, 30,
80], but separating the two contributions:

Ω2
A = lim

q→0

2

π

∫ ∞

0

dω ω Im[Y (q, ω)− YE(q, ω)], (12)

where YE corresponds to inter-band transitions only,
while Y accounts for the complete response. Within
MPA the integral is solved analytically (derivation in
Sec. I of the Supplemental Material [81]), leading to:

Ω2
A = 2v(RpΩp −REΩE), (13)

where ΩE and vRE are the position and the residue of
the most relevant pole of YE(q = 0), while Ωp and vRp
are the corresponding values for Y (q = 0).

In principle, the product vRpΩp should be computed in
the q→ 0 limit. We have instead considered the extrap-
olation of Ω2

p, which is equivalent in our model (see Sec. I
in the Supplemental Material [81]) and significantly more
stable. The values of vREΩE are taken directly from the
calculation at q = 0 (orange curves in Fig. 2a,b), since no
intra-band transitions are considered, as explained above.
For Al, the real part of ΩE is ωE = 0.37 Ha (10.08 eV)
and thus, applying Eq. (13), the real part of the intra-
band pole ΩA is ωA = 0.43 Ha (11.72 eV). For Na, ωp and
ωA are similar. The comparison of ωp and ωA confirms
that the experimental plasmon frequency, ωp, in the case
of Na corresponds mainly to intra-band contributions,
while for Al there is an important inter-band contribu-
tion [53], and its use as a Drude intra-band frequency
would result in an overestimation of the actual ωA.

Making use of the extrapolation procedures described
above in the context of the MPA framework, and of a
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FIG. 2. Frequency dependence of YG=G′=0 matrix elements computed with MPA for different q vectors of modulus q ≡ |q|
tending to 0, a) and b) for Al, and c) and d) for Na. For q = 0 (orange curves) the intra-band transitions are not included.
The insets in panels a) and c) show the region around ω = 0. Panel e) shows the q dispersion of the real and the imaginary
parts of the main pole of Y for q0–q4 (qn = n

8
in units of 2π/a, being a the respective Al and Na lattice parameters). The solid

lines show the corresponding parabolic fits consistent with a Lindhard (bulk) plasmon dispersion [30, 32, 72, 73]. The black
dashed lines correspond to the experimental plasmon frequency of Al [30] and Na [72]. Dash-dot purple lines correspond to
the values of the intra-band frequency, ωA, computed in Ref. [19] using the method described in Ref. [50], while the violet one
corresponds to our estimate for Al, computed by means of Eq. (13).

Contribution Pole (complex) Frequency (real)

intra-band ΩA ωA = Re[ΩA]
inter-band ΩE ωE = Re[ΩE ]
plasmon(intra+inter) Ωp ωp = Re[Ωp]
plasma - ωpl =

√
4πρe

Drude(model) ωD + iγ ωD

TABLE II. Summary of the notation concerning frequency
related quantities introduced in this work. The plasma fre-
quency is defined in terms of the electronic density, ρe. The
Drude pole/frequency are model parameters used to describe
the plasmon or only its intra-band contribution, as described
in Eq. (11).

simple f -sum rule, it is possible to determine not only
the real but also the imaginary part of both the plas-
mon and the intra-band pole, usually not considered in
other ab-initio methods. It is also worth noticing that the
extrapolation is done with points from a much coarser k-
grid (8× 8× 8 for both Al and Na), with respect to the
grids required to compute the intra-band frequency with
an independent particle formulation [31, 32].

Despite the limited accuracy of the computed imagi-

nary values, they are meaningful and provide a qualita-
tive understanding of how intra- and inter-band terms,
linearly summed at the independent particle level, are
combined after the inversion of the Dyson equation.
While the Na case is trivial, since the inter-band con-
tribution is negligible, in the case of Al the small differ-
ence between ωA and ωE , comparable to their imaginary
parts, explains the presence of a single pole in Y (ω) lo-
cated roughly at ω2

p ∼ ω2
A+ω2

E (see Sec. I of Supplemental
Material [81]).

C. Modelling of the intra-band limit

Our analysis of the dressed response function Y (ω)
suggests that an alternative to the direct evaluation of
the intra-band limit, usually determined from X at the
independent particle level [31], can be obtained, either
by (1) including a complex Drude pole YD(ω), accord-
ing to Eq. (11), in the head (G = G′ = 0) of the in-
dependent particle dielectric function, with the Drude
frequency given by the computed intra-band pole; or (2)
approximating the full Y (q = 0) matrix element by its
nearest neighbour Y (q 6= 0), i.e. with the q-vector clos-
est to 0 according to the adopted k-point grid.
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The first method builds on using an estimate of the
Drude intra-band frequency, similar to the extrapolations
used in [75], but here considering the whole frequency
range and both intra- and inter-band contributions. The
second method, which we will call from now on constant
dielectric function approximation (CA), assumes that the
whole Y (q) matrix is constant in a small region around
q = 0. This approach is inspired by the leading term of
the Taylor expansion for small q of the Thomas-Fermi
distribution, and is corroborated by the small difference
of 0.006 Ha (0.17 eV) found for both, Al and Na, be-
tween the extrapolated value of Ωp and its value at the
first finite q, as shown in Fig. 2 e). Both methods simul-
taneously correct the position of the plasmon pole and
the limit of YG=G′=0 for ω = 0 and add virtually no
computational cost to the calculation. In addition, CA
also corrects other matrix elements for which the intra-
band limit may be important.

In Sec. II of Supplemental Material [81] we report
plots similar to the ones in Fig. 2 for Y matrix ele-
ments of Na other than the head, showing that after
the head (YG=G′=0), intra-band contributions are rele-
vant also for the so-called wing elements (YG=06=G′ and
YG6=0=G′), while less important for the diagonal elements
(YG=G′ 6=0), specially at increasing |G|. For finite |G| the
evolution of the Y (q) matrix elements when q → 0 is
less smooth and the position of the poles does not al-
ways change monotonously, meaning that an extrapola-
tion would require a denser k-point grid. Even if the con-
stant dielectric function approximation has limited accu-
racy for some of these matrix elements, it still provides
a significant overall improvement. In particular in ma-
terials such as Cu, as discussed below, the CA method
presents some clear advantages regarding the estimation
of ωA.

To assess the effect of this approximation in the QP
solution, in Fig. 3 we show Al and Na QP energies com-
puted without (nD) and with (CA) intra-band correc-
tions. When the number of k-points is increased, the
weight of the Y (q = 0) element in the self-energy de-
creases and both methods eventually converge to the
same quasi-particle values, but only very slowly, as dis-
cussed above. In fact, Fig. 3 shows that for two selected
QPs of Na the intra-band term is fundamental due to the
importance of this contribution to the screening prop-
erties of the system. In contrast, for Al the difference
is small, and the convergence is governed by the inter-
rather than intra-band contributions for all the 4 QPs
considered. In the bottom panel of Fig. 3 one can see
the significant acceleration introduced by CA in the con-
vergence of the bandwidth of Na, where, besides a small
oscillation in the 20×20×20 grid (caused by oscillations
in the DFT eigenvalues), the first point corresponding to
the 8×8×8 mesh already provides very accurate results.
In the CA scheme the convergence benefits simultane-
ously from the decrease of the weight of the Y (q = 0)
contribution and from the fact that the correction itself
improves for denser grids in reciprocal space, since the
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FIG. 3. Top panel: Difference between GW-MPA corrections
computed with the (CA) intra-band term and without (nD)
as a function of the number of k-points, for 2 quasi-particles
of Na (light and dark yellow) and 4 of Al (green shades).
Bottom panel: Convergence of the GW correction for the QP
at Γ1 of Na (yellow) and Al (green) with CA (solid) and nD
(dashed).

first q 6= 0 is closer to 0.

In Fig. 1 we show the frequency dependence of the real
part of the self-energy (top) and spectral function (bot-
tom) computed for two quasi-particles of Na, within MPA
with and without the intra-band correction. The correc-
tion does not change dramatically the shape of the self-
energy, but introduces an extra pole in the real part of
the self-energy at the intra-band frequency (∼-6 eV) and
renormalizes the peaks of the spectral function. The in-
clusion of this term promotes the pole overlapping around
the plasmon frequency, affecting the tail of the self-energy
and thus the QP solution as illustrated in the insets of
Fig. 1, differently for each quasi-particle.

In the case of Al and Na, the QP energies computed
with the Drude model, Eq. (11) using as input ωD = ωA,
and the CA schemes are very similar, with differences
below 20 meV when using the 8 × 8 × 8 k-grid. This
leads us to conclude that the CA scheme could replace the
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usual Drude correction, replacing a semiempirical scheme
by a simple ab-initio approximation. This is particularly
relevant when the Drude intra-band frequency is difficult
to estimate either from experiments or calculations, since
the CA scheme has virtually zero computational cost and,
as the extrapolation presented in the previous Section,
describes both the real and the imaginary part of Y .

To summarize this section, the inclusion of the intra-
band limit through the proposed CA scheme requires no
extra computational cost with respect to the standard
GW calculation and accelerates the k-grid convergence
of the QP energies for systems where the intra-band con-
tribution dominates, like Na, without resorting to semi-
empirical corrections such as the Drude model or com-
putationally costly ab-initio approaches.

D. Frequency representation of the response
function of copper

As mentioned before, the case of copper presents sev-
eral challenges for an accurate GW description. The Cu
band structure features a series of flat d-bands around
2 eV below the Fermi level, leading to strong transitions
in YG,G′(q, ω) spread over a large energy range [20]. As
shown in Fig. 4 for q = 0, even for small values of G
and G′, YG,G′(q, ω) can behave very differently from a
single pole case, hindering the use of PPA but suggest-
ing that a multipole approach could prevent resorting to
more expensive FF methods.

When considering PPA or in general MPA with only
a few poles, one of the main issues is that the in-
terpolation of X or Y may give rise to non-physical
poles, posing representability problems. Within the
Godby and Needs (GN) PPA scheme implemented in
yambo [11, 26, 82, 83], the condition used to identify
these so-called unfulfilled modes is the following:

Re

[
YGG′(q, 0)

YGG′(q, i$pl)
− 1

]
< 0, (14)

$pl being a frequency on the imaginary axis used to per-
form the GN interpolation, typically set to $pl = 1 Ha
or to a value of the order of the plasma frequency
($pl & ωpl), computed from the electronic density, ρe
(see Table II). As an example, for the diagonal elements
(G = G′), the polarizability evaluated on the imaginary
axis should be real and therefore unfulfilled modes are
those for which the resulting pole is instead imaginary.
In these cases, the position of the pole is typically set to
ΩGN

fail = 1 Ha.
Setting the pole at ΩGN

fail usually works well for simple
semiconductors [25, 82]. However, in more complex sys-
tems it can compromise the PPA approach. In fact, when
performing GW calculations using GN-PPA for Cu, we
found that no less than 48% of the matrix elements are
unfulfilled modes. This means that, for almost half of the
matrix elements, the position of the pole is spuriously set

to 1 Ha, severely affecting the self-energy and the quasi-
particle solution, as shown in the insets of Fig. 5. Within
MPA, increasing the number of poles in the description
of Y , together with the generalized condition to assign
the position of the poles of the unfulfilled modes, as de-
scribed in Ref. [25], leads to a significant improvement
in the representability of Y , as illustrated in Sec. III of
Supplemental Material [81].

In Fig. 4 we compare selected Y matrix elements com-
puted within MPA with 1 and 12 poles, with the FF
results computed with a frequency grid of 1000 points
(all other convergence parameters being the same: k-
grid, number of empty bands, etc) At first glance, the en-
veloping structure of diagonal elements presents a strong
overall peak, as in the case of semiconductors such as
Si, hBN, and TiO2, which are well-described within PPA
and MPA [25]. However, in the case of Cu, there are
other important peaks close to the origin not captured by
a single-pole model. In this case, PPA quasi-particle en-
ergies are not just numerically inaccurate, as in the case
of the discussed semiconductors, but PPA becomes an
inadequate model. Increasing the number of poles from
1 to 12 significantly improves the agreement between
Y computed with MPA and FF, reproducing the over-
all frequency dependence even if MPA presents a much
smoother shape.

While the rapid oscillations in the FF response func-
tion are enhanced by the discretization of the Brillouin
zone, the origin of such fluctuations can be related to
the topology of the flat d-bands of Cu [20], consistently
e.g. with the very structured W (ω) computed for Ni [84].
In fact, regardless of the overall simple shape of X, nu-
merous inter-band transitions, close in energy and not
effectively overlapped, contribute to the fluctuations of
the polarizability X and of the inverse dielectric function
Y , when computed within FF. Nevertheless, as discussed
in the next Section, they do not significantly influence
the computed GW quasi-particle energies.

E. Quasi-particles and spectral function of copper

In Fig. 5 (top panels) we show the frequency depen-
dence of the self-energy projected on three selected quasi-
particle states of Cu calculated within PPA, MPA, and
FF-RA. The details of Σ computed within the FF ap-
proach, better appreciated in Fig. 5 c), depend on the
fine structure of W , which requires a dense frequency grid
when computing the polarizability, as shown in Sec. V of
Supplemental Material [81]. Since these calculations are
very expensive, the curves shown in Fig. 5 were com-
puted including 200 bands for all the three methods, and
using a frequency grid with 1000 points for FF and no
intra-band correction. Fully converged MPA results and
intra-band corrections are discussed at the end of this
Section.

The FF self-energy presents a rather flat structure with
no dominant peaks. Since Σ is obtained from the con-
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QP(eV) DFT/LDA DFT/PBE DFT/PBE GW@LDA GW@PBE GW@PBE Exp
Ref. [20] Ref. [65] (current work) Ref. [20] Ref. [65] (current work) Ref. [62]

Γ12 -2.27 -2.05 -2.18 -2.81 -1.92 to -2.11 -2.12 -2.78
Γ1 -9.79 -9.29 -9.27 -9.24 -9.14 to -9.20 -9.06 -8.60
X5 -1.40 -1.33 -1.49 -2.04 -1.45 to -1.22 -1.39 -2.01
L2′ -1.12 -0.92 -0.99 -0.57 -0.98 to -1.02 -1.05 -0.85
L3 -1.63 -1.47 -1.63 -2.24 -1.58 to -1.36 -1.57 -2.25
L gap 5.40 4.80 4.66 4.76 4.98 to 5.09 4.88 4.95

TABLE III. DFT andGW quasi-particle energies of Cu computed with different methodologies by different groups and compared
with the experimental values. All the GW calculations correspond to FF approaches ran on top of LDA [20] and PBE [65].

volution of G and W in Eq. (1), the oscillations of W
are attenuated, resulting in a much smoother function.
Nevertheless, the convergence of the QP solution is chal-
lenging, since it requires an accurate description of the
tail of the self-energy, as shown in the insets of Fig. 5.
This could explain, at least in part, the variety of results
present in the literature.

GW-PPA data (blue curves in Fig. 5) show that the
quasi-particle solution (insets of Fig. 5) obtained with a
single pole model for W deviates from the FF solution.
Besides the deviations at the tail of Σ, PPA fails to de-
scribe the frequency dependence of Σ and the spectral
function (bottom panels). On the other hand, the MPA
results, here obtained with 12 poles and the quadratic
sampling, are very accurate, not only in the tail region,
that determines the QP corrections, but also for the
whole frequency range of both the self-energy and the
spectral function.

Comparing the three selected quasi-particle states in
Fig. 5, the effect of the overlapping of the independent-
particle excitations (due to the inclusion of local field
effects via the Dyson equation for W ) on the self-energy
of Cu is more relevant for Γ1 than for Γ12 and the QPs
around the Fermi energy. Indeed, as shown in the bot-
tom panels of Fig. 5, for the QPs closer to the Fermi
level, the shape of the spectral function has a very narrow
quasi-particle peak and three satellite. When compared
to the QPs close to Fermi, the QPs at deeper energies
(Γ12 and Γ1) present a broader quasi-particle peak and
more intense satellites. The shallower satellite (above -
10 eV) forms a shoulder structure for Γ12(central panel)
and eventually merges with the QP peak to form a single
broader peak for Γ1 (right panel). Despite its complexity,
the Cu states at different energies present similar trends
as the cases of Al and Na discussed in Sec. III A.

It is worth to emphasize the importance of the fre-
quency sampling in MPA. Since copper X and Y present
a rich structure at low frequencies, but the energy range,
ωm in Eq. (10) is still large, the quadratic sampling has
shown to be more efficient than the linear one. Specifi-
cally, it provides, with the same number of poles and the
same ωm, a larger density of points in the low frequency
region and therefore higher accuracy. The comparison

between the computational cost of MPA and the FF-RA
method can be done in a simplified way by comparing
the number of frequencies for which X is numerically
computed in each approach. Here, for MPA we use 24
frequency points, corresponding to 12 poles, while the
FF-RA frequency grid has 1000 points, corresponding to
a 40 times gain in computational efficiency of MPA with
respect to FF-RA.

The convergence with respect to the number of bands
and the size of the X matrices is particularly challeng-
ing, as already reported for example for other systems
with d states [85–87], with a slow, non-monotone conver-
gence that hinders the use of extrapolations (more detail
in Sec. V of Supplemental Material [81]). For this rea-
son, the computational efficiency of MPA is particularly
beneficial as it allows for the use of fine GW convergence
parameters, thereby increasing the overall accuracy of
the results.

In Table III we show the MPA results obtained with
60 Ry of energy cut-off and 1000 bands for both, X and
Σ. These parameters are comparable to the largest ones
used within a static subspace approximation [66]. The
reported MPA quasi-particle energies are in good agree-
ment with previous calculations using different FF ap-
proaches, and summarized in Table III. The main differ-
ences can be explained by the use of different starting
points for the GW calculation, i.e. different exchange-
correlation functionals and/or pseudopotentials in the
DFT ground state, and possibly to an incomplete conver-
gence of some of the results. While the use of converged
parameters is essential when comparing the computed
QP energies with experiments, GW corrections do not
always improve over DFT/PBE results, as also observed
in Refs. [65, 66]. In the present case, GW significantly
improves Γ1, while for Γ12 and other QPs, the GW cor-
rection is rather small and slightly worsens the DFT re-
sults. The localized nature of the d states in Cu may
require methods beyond GW in order to further improve
the agreement with experiments [88–90].
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FIG. 6. Left panels: frequency dependence of the real (a)) and imaginary part (b)) of YG=G′=0 for Cu computed within MPA
for different q-values tending to 0 (qn = n

16
in units of 2π/a, where a is the lattice parameter of Cu). For q = 0 (orange curves)

the intra-band term is not included. Right panels: real (c)) and imaginary part (d)) of the four most relevant poles at low
energies in the Y curves for different q values. The purple dashed lines lines correspond to the position of the poles extracted
from optical measurements collected in Ref. [24], as explained in the main text. The blue dashed lines correspond to the values
of the intra-band frequency, ωA, computed by means of Eq. (13), and reported in Ref. [31].

F. Intra-bands effects in copper

In order to investigate the intra-band contributions of
copper, in Fig. 6 we show the frequency dependence of
the YG=G′=0 matrix elements computed for for the small-
est q-vectors along one direction of a 16×16×16 k-grid.
Since Y (ω) of Cu is very structured at small frequen-
cies, where the effects of the intra-band contributions
are expected to be stronger, we have used MPA with
a quadratic sampling, Eq. (10) with α = 2 and np = 15,
a number of poles slightly larger than the value needed
to converge the quasi-particle energies. In contrast with
Na, the orange curve (q = 0, no intra-band contribu-
tion) presents a similar shape and scale with respect to
the green curves (small but finite q, with intra-band con-
tributions), even if with less intense peaks.

In the right panel of Fig. 6 we show the position of the
first 4 poles of Y (ω) as a function of q, which present a
rather flat dispersion, when compared with the plasmon
dispersion of Al in Fig. 2. As expected, for q = 0 the
position of some poles does not correspond exactly to
the limit given by the curves with finite q. However, the
main difference between the zero and finite q curves of
Y (ω) is not in the position but rather in the value of the
residues of the poles, which is reflected in the intensity
of some of the peaks, as shown in Fig. 6.

In order to compare the computed results with exper-
iments, we used electron energy loss data extracted from
a compilation of optical measurements found in Table 1
of the Chapter Optical constants of metals of Ref. [24]
(see e.g. Fig. 8 of Ref. [31]), after interpolation with a
multipole model. For this, we chose 18 points of the spec-
tra, with a frequency distribution corresponding to the
quadratic sampling of Eq. (10) and used them to interpo-
late a 9 pole model. We then analysed the 4 poles with
the highest residues in the frequency interval we are in-
terested in. In the upper panel of Fig. 6 we show, as hor-
izontal lines, the corresponding experimental energies of
the poles. Interestingly, the experimental poles are very
similar to the poles computed at the RPA level within
MPA. This supports the interpretation that the MPA
poles of Y are not a mere mathematical construct aimed
at improving representability but indeed correspond to
physical collective excitations, each of them describing
the envelope of a set of single particle transitions, with a
finite imaginary part corresponding to the width of the
excitation. We emphasize that the agreement with the
experiment is achieved without resorting to any ad hoc
parameters such as the damping in the case of the FF-RA
method of Ref. [31].

In simpler systems, the inclusion of the intra-band
limit, even with a simple Drude tail fitted from the ex-
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perimental spectra, is expected to correct the residues
and thus the intensity of the peaks at q = 0. However,
in systems for which the intra- and inter-band contribu-
tions are superimposed in a more structured frequency
dependence, the description of the experimental spectra
with only the Drude term from Eq. (11) is not possi-
ble [52, 74, 91], and indeed models often resort to vari-
able or multiple relaxation frequencies [52, 77, 91]. In
fact, as shown in Fig 6, the q dependence of Y does not
allow one to discriminate between peaks with an intra-
or an inter-band character. In order to circumvent this
difficulty, in Ref. [31] the intra-band frequency is eval-
uated numerically as the limit of an intra-band integral
at the independent particle level, while in Ref. [51] it is
estimated within a non-interacting uniform-gas theory.

Here we use again the f -sum rule by integrating
Eq. (12), but generalizing Eq. (13) to the case where,
in contrast with Al and Na, more than one pole con-
tributes to the intra-band term (see Sec. I of Supplemen-
tal Material [81]). The resulting intra-band frequency,
ωA = 0.36 Ha (9.80 eV), compares well with the cor-
responding result of 0.34 Ha (9.27 eV) from Ref. [31]
and both values are very close in energy to the second
pole shown in Fig. 6. We find that intra-band contri-
butions represent around the 25% of the corresponding
f -sum rule of this pole (RΩ product), being the largest
ratio among all the poles. However, as can be appreci-
ated in Fig. 6 from the change of intensity of the peaks,
the inter-band contributions are dominant. In fact, the
intra-band contributions to the total f -sum rule (sum of
all RΩ products) is rather small, less than 4%.

Using the frequency determined in Ref. [31] (9.27 eV)
and the relaxation frequency fixed to 0.1 eV as the in-
puts to the Drude correction of Eq. (11), in our MPA
calculations, we find that the Drude tail overlaps with
the several inter-band peaks of Y (ω), without affecting
the position of the poles whilst changing their residues
(Sec. IV of Supplemental Material [81]), similar to the
effect of the CA correction, Y (q = 0) ∼ Y (qmin), as
proposed in Sec. III B. In any case, CA is general and
independent of the complexity of the frequency structure
of the inverse dielectric function Y . It works well for Cu,
as confirmed by the comparison with the experimental
data, and constitutes a very simple procedure. Despite
these considerations, and similarly to the case of Al, the
intra-band correction has a small effect on the Cu QP
energies, that present differences of the order of 5 meV
when computed with and without CA in a 12 × 12 × 12
k-grid.

IV. SUMMARY AND CONCLUSIONS

In this work we address the accuracy of the MPA
scheme as applied to the full-frequency GW calculation
of metals. This approach, previously validated for semi-
conductors [25], is now applied to metals using Al, Na,
and Cu as prototype systems. Also in the case of metals,

MPA is shown to deliver results with an accuracy simi-
lar to other FF methods at a much lower computational
cost.

After presenting the MPA theoretical framework, we
have applied the approach to simple metals and discussed
the role of inter- and intra-band contributions to the di-
electric functions of bulk Al and Na. In order to eval-
uate the response function and the GW corrections in
metals, we have proposed two simple methods to include
the intra-band terms in the inverse dielectric function in
the q → 0 limit: (1) by extrapolating the position of
the main pole in Y00(q, ω), from small q to q = 0, and
computing the intra-band pole through the f -sum rule of
Eq. (13), which can then be used as an input value in a
Drude model to correct Y0. This approach is generalized
for a multipole structure of Y (q, ω) in the case of Cu.
And (2) by approximating Y (q = 0) by Y (qmin). The
second method, here called CA, is simpler and spares the
determination of the intra-band frequency.

Both methods significantly accelerate the convergence
of the QP energies with respect to the k-point grid. In ad-
dition, CA simultaneously corrects all Y matrix elements.
CA works equally within PPA, MPA and FF and can be
used independently of the dimensionality of the system
under study, even if the leading power of series expan-
sion of the inverse dielectric function in the q → 0 limit
depends on dimensionality. In fact, it can be thought of
as the most trivial case of a polynomial interpolation (a
constant) [92, 93]. A similar approach can be applied in
situations where the q → 0 limit of Y (or other many-
body operators, such as W ) is difficult to evaluate. Even
if the proposed methodologies were exemplified for three
isotropic metals, the extension to non-isotropic systems
is straightforward.

Eventually, GW QP corrections for Na, Al and Cu
were evaluated, showing an excellent agreement with ex-
isting theoretical literature and experimental data, fur-
ther stressing the accuracy of the proposed approach.
Notably, the case of Cu was discussed with particular
detail, since PPA calculations present several drawbacks.
In fact, for Cu, the PPA quasi-particle solutions deviate
significantly from the FF results and completely fail to
describe the frequency dependence of Σ and the spectral
function. In contrast, MPA reproduces very accurately
the FF results, not only in the tail region that deter-
mines the quasi-particles corrections, but in the whole
frequency range for both the self-energy and the spectral
function. The frequency representation of the polariz-
ability and the inverse dielectric function present strong
oscillations within FF. In contrast, MPA results are much
more stable, leading to a smooth frequency representa-
tion of X and Y .

Importantly, the smoother structure of the MPA di-
electric function does not necessarily result in a loss of
accuracy in the subsequent calculation of the self-energy,
the QP energies, and the spectral function. In fact, the
frequency dependence of Y given by MPA is meaning-
ful and reproduces the main peaks of the experimental
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energy loss spectra. This leads us to conclude that the
MPA poles of Y may be seen not only as a mathemati-
cal tool, but also as an efficient description of collective
excitations, with each pole representing the envelope of
a set of single particle transitions.

In conclusion, MPA reproduces well the overall fre-
quency dependence of the polarizability, the inverse di-
electric function, the self-energy and the spectral func-
tion in metallic systems, and gives results for the quasi-
particle energies similar to those obtained within FF
methods. Moreover, the favourable computational per-
formance allows for the use of more stringent convergence
parameters such as denser k-grids and larger number of
bands and polarizability matrices. The use of the pro-
posed intra-band corrections further accelerates the con-

vergence with the k-grid and the accuracy of the final
results.
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M. Grüning, D. Varsano, and A. Marini, J. Phys.: Con-
dens. Matter 31, 325902 (2019).

[28] E. G. Maksimov, I. I. Mazin, S. N. Rashkeev, and Y. A.
Uspenski, J. Phys. F: Metal Phys. 18, 833 (1988).

[29] M. Methfessel and A. T. Paxton, Phys. Rev. B 40, 3616
(1989).

[30] K.-H. Lee and K. J. Chang, Phys. Rev. B 49, 2362 (1994).
[31] A. Marini, G. Onida, and R. Del Sole, Phys. Rev. B 64,

195125 (2001).
[32] M. Cazzaniga, N. Manini, L. G. Molinari, and G. Onida,

Phys. Rev. B 77, 035117 (2008).
[33] M. van Schilfgaarde, T. Kotani, and S. Faleev, Phys.

Rev. Lett. 96, 226402 (2006).
[34] T. Kotani, M. van Schilfgaarde, and S. V. Faleev, Phys.

Rev. B 76, 165106 (2007).
[35] M. Shishkin, M. Marsman, and G. Kresse, Phys. Rev.

Lett. 99, 246403 (2007).
[36] A. Kutepov, K. Haule, S. Y. Savrasov, and G. Kotliar,

Phys. Rev. B 85, 155129 (2012).
[37] A. Kutepov, V. Oudovenko, and G. Kotliar, Comput.

Phys. Commun. 219, 407 (2017).
[38] M. Grumet, P. Liu, M. Kaltak, J. c. v. Klimeš, and
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I. A SIMPLE INTRA + INTER-BAND MODEL

In this Section we analyze how two poles in the in-
dependent particle response function Y0, corresponding
to intra- and inter-band transitions, contribute to the
structure of its dressed counterpart, Y , as a result of the
Dyson equation. The Y0 and Y functions are related to
the non-interacting and dressed polarizability functions
as:

Y0 ≡ vX0, Y ≡ vX. (S1)

The Dyson equation for the inverse dielectric function is
then given by

Y = (1− Y0)−1Y0 (S2)

In the following we make use of the f -sum rule [1–3] in
the form

SY (q) =
2

π

∫ ∞

0

dω ω Im[Y ](q, ω), (S3)

where S is computed from the electronic density and the
above expression is valid for each (G,G′) components of
both Y0 and Y . In the case G = G′, one has SY (q) = ω2

pl.

We then separate Y0 into intra (A) and inter-band (E)
contributions in the q→ 0 limit, as

Y0(q = 0, ω) = Y A
0 (ω) + Y E

0 (ω), (S4)

resulting in two different terms for the f -sum rule:

SY0
(q = 0) = SA + SE , (S5)

where SA is the power square of an intra-band frequency,
ΩA, and SE is obtained from the f -sum rule expression
for the polarizability X0. When computed from Kohn-
Sham (KS) states, as derived in Appendix B of Ref. [4],
one obtains:

SE =
∑

n

2vRKS
n ΩKS

n . (S6)

We now analyze the results of Eq. (S2) in different sce-
narios by means of a two poles model y0(ω). The first

∗ dario.alejandro.leon.valido@nmbu.no

pole of y0(ω) at ω = 0 corresponds to a Drude tail result-
ing from the intra-band transitions. The second broader
pole results from the superposition of the inter-band tran-
sitions. If we include both single particle contributions
in Eq. (S4), we obtain:

y0(ω) =
Ω2

A

ω2
+

2vREΩE

ω2 − Ω2
E

. (S7)

We consider the inversion of the Dyson equation (S2)
for y, disregarding the so called local field effects (i.e. y0
and y are scalar functions instead of matrices).

Case SE → 0:

y(ω) =
Ω2

A

ω2 − Ω2
A

(S8)

In this case only the intra-band is relevant and we get a
pole at the Drude frequency, ΩA.

Case SA → 0:

y(ω) =
2vREΩE

ω2 − Ω2
E − 2vREΩE

(S9)

In this case only the inter-band is relevant and the pole,
ΩE , is right-shifted by a factor

√
1 + 2vRE/ΩE , which

for many materials is close to 1 (no shift).

General case:

y(ω) =
S1

ω2 − Ω2
1

+
S2

ω2 − Ω2
2

, (S10)

where the poles are given by the expression:

Ω2
1,2 =

1

2

[
Ω2

E + 2vREΩE + Ω2
A±

√
(Ω2

E + 2vREΩE + Ω2
A)2 − 4Ω2

EΩ2
A

]
, (S11)

and S1 and S2 are compliant with the f -sum rule S1 +
S2 = SA + SE :

S1,2 = ± (SA + SE)Ω2
1,2 − SAΩ2

E

Ω2
2 − Ω2

1

. (S12)
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The two first cases can be obtained as limiting cases
of this general solution. But there are other situations
leading to a solution with a single plasmon pole:

y(ω) =
2vRpΩp

ω2 − Ω2
p

. (S13)

One case occurs when either S1 or S2 is much larger than
the other. A second possibility is when the two poles, Ω1

and Ω2, are equal or very close to each other. There are
several ways to obtain this: the radicand in Eq. (S11)
could be small compared to the terms outside, the scales
of the poles could be very different (e.g. ΩE � ΩA),
2vRE/ΩE could be close to 0 or 1, or the intra- and
inter-band poles could be similar, ΩA ≈ ΩE .

If y(ω) has a single pole, the f -sum rule for y leads to
a simple relationship between the intra-band pole, ΩA,
the inter-band pole, ΩE and the plasmon pole, Ωp:

2vRpΩp = Ω2
A + 2vREΩE , (S14)

while a similar expression is obtained from the evaluation
of y(0):

Ω2
p = Ω2

A + 2vREΩE . (S15)

From the previous two equations, vRp and Ωp are un-
equivocally determined, allowing one to discriminate be-
tween the intra- and inter-band contributions to the
structure of y.

For many systems, like the case of Cu addressed in
the main manuscript, the total Y (ω) presents a structure
with more than one pole. In this situation the model
given in Eq. (S14) can be generalized to obtain the intra-
band frequency, again by means of the f -sum rule:

Ω2
A =

∑
2vRpΩp −

∑
2vREΩE , (S16)

where the sums of RΩ products run over the pole struc-
tures of the full and the inter-band part of Y (ω).

II. ANALYSIS OF THE INTRA-BAND LIMIT
FOR DIFFERENT MATRIX ELEMENTS

In the main text we have shown that the YG=G′=0

curves with finite q, computed for Al and Na, change
smoothly with decreasing q. The curves present a pole,
Ωp(q), of decreasing energy and increasing amplitude and
both the real and imaginary part of this pole can be
easily extrapolated to q = 0, by means of the Lindhard
plasmon dispersion. Here we have considered other Na
Y matrix elements (YG=G’6=0 and YG6=G’) with the same
not particularly dense grid of 8× 8× 8 k-points.

In Fig. S1 we show similar plots for wing (YG=06=G’ and
YG6=0=G’) and diagonal (YG=G’ 6=0) elements, where the
orange curves contain only inter-band terms. For some of
these elements the evolution of the Y curves when q→ 0
is less smooth than for the head, YG=G′=0, and the posi-
tion of the poles not always changes monotonously, thus

the extrapolation with a simple analytical form would re-
quire a denser k-point grid depending on the specific ma-
trix element. However, as can be seen from the compari-
son between green and orange curves, intra-band transi-
tions are more important for the wings than for diagonal
elements. Moreover, even if the constant dielectric func-
tion approximation (CA) scheme described in the main
manuscript, i.e, Y (q = 0) ∼ Y (qmin), has limited accu-
racy for some of these matrix elements, it still improves
the overall Y matrix.

III. FREQUENCY REPRESENTABILITY OF
COPPER

As mentioned in the main manuscript, the nonlinear
interpolation of the polarizability, X, or the inverse di-
electric function, Y , may produce non-physical poles cor-
responding to the so-called unfulfilled modes. This is usu-
ally solved by reassigning the values of the poles. The
condition used to identify unfulfilled modes in the GN-
PPA scheme [4] is the following:

Re

[
YGG′(q, 0)

YGG′(q, i$pl)
− 1

]
< 0, (S17)

where the position of the pole is set to ΩGN
fail = 1 Ha in

case of failure.
The MPA scheme uses a generalized condition that

avoids reassigning the poles with a constant value [4]:

Ωn =

{√
Ω2

n, Re
[
Ω2

n

]
≥ 0

√
−(Ω2

n)∗, Re
[
Ω2

n

]
< 0

(S18)

It is possible to quantify the representability error re-
lated to this reassignment by computing the mean num-
ber of corrected X matrix elements, 〈NF 〉, and an av-
erage relative standard deviation of the extrapolated X
with respect to its sampling points, 〈RSD〉, as defined
in Ref. [4]. In Fig. S2 we show how these two quantities
evolve when increasing the number of poles used in the
description of X and Y .

When applying the PPA, we found that 48% of the po-
larizability matrix elements fail the plasmon pole condi-
tion (S17). These results have an averaged relative devi-
ation of 〈RSD〉 = 0.42. These large values lead to quasi-
particle solutions very different from FF, as described in
the main text. The MPA scheme, with only one pole, still
presents a larger percentage of corrected poles but con-
siderably improves the representability with respect to
PPA, lowering the average deviation to 〈RSD〉 = 0.35.
The reason for the larger number of corrected poles is
the use of a different sampling. As mentioned in the
main manuscript, in the case of MPA with one pole the
frequency at the origin of coordinates is shifted along the
imaginary axis, which helps to reduce the numerical in-
stabilities found with the PPA sampling [5]. However, a
significant improvement happens only by increasing the
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FIG. S2. Values calculated for Cu of (left) the mean number
of matrix elements, 〈NF 〉, for which the position of the poles
was corrected according to Eq. (S18) for MPA and Eq. (S17)
for PPA.

number of poles, as illustrated in Fig. S2, evidencing the
complexity of the frequency structure of the polarizabil-
ity of Cu and the efficiency of the multipole approxima-

tion in its description.

IV. STANDARD DRUDE CORRECTION FOR
THE INTRA-BAND OF COPPER

In Fig. S3 we show the frequency dependence of Y
computed for Cu within MPA comparing three different
methods to include the intra-band corrections in the limit
q → 0. We show, Y computed without any intra-band
correction (nD), with the CA method and the Drude
model. For the latter, we considered an intra-band fre-
quency of 9.27 eV, as determined in Ref. [6]. We see that
the Drude model and CA give similar results, renormal-
izing the intensity of the peaks without shifting them in
the real frequency axis.

V. CONVERGENCE OF GW PARAMETERS
FOR COPPER

As mentioned in the main text, the GW convergence
is very challenging for the case of Cu. In Fig. S4 we illus-
trate how the energy range of the transitions observed in
X rapidly increases with respect to the number of bands
included in the calculation. The increasing number of
bands results in changes in the details of the frequency
structure of X, whose description requires, in the FF-RA
scheme, a large number of frequency points.

On the other hand, there is a complex relationship be-
tween the number of bands and the plane-wave energy
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FIG. S3. Frequency dependence of Y (q = 0) computed for Cu
with three different methods: without any intra-band correc-
tion (nD), with the CA correction and with the Drude model
using as input the intra-band frequency determined in Ref. [6].

cut-off used to build the polarizability matrix. As shown
in Fig. S5, there is a change of monotony around 15 Ry
when increasing the number of bands from 200 to 500
and smaller oscillation continue at higher cut-off ener-
gies, hindering the possibility to extrapolate the con-
verged QPs. For cut-off energies and number of bands
larger than 25 Ry and 500 respectively, the correction
changes sign, correcting the DFT in the right direction
with respect to the experimental data shown in the Table.
II of the main manuscript.
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