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Fig. 1. A visualization of the CarPatch data: RGB images (left), depth images (center),
and semantic segmentation of vehicle components (right).

Abstract. Neural Radiance Fields (NeRFs) have gained widespread
recognition as a highly effective technique for representing 3D recon-
structions of objects and scenes derived from sets of images. Despite
their efficiency, NeRF models can pose challenges in certain scenar-
ios such as vehicle inspection, where the lack of sufficient data or the
presence of challenging elements (e.g. reflections) strongly impact the
accuracy of the reconstruction. To this aim, we introduce CarPatch,
a novel synthetic benchmark of vehicles. In addition to a set of im-
ages annotated with their intrinsic and extrinsic camera parameters,
the corresponding depth maps and semantic segmentation masks have
been generated for each view. Global and part-based metrics have been
defined and used to evaluate, compare, and better characterize some
state-of-the-art techniques. The dataset is publicly released at https:
//aimagelab.ing.unimore.it/go/carpatch and can be used as an eval-
uation guide and as a baseline for future work on this challenging topic.

Keywords: Synthetic vehicle dataset · 3D Reconstruction · Neural ra-
diance fields · Volumetric rendering · RGB-D.
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1 Introduction

Recent advances in Neural Radiance Fields (NeRFs) [11] strongly improved the
fidelity of generated novel views by fitting a neural network to predict the volume
density and the emitted radiance of each 3D point in a scene. The differentiable
volume rendering step allows having a set of images, with known camera poses, as
the only input for model fitting. Moreover, the limited amount of data, i.e. (im-
age, camera pose) pairs, needed to train a NeRF model, facilitates its adoption
and drives the increasing range of its possible applications. Among these, view
synthesis recently emerged for street view reconstruction [12,19] in the context
of AR/VR applications, robotics, and autonomous driving, with considerable
efforts towards vehicle novel view generation. However, these attempts focus on
images representing large-scale unbounded scenes, such as those from KITTI [9],
and usually fail to achieve high-quality 3D vehicle reconstruction.

In this paper, we introduce an additional use case for neural radiance fields,
i.e. vehicle inspection, where the goal is to represent an individual high-quality
instance of a given car. The availability of a high-fidelity 3D vehicle represen-
tation could be beneficial whenever the car body has to be analyzed in detail.
For instance, insurance companies or body shops could rely on NeRF-generated
views to assess possible external damages after a road accident and estimate
their repair cost. Moreover, rental companies could compare two NeRF models
trained before and after each rental, respectively, to assign responsibility for any
new damages. This would avoid expert on-site inspection or a rough evaluation
based on a limited number of captures.

For this purpose, we provide an experimental overview of the state-of-the-art
NeRF methods, suitable for vehicle reconstruction. To make the experimental
setting reproducible and to provide a basis for new experimentation, we propose
CarPatch, a new benchmark to assess neural radiance field methods on the ve-
hicle inspection task. Specifically, we generate a novel dataset consisting of 8
different synthetic scenes, corresponding to as many high-quality 3D car meshes
with realistic details and challenging light conditions. As depicted in Fig. 1, we
provide not only RGB images with camera poses, but also binary masks of dif-
ferent car components to validate the reconstruction quality of specific vehicle
parts (e.g. wheels or windows). Moreover, for each camera position, we generate
the ground truth depth map with the double goal of examining the ability of
NeRF architectures to correctly predict volume density and, at the same time,
enable future works based on RGB-D inputs. We evaluate the novel view genera-
tion and depth estimation performance of several methods under diverse settings
(both global and component-level). Finally, since the process of image collection
for fitting neural radiance fields could be time consuming in real scenarios, we
provide the same scenes by varying the number of training images, in order to
determine the robustness to the amount of training data.

After an overview of the main related works in Sec. 2, we thoroughly de-
scribe the process of 3D mesh gathering, scene setup, and dataset generation in
Sec. 3. The evaluation of existing NeRF architectures on CarPatch is presented
in Sec. 4.
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Table 1. Comparison between existing datasets used as benchmarks for neural radiance
field evaluation and CarPatch. We provide the same scene by varying the amount of
training data (40, 60, 80, and 100 images), allowing users to test the robustness of their
architectures. We also release depth and segmentation data for all the images.

Dataset Scenes Images/scene Depth Segmentation

Blender [11] 8 300 ✓ ✗

Shiny Blender [17] 6 300 ✓ ✗

BlendedMVG [20] 508 200-4000 ✗ ✗

CarPatch40 8 240 ✓ ✓

CarPatch60 8 260 ✓ ✓

CarPatch80 8 280 ✓ ✓

CarPatch100 8 300 ✓ ✓

2 Related work

We provide a brief overview of the latest updates in neural radiance field, in-
cluding its significant extensions and applications that have influenced our work.
NeRF limitations have been tackled by different works, trying to reduce its com-
plexity, increase the reconstruction quality, and develop more challenging bench-
marks.

Neural scene reconstruction. The handling of aliasing artifacts is a well-
known issue in rendering algorithms. Mip-NeRF [1,2] and Zip-NeRF [3] have
tackled the aliasing issue by reasoning on volumetric frustums along a cone.
These approaches have inspired works such as Able-NeRF [16], which replaces
the MLP of the original implementation with a transformer-based architecture.
In addition to other sources of aliasing, reflections can pose a challenge for NeRF.
Several works have attempted to address the issue of aliasing in reflections by
taking into account the reflectance of the scene [4,5,17]. Moreover, computation
is a widely recognized concern. Various works in the literature have demonstrated
that it is possible to achieve high-fidelity reconstructions while reducing the over-
all training time. Two notable works in this direction include NSVF [10], which
uses a voxel-based representation for more efficient rendering of large scenes, and
Instant-NGP [13], which proposes a multi-resolution hash table combined with a
light MLP to achieve faster training times. Other approaches such as DVGO [15]
and Plenoxels [8] optimize voxel grids of features to enable fast radiance field
reconstruction. TensoRF [7] combines the traditional CP decomposition [7] with
a new vector-matrix decomposition method [6] leading to faster training and
higher-quality reconstruction.

In this work, in order to satisfy real-time performances for vehicle inspection,
we select a set of architectures that strike a balance between training time and
the quality of the reconstruction.

Scene representation benchmarks. One of the most widely used benchmarks
for evaluating NeRF is the Nerf Synthetic Blender dataset [11]. This dataset
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Fig. 2. Sample RGB images (left), depth data (center), and segmentation masks (right)
from CarPatch, for different car models.

consists of 8 different scenes generated using Blender1, each with 100 training
images and 200 test images. Other synthetic datasets include the Shiny Blender
dataset [17], which mostly contains singular objects with simple geometries, and
Blend DMVS [20], which provides various scenes to test NeRF implementations
at different scales. These works do not provide ground truth information about
the semantic meaning of the images. This limitation makes it difficult to study
the ability of NeRF to reconstruct certain surfaces compared to others. In our
CarPatch dataset, we provide ground truth segmentation of vehicle components
in the scene, allowing for the evaluation of architectures on specific parts. Table 1
presents a comparison between the most common datasets used as benchmarks
and our proposed dataset.

3 The CarPatch dataset

In this section, we detail the source data and the procedure exploited for gen-
erating our CarPatch dataset. In particular, we describe how we gathered 3D
models, set up the blender scenes, and designed the image capture process.

1 http://www.blender.org

http://www.blender.org
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Table 2. Summary of the source 3D models from which our dataset has been generated,
including their key features.

Model name Acronym #Triangles #Vertices #Textures #Materials

Tesla Model Tesla 684.3k 364.4k 22 58
Smart Smart 42.8k 26.4k 0 31
Ford Raptor Ford 257.1k 156.5k 12 50
BMW M3 E46 Bmw 846.9k 442.4k 7 39
Mercedes GLK Mbz1 1.3M 741.4k 0 15
Mercedes CLS Mbz2 1.0M 667k 0 18
Volvo S90 Volvo 3.3M 1.7M 56 44
Jeep Compass Jeep 334.7k 189.6k 7 39

3.1 Synthetic 3D models and scene setup

All the 3D models included in CarPatch scenes have been downloaded from
Sketchfab2, a large collection of free 3D objects for research use. Table 2 provides
a detailed list of all the starting models used. Each of them has been edited in
Blender to enhance its realism; specifically, we improved the materials, colors,
and lighting in each scene to create a more challenging environment.

The scenes have been set up accordingly to the Google Blender dataset [11].
The lighting conditions and rendering settings were customized to create a more
realistic environment. The vehicle was placed at the center of the scene at po-
sition (0,0,0), with nine lights distributed around the car and varying emission
strengths to create shadows and enhance reflections on the materials’ surfaces.
To improve realism, we resized objects to match their real-world size. The cam-
era and lights were placed in order to provide an accurate representation of the
environment, making the scenes similar to real-world scenarios.

3.2 Dataset building

The dataset was built using the Python interface provided in Blender, allowing us
to control objects in the environment. For each rendered image, we captured not
only the RGB color values but also the corresponding depth map, as well as the
pixel-wise semantic segmentation masks for eight vehicle components: bumpers,
lights, mirrors, hoods/trunks, fenders, doors, wheels, and windows. Examples of
these segmentation masks can be seen in Fig. 1. Please note that all the pixels
belonging to a component (e.g. doors) are grouped into the same class, regardless
of the specific component location (e.g. front/rear/right/left door). The bpycv3

utility has been used for collecting additional metadata, enabling us to evaluate
NeRF models on the RGB reconstruction and depth estimation of the overall
vehicle as well as each of its subparts.

2 https://sketchfab.com
3 https://github.com/DIYer22/bpycv

https://sketchfab.com
https://github.com/DIYer22/bpycv
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For the rendering of training images, the camera randomly moved on the
hemisphere centered in (0,0,0) and above the ground. The camera rotation angle
was sampled from a uniform distribution before each new capture. For building
the test set, the position of the camera was kept at a fixed distance from the
ground and rotated around the Z-axis with a fixed angle equal to 2π

#test_views

radians before each new capture.
In order to guarantee the fairness of the current and future comparisons, we

explicitly provide four different versions of each scene, by varying the number
of training images (40, 60, 80, and 100 images, respectively). Different versions
of the same scene have no overlap in training camera poses, while the test set is
always the same and contains 200 images for each scene.
We release the code for dataset creation and metrics evaluation at https://
github.com/davidedinuc/carpatch.

4 Benchmark

This section presents the selection and testing of various recent NeRF-based
methods [13,7,15] on the presented CarPatch dataset, with a detailed descrip-
tion of the experimental setting for each baseline. Additionally, we assess the
quality of the reconstructed vehicles in terms of their appearance and 3D sur-
face reconstruction, utilizing depth maps generated during volume rendering.

4.1 Compared methods

To overcome challenges related to illumination and reflective surfaces during the
process of reconstructing vehicles, it is crucial to choose an appropriate neural
rendering approach. We tested selected approaches on CarPatch without modi-
fying the implementation details available in the original repositories, whenever
possible. However, some parameters had to be adjusted in order to fit our models
(which are larger compared to reference dataset meshes) to the scene. All tests
were performed on a GeForce GTX 1080 Ti. After considering various NeRF
systems, we have selected the following baselines:

– Instant-NGP [13]. Since the original implementation of Instant-NGP is
in CUDA, we decided to use an available PyTorch implementation4 of this
approach in order to have a fair comparison with the other approaches. In
our experiments, a batch size of 8192 was maintained, with a scene scale of
0.5 and a total of 30,000 iteration steps.

– TensoRF [7]. In our setting, a batch of 4096 rays was used. Additionally,
we increased the overall scale of the scene from 1 to 3.5. These adjustments
were made after experimentation and careful consideration of the resulting
reconstructions. Training lasts 30,000 iterations.

4 https://github.com/kwea123/ngp_pl

https://github.com/davidedinuc/carpatch
https://github.com/davidedinuc/carpatch
https://github.com/kwea123/ngp_pl
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Table 3. Quantitative results on the CarPatch test set for each vehicle model.

Method Metric Bmw Tesla Smart Mbz1 Mbz2 Ford Jeep Volvo Avg

iNGP [13]
PSNR↑

39.48 39.46 39.57 36.87 39.15 33.67 35.00 35.93 37.39
DVGO [15] 39.91 39.89 40.34 37.45 39.37 33.82 35.32 36.28 37.80
TensoRF [7] 40.68 39.92 40.38 38.07 40.84 34.33 34.87 36.77 38.23

iNGP [13]
SSIM↑

0.985 0.987 0.988 0.985 0.987 0.959 0.978 0.979 0.981
DVGO [15] 0.987 0.988 0.990 0.987 0.988 0.964 0.980 0.981 0.983
TensoRF [7] 0.989 0.987 0.99 0.989 0.991 0.966 0.975 0.982 0.984

iNGP [13]
LPIPS↓

0.029 0.029 0.02 0.028 0.024 0.062 0.036 0.032 0.032
DVGO [15] 0.022 0.022 0.014 0.019 0.020 0.051 0.029 0.022 0.025
TensoRF [7] 0.023 0.026 0.017 0.02 0.017 0.051 0.039 0.027 0.028

iNGP [13]
D-RMSE↓

0.640 0.369 0.377 0.496 0.500 0.406 0.558 0.674 0.503
DVGO [15] 0.561 0.353 0.305 0.437 0.454 0.339 0.469 0.561 0.435
TensoRF [7] 0.590 0.357 0.335 0.467 0.482 0.375 0.536 0.626 0.471

iNGP [13]
SN-RMSE↓

4.24 3.38 3.41 4.26 4.13 5.15 4.60 4.67 4.23
DVGO [15] 4.27 3.48 3.20 4.19 4.24 5.04 4.67 4.71 4.22
TensoRF [7] 3.96 3.24 3.10 4.00 3.91 4.91 4.41 4.48 4.00

– DVGO [15]. In this work, the training process consists of two phases: a
coarse training phase of 5,000 iterations, followed by a fine training phase of
20,000 iterations that aims to improve the model’s ability to learn intricate
details of the scene. In our experiments, we applied a batch size of 8192 while
maintaining the default scene size.

4.2 Metrics

The effectiveness of the chosen methods has been assessed thanks to the typical
perceptual metrics used in NeRF-based reconstruction tasks, namely PSNR,
SSIM [18], and LPIPS [21].

However, the appearance-based metrics are strongly related to the emitted
radiance besides the learned volume density. We suggest two supplementary
depth-based metrics for the sole purpose of assessing the volume density. Since
it is not feasible to obtain ground truth 3D models of the vehicles in real-world
scenarios, we utilize the depth map as our knowledge of the 3D surface of the
objects. Specifically, we define a depth map as a matrix

D = {dij}, dij ∈ [0, R] (1)

in which each value dij ranges from 0 to the maximum depth value R. Further-
more, we estimate the surface normals from the depth maps [14]. Initially, we
establish the orientation of a surface normal as:

d = ⟨dx, dy, dz⟩ =
(
−∂dij

∂i
,−∂dij

∂j
, 1

)
≈

(
d(i+1)j − dij , di(j+1) − dij , 1

)
(2)
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Table 4. Quantitative results on the CarPatch test set for each vehicle component
averaged over the vehicle models.

Method Component PSNR↑ SSIM↑ LPIPS↓ D-RMSE↓ SN-RMSE↓

iNGP [13]
bumper

33.05 0.986 0.019 0.281 0.79
DVGO [15] 34.41 0.989 0.011 0.236 0.72
TensoRF [7] 35.49 0.991 0.010 0.311 0.68

iNGP [13]
light

28.71 0.993 0.009 0.421 0.48
DVGO [15] 29.10 0.995 0.006 0.384 0.43
TensoRF [7] 29.68 0.996 0.006 0.438 0.38

iNGP [13]
mirror

29.60 0.994 0.011 0.427 0.43
DVGO [15] 31.16 0.996 0.007 0.345 0.38
TensoRF [7] 31.68 0.996 0.008 0.372 0.39

iNGP [13]
hood/trunk

32.28 0.977 0.052 0.260 1.33
DVGO [15] 32.68 0.981 0.038 0.259 1.35
TensoRF [7] 33.75 0.983 0.040 0.302 1.24

iNGP [13]
fender

32.44 0.990 0.021 0.253 0.87
DVGO [15] 33.55 0.993 0.013 0.223 0.85
TensoRF [7] 34.36 0.993 0.015 0.267 0.77

iNGP [13]
door

34.19 0.969 0.079 0.182 0.67
DVGO [15] 35.48 0.977 0.042 0.173 0.74
TensoRF [7] 36.25 0.979 0.051 0.191 0.62

iNGP [13]
wheel

33.12 0.995 0.008 0.391 0.87
DVGO [15] 33.65 0.995 0.006 0.267 0.79
TensoRF [7] 34.55 0.996 0.005 0.334 0.79

iNGP [13]
window

26.44 0.897 0.166 0.879 2.52
DVGO [15] 26.54 0.899 0.147 0.779 2.57
TensoRF [7] 26.74 0.896 0.160 0.834 2.38

where the first two elements represent the depth gradients in the i and j di-
rections, respectively. Afterward, we normalize the normal vector to obtain a
unit-length vector n(dij) =

d
∥d∥ .

We assess the 3D reconstruction’s quality through the following metrics:

– Depth Root Mean Squared Error (D-RMSE). This metric measures
the average difference in meters between the ground truth and predicted
depth maps.

D-RMSE =

√∑M
i=0

∑N
j=0(d̂ij − dij)2

M ·N
(3)

– Surface Normal Root Mean Squared Error (SN-RMSE). This metric
measures the average angular error in degrees between the angle direction of
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Fig. 3. Performance by varying the number of training images, in terms of PSNR,
SSIM, LPIPS, D-RMSE, and SN-RMSE. Despite its lower overall performance, Instant-
NGP [13] exhibits low variance with respect to the amount of training data.

the ground truth and predicted surface normals.

SN-RMSE =

√∑M
i=0

∑N
j=0(arccos(n(d̂ij))− arccos(n(dij)))2

M ·N
(4)

D-RMSE and SN-RMSE are computed only for those pixels with a positive
depth value in both GT and predicted depth maps. This avoids computing depth
estimation errors on background pixels (which have a fixed depth value of 0).

4.3 Results

The following section presents both quantitative and qualitative results obtained
from the selected NeRF baselines. We will discuss their performance on the
CarPatch dataset, by analyzing the impact of viewing camera angle and the
number of training images.

According to Table 3, all the selected NeRF approaches obtain satisfying
results. Although the baselines demonstrate similar performances in terms of
appearance scores (PSNR, SSIM, and LPIPS), our evaluation using depth-based
metrics (D-RMSE and SN-RMSE) reveals significant differences in the 3D recon-
struction of the vehicles. DVGO outperforms its competitors by achieving better
depth estimation, resulting in a +13.5% improvement compared to iNGP and
a +7.6% improvement compared to TensoRF. In contrast, TensoRF predicts a
more accurate 3D surface with the lowest angular error on the surface normals.

Since our use case is related to vehicle inspection, in Table 4 we report re-
sults computed on each car component. For this purpose, we mask both GT
and predictions using a specific component mask before computing the met-
rics. However, this would lead to an unbalanced ratio between background and
foreground pixels, due to the limited components’ area, and finally to a biased
metric value. By computing D-RMSE and SN-RMSE only on foreground pixels
(see Sec. 4.2), depth-based metrics are not affected by this issue. For PSNR,
SSIM, and LPIPS, instead, we compute component-level metrics over the im-
age crop delimited by the bounding boxes around each mask. As expected, it is
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Fig. 4. Performance by camera viewing angle, in terms of PSNR, SSIM, LPIPS, D-
RMSE, and SN-RMSE. Depending on the training camera distribution, all the methods
struggle wherever the viewpoints are more sparse (e.g. between 225◦ and 270◦). The
red arrow represents where the front of the vehicle is facing.

worth noting that NeRF struggles to reconstruct transparent objects (e.g. mir-
rors, lights, and windows) obtaining the highest errors in terms of depth and
normal estimation. However, over the single components, TensoRF outperforms
the competitors in most of the metrics and in particular on the surface normal
estimation. The errors in the reconstruction of specific components’ surfaces can
also be appreciated in the qualitative results of Fig. 5.

Moreover, we analyze the performances of each method in terms of the num-
ber of training images. We trained the baselines on every version of the CarPatch
dataset and report the results in Fig. 3. It is worth noting that reducing the num-
ber of training images has a significant impact on all the metrics independently
of the method. However, Instant-NGP demonstrates to be more robust to the
number of camera viewpoints having a smoother drop, especially in terms of
LPIPS, D-RMSE, and SN-RMSE.

Finally, we discuss how the training camera viewpoints’ distribution around
the vehicle may affect the performance of each method from certain camera
angles. In particular, as depicted in Fig. 4, it is evident how between 180◦ and
270◦ and between 0◦ and 45◦ there are considerable variations in the metrics.
Indeed, in these areas the datasets contain more sparsity in terms of camera
viewpoints and, as expected, all the methods are affected.
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Fig. 5. Sample of 3D reconstruction of the Tesla: (left) the reconstructed RGB, depth,
and surface normals, (right) the reconstructed surfaces on the triangle mesh.

5 Conclusion

In this article, we have proposed a new benchmark for the evaluation and com-
parison of NeRF-based techniques. Focusing on one of the many concrete appli-
cations of this recent technology, i.e. vehicle inspection, a new synthetic dataset
including renderings of 8 vehicles was first created. In addition to the set of
RGB views annotated with the camera pose, the dataset is enriched by semantic
segmentation masks as well as depth maps to further analyze the results and
compare the methods.

The presence of reflective surfaces and transparent parts makes the task
of vehicle reconstruction still challenging. Proposed additional metrics, as well
as new graphical ways of displaying the results, are proposed to make these
limitations more evident. We are confident that CarPatch can be of great help
as a basis for research on NeRF models in general and, more specifically, in their
application to the field of vehicle reconstruction.
Acknowledgements. The work is partially supported by the Department of
Engineering Enzo Ferrari, under the project FAR-Dip-DIEF 2022 “AI platform
with digital twins of interacting robots and people”.
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