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Abstract

As it is well-known, the boundary of the orientable I-bundle K
∼× I over

the Klein bottle K is a torus; thus - in analogy with torus bundle con-
struction (see [18]) - any integer matrix A of order two with determinant
−1 (resp. +1) uniquely defines an orientable (resp. non-orientable) 3-
manifold (K

∼×I)∪(K
∼×I)/A, which we denote by KB(A). In the present

paper an algorithmic procedure is described, which allows to construct,
directly from any such matrix A, an edge-coloured graph representing
the manifold KB(A) associated to A. As a consequence, it is proved via
regular genus (see [13]) that the Heegaard genus of any such manifold
is less or equal to four; moreover, six elements of existing catalogues
of orientable 3-manifolds represented by edge-coloured graphs (see [15]
and [6]) are directly recognized as manifolds of type KB(A).

Mathematics Subject Classification: 55R10, 57N12, 57M15

Keywords: 3-manifold, fiber-bundle, I-bundle, monodromy, Heegaard genus,
edge-coloured graph

1. Introduction

3-manifolds obtained by pasting together two copies of the orientable I-bundle
over the Klein bottle K frequently appear (together with torus bundles over the
circle) in existing catalogues of “simple” 3-manifolds: see, for example, [16] and
[3]. The present paper performs an approach to the study of such 3-manifolds

1Work performed under the auspicies of the G.N.S.A.G.A. of the C.N.R. (National Re-
search Council of Italy) and financially supported by by M.I.U.R. of Italy (project “Proprietà
geometriche delle varietà reali e complesse”).
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via edge-coloured graphs as a combinatorial PL-manifolds representation tool
(see [12], [2], [19], [10], [1], together with their references). In particular, an
algorithmic procedure is described, which allows to construct, directly from
any matrix A ∈ GL(2; Z), a pseudosimplicial triangulation (and, hence, the
edge-coloured graph ΓKB(A) visualizing it) of the manifold of type KB(A) =

(K
∼× I) ∪ (K

∼× I)/A associated to A, i.e.

KB(A) = K1 ∪φ̃A
K2

where K1 and K2 are two copies of the orientable I-bundle over the Klein bottle

K, K
∼×[0, 1], and φ̃A : ∂K1 → ∂K2 is the homeomorphism of the bidimensional

torus T into itself (note that both ∂K1 and ∂K2 are homeomorphic to T )
induced - up to isotopy - by matrix A.

As a consequence, since edge-coloured graphs allow to define an n-dimensional
combinatorial invariant for PL-manifolds - called regular genus (see [13] for its
definition and, for example, [8] and [1] for subsequent related results) -, which
coincides with Heegaard genus in the 3-dimensional setting, 3-manifolds of
type KB(A) are combinatorially proved to have Heegaard genus less or equal
to four.

On the other hand, the described construction is applied in order to combi-
natorially recognize all manifolds of type KB(A) belonging to Lins’s catalogue
[15] (resp. to Casali-Cristofori’ catalogue [6]) of closed connected orientable
3-manifolds represented by edge-coloured graphs up to 28 (resp. 30) vertices,
i.e. admitting a pseudosimplicial triangulation consisting of at most 28 (resp.
30) tetrahedra.

In fact, the quoted catalogues contain exactly six orientable 3-manifolds
which are already known to be of type KB(A), for suitable matrices A ∈
GL(2; Z) with det(A) = −1, through GM-complexity computation and homol-
ogy group comparison or - in the 30 vertices case - through program Three-
manifold Recognizer 2 (see [7]; Table 1 and Table 2). Here, the 4-coloured graph
ΓKB(A) associated to each one of these matrices is effectively constructed and
simplified by suitable combinatorial moves not affecting the homeomorphism
class of the represented manifold, till to obtain an element of known crystal-
lization catalogues, just encoding the manifold KB(A).

We point out that the combinatorial nature of the representing tools, to-
gether with the algorithmic feature of the described construction, allow to
imagine a suitable implementation of the whole process.3

2Three-manifold Recognizer is a program written by V. Tarkaev as an application of the
results about recognition of 3-manifolds obtained by S.Matveev and his research group; it
is available on the Web: http://www.topology.kb.csu.ru/∼recognizer/

3In analogy with Visual Basic program TB(A), concerning torus bundles con-
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Since - as already pointed out - manifolds obtained by pasting together two
copies of the orientable I-bundle over the Klein bottle K frequently appear in
existing catalogues of 3-manifolds, the author hopes the construction obtained
in the present paper to be of use in order to perform interesting comparisons
between different 3-manifold complexity notions.

2. Basic notions on 3-manifolds obtained from

I-bundles over the Klein bottle

As it is well-known, the homeotopy group of bidimensional torus T , i.e. the
mapping class group of punctured homeomorphisms (T, x0) → (T, x0) (x0 ∈
T ), is isomorphic to the group of automorphisms of π1(T ), i.e. to GL(2; Z)
(see [20]; Theorem 5.15.5).

This implies that any matrix A =

(
a00 a01

a10 a11

)
∈ GL(2; Z) induces, up to

isotopy, a homeomorphism φ̃A : T1 → T2, T1 and T2 being two copies of torus
T ; if (c0, c1) (resp. (c′0, c

′
1)) denotes a coordinate system (meridian, longitude)

of torus T1 (resp. T2), oriented so that the intersection number between c0 and
c1 (resp. between c′0 and c′1) is +1, then φ̃A maps c0 (resp. c1) into the curve
φ̃A(c0) = a00c

′
0 + a01c

′
1 (resp. φ̃A(c1) = a10c

′
0 + a11c

′
1) and sends the (unique)

intersection point c0 ∩ c1 into the (unique) intersection point c′0 ∩ c′1 .
Let now K1 (resp. K2) be a copy of the orientable I-bundle over the Klein

bottle K, K
∼× [0, 1], and let (c0, c1) (resp. (c′0, c

′
1)) be a fixed coordinate system

on the bidimensional torus ∂K1 (resp. ∂K2), such that c0 (resp. c′0) projects
onto a meridian - i.e. a nontrivial orientation-preserving circle - of the core
Klein bottle and c1 (resp. c′1) double covers a longitude - i.e. an orientation-
reversing circle - of the core Klein bottle.

It is easy to check that (in full analogy with torus bundle case: see [18]; sec-
tions 3.2 and 18.1) the homeomorphism φ̃A : ∂K1 → ∂K2 uniquely determines
a closed 3-manifold defined as

KB(A) =
K1 ∪K2

∼A
,

where the equivalence relation ∼A on ∂K1 ∪ ∂K2 is given by

x ∼A φ̃A(x), ∀x ∈ ∂K1.

struction, this program might be integrated within C++ program DUKE III,
which is devoted to automatic analysis, manipulation and recognition of PL-
manifolds via edge-coloured graphs; for both programs TB(A) and DUKE III, see
http://cdm.unimo.it/home/matematica/casali.mariarita/DUKEIII.htm
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Note that A ∈ GL(2; Z) directly implies det(A) ∈ {±1}; more precisely,
manifold KB(A) is orientable (resp. non orientable) if and only if det(A) = −1
(resp. det(A) = +1).

The following technical lemma results to be useful, for our purposes, in
order to restrict the attention to a subclass of matrices, inducing all manifolds
of type KB(A).

Lemma 2.1 Let M be a manifold obtained by pasting together two copies
of the orientable I-bundle over the Klein bottle K. Then, M is equivalent to

KB(A), where A =

(
a00 a01

a10 a11

)
∈ GL(2; Z) is such that:

• ai0 · ai1 ≥ 0 ∀i ∈ {0, 1};
• either a0j · a1j ≥ 0 ∀j ∈ {0, 1} or a0j · a1j ≤ 0 ∀j ∈ {0, 1}.

Proof. First of all, let us assume M = KB(Ā), where matrix Ā contains all
non-null elements. It is very easy to check that det(Ā) ∈ {±1} excludes the
possibility that a row (resp. a column) of Ā consists of concordant elements
and the other row (resp. column) of discordant elements; hence, the second
condition of the statement turns out to be always satisfied.

Moreover, the possible exchange of matrix Ā =

(
a b
c d

)
with its inverse

Ā−1 = (detĀ)−1 ·
(

d −b
−c a

)
(which is obviously associated to the inverse

homeomorphism of boundary tori ∂K1 and ∂K2, and hence gives rise to the
same manifold), allows to exclude the case of both rows and columns consisting
of discordant elements.
Among the remaining cases, the only one not satisfying the two conditions
of the statement is the case of a matrix whose rows (resp. columns) consist
of discordant (resp. concordant) elements. In this case, the existence of an
equivalent matrix satisfying the first condition of the statement directly follows
from the possibility of exchanging the orientation of the chosen curves c1 and
c′1 within coordinate systems (c0, c1) and (c′0, c

′
1) for ∂K1 and ∂K2 (together

with a change of orientation on ∂K1 and ∂K2, too), so that the associated

matrix

(
a b
c d

)
is transformed into

(
a −b
−c d

)
.

Finally, note that the last transformation allows to assume both conditions

of the statement to hold, also in case of a matrix

(
a00 a01

a10 a11

)
∈ GL(2; Z)

containing null elements: in fact, if aīj̄ = 0, a possible exchange of orientation
on the curves c1 and c′1 (and on ∂K1 and ∂K2, too) yields ai′j̄ · aīj′ ≥ 0 and
aīj′ · aīj̄ = 0(≥ 0), with {̄i, i′} = {j̄, j′} = {0, 1}, while aīj̄ · ai′j̄ = 0 trivially
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implies the condition concerning the columns to be satisfied.
�

Lemma 2.1 suggests (in analogy to [5]; Definition 2.2) the following defini-
tion:

Definition 2.2 A matrix A ∈ GL(2; Z) will be said to be in semi-normalized
shape if it satisfies both conditions of Lemma 2.1. The subset of GL(2; Z) con-
sisting of regular integer matrices of order two in semi-normalized shape will
be denoted by the symbol GL(2; Z).

Finally, in the present paper (section 4), the following results about Hee-
gaard genus of manifolds of type KB(A) will be proved, as consequences of
the algorithmic procedure for the construction of an edge-coloured graph rep-
resenting KB(A), for any matrix A ∈ GL(2; Z).

Proposition 2.3

a) H(KB(A)) ≤ 4, for any A ∈ GL(2; Z).

b) If A ∈ GL(2; Z) contains a null element, then H(KB(A)) ≤ 3.

3. Representation of PL-manifolds by means of

edge-coloured graphs

Edge-coloured graphs are the objects of a representation theory dealing with
the whole class of piecewise-linear (PL) manifolds, without assumptions about
the dimension, the connectedness, the orientability or the boundary properties
(see [12] or [1] for a general survey). In the present work, however, we restrict
our attention to closed and connected manifolds of dimension n = 3; hence, we
will briefly review only basic definitions and results of the theory concerning
this particular case.

For general notions on PL category, we refer to [17].
Given a pseudocomplex (see [14]) K, triangulating a 3-manifold M , a col-

oration on K is a labelling of its vertices by Δ3 = {0, 1, 2, 3}, which is injective
on each simplex of K.

The dual 1-skeleton of K is a (multi)graph Γ = (V (Γ), E(Γ)) embedded in
|K| = M . Γ naturally inherits from the coloration of K an edge-coloration,
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i.e. a map γ : E(Γ) → Δ3 defined in the following way: for each e ∈ E(Γ),
γ(e) = c iff the vertices of the face dual to e are labelled in K by Δ3 − {c}.
Note that an edge-coloration is characterized by being injective on each pair
of adjacent edges of the graph.

The pair (Γ, γ) (and Γ itself, too, if no confusion arises) is called a 4-coloured
graph representing M or simply a gem of M (gem=graph encoded manifold),
according to [15].

It is easy to see that, starting from Γ, we can always reconstruct K(Γ) = K
and hence the manifold M : see [12] and [1] for details.

The elements of the set Δ3 = {0, 1, 2, 3} are said to be colours of Γ, while
e ∈ E(Γ) such that γ(e) = i (i ∈ Δ3) is said to be an i-coloured edge. For every
i, j ∈ Δ3 let Γi,j (resp. Γî) the subgraph obtained from (Γ, γ) by deleting all
the edges of colour c ∈ Δ3 − {i, j} (resp. by deleting all the edges of colour
i). The connected components of Γi,j (resp. Γî) are said to be {i, j}-coloured
cycles (resp. î-residues) of Γ, and their number is denoted by gi,j (resp. gî). A
4-coloured graph (Γ, γ) representing a 3-manifold M is called a crystallization
of M iff, for each i ∈ Δ3, the subgraph Γî is connected (i.e. iff gî = 1 ∀i ∈ Δ3).

Several topological properties of M can be “read” as combinatorial proper-
ties of any crystallization (or more generally any gem) Γ of M : as an example,
M is orientable iff Γ is bipartite.

It is very easy to check that every 3-manifold admits a gem representing
it: in fact, the existence of a coloured triangulation (and, hence, an edge-
coloured graph) representing M may be directly proved by considering the first
baricentric subdivision of any simplicial triangulation of M , and by labelling
every vertex by the dimension of the corresponding simplex. Pezzana Theorem
and its subsequent improvements ([12] or [1]) ensure crystallizations to be an
universal tool to represent manifolds, too.

Of course, many gems exist for any fixed 3-manifold M . In particular, if
(Γ, γ) is a gem of M , any edge-coloured graph Γ′ obtained from Γ by permu-
tation of the vertex set and/or of the colour set (Γ and Γ′ are usually said
to be colour-isomorphic graphs) is obviously a gem of M , too. In [15] and
[9], an alphanumerical code c(Γ) is defined for any coloured graph Γ, so that
c(Γ) = c(Γ′) iff Γ and Γ′ are colour-isomorphic graphs 4.

On the other hand, dipole moves (see [11]) are elementary combinatorial
moves on edge-coloured graphs so that any two gems of the same manifold M
are transformed one into the other by a finite sequence of dipole moves.

If the 3-manifold M is assumed to be handle-free,5 and Γ is any gem of
M , then another combinatorial move - called ρ-pair elimination -, together

4Note that the recognizion of colour-isomorphic graphs may be easily implemented: for
example, DUKE III program contains a suitable “code computation” function.

5A manifold M is said to be handle-free if its decomposition via connected sum contains
no factor homeomorphic to an (orientable or non-orientable) S2-bundle over S1.
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with dipole moves, allows to obtain a rigid crystallization Γ′ of M , i.e. a crys-
talizzation where every pair of equally coloured edges belong to one common
bicoloured cycle at most (see [15] and [4]), such that #V (Γ′) ≤ #V (Γ).

The embedding of a coloured graph into a surface is said to be regular if
the connected components split by the image of the graph onto the surface
are open balls (called regions of the embedding) bounded by the image of
bicoloured cycles; interesting results of crystallization theory (mainly related to
the already quoted n-dimensional extension of Heegaard genus, called regular
genus) relay on the existence of this type of embedding, for graphs representing
manifolds of arbitrary dimension.

As far as the 3-dimensional case is concerned, it is well-known that, if
(Γ, γ) is a bipartite (resp. non-bipartite) gem of M3, then for every cyclic
permutation ε = (ε0, ε1, ε2, ε3) of Δ3, Γ admits a regular embedding into the
closed orientable (resp. non-orientable) surface of genus ρε(Γ) = gε0,ε2 − gε̂1 −
gε̂3 + 1.

The regular genus ρ(Γ) of (Γ, γ) is, by definition, the minimum ρε(Γ),
among all cyclic permutations ε of Δ3. Finally, the regular genus of a 3-manifold
M is defined as:

G(M) = min {ρ(Γ) /(Γ, γ) is a gem of M} .

4. From matrices to 4-coloured graphs repre-

senting 3-manifolds of type KB(A)

The following paragraph will be entirely devoted to show how to construct edge
coloured graphs representing the 3-manifolds obtained from I-bundles over the
Klein bottle, directly from integer matrices inducing them.

Theorem 4.1 Let A ∈ GL(2; Z). An algorithmic procedure exists, which
allows to directly construct a 4-coloured graph ΓKB(A) representing the 3-
manifold obtained by pasting together two copies of the orientable I-bundle
over the Klein bottle, through the boundary homeomorphism associated to ma-
trix A.

Proof. The statement is directly proved by construction, via the following
steps.

First step: We construct two cell-complexes K̄1 and K̄2 triangulating the
torus T , so that a bijective cell-map Φ̄A : K̄1 → K̄2 exists, with |Φ̄A| = φ̃A.
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Let us denote Aij = max{|aij |, 1}, ∀i, j ∈ {0, 1}.
In order to obtain K̄2, it is sufficient to consider on I×I

∼ (endowed with coor-
dinate system (c′0, c

′
1)) the geometrical realization of curves α′

i = ai0c
′
0 + ai1c

′
1

(i ∈ {0, 1}) consisting of the Ai0 +Ai1 − 1 edges, parallel to 	v ≡ (ai0, ai1), hav-
ing as end-points the Ai1 + 1 vertices on I × {0} = I × {1} of first coordinate

h
Ai1

, h ∈ {0, . . . , Ai1}, and the Ai0 + 1 vertices on {0} × I = {1} × I of second

coordinate k
Ai0

, k ∈ {0, . . . , Ai0}6.

On the other hand, let K̄1 be the cellular subdivision of I×I
∼ (endowed with

coordinate system (c0, c1)) constructed in the following way:

• Let us consider the A00 + A01 vertices Vr, r ∈ {0, . . . , A00 + A01 − 1}, on
I ×{0} = I ×{1} of first coordinate r

A00+A01−1
and the A10 +A11 vertices

Ws, s ∈ {0, . . . , A10 +A11−1}, on {0}×I = {1}×I of second coordinate
s

A10+A11−1
.7

• In case A00 ≥ A10 (and A01 ≥ A11, too8), then:

- For every vertex of the set {W0, . . . , WA10+A11−1} ⊂ {0}×I = {1}×
I, let us consider an edge internal to I × I parallel to 	w ≡ (A10 +
A11−1,−μ(A)(A00+A01−1)), where μ(A) = +1 (resp. μ(A) = −1)
if a0j · a1j ≥ 0 ∀j ∈ {0, 1} (resp. if a0j · a1j ≤ 0 ∀j ∈ {0, 1});

- if ai,j �= 0 ∀i, j ∈ N2, let us also consider the A00 + A01 − A10 −
A11 edges internal to I × I, having both the end-points in the set
{V0, . . . , VA00+A01−1} ⊂ I × {0} = I × {1}, parallel to 	w′ ≡ (A10 +
A11,−μ(A)(A00 + A01 − 1)).

• Otherwise (i.e., in case A00 ≤ A10 and A01 ≤ A11), then:

- For every vertex of the set {V0, . . . , VA00+A01−1} ⊂ I×{0} = I×{1},
let us consider an edge internal to I×I parallel to 	w ≡ (A10 +A11−
1,−μ(A)(A00 + A01 − 1)), where μ(A) = +1 (resp. μ(A) = −1) if
a0j · a1j ≥ 0 ∀j ∈ {0, 1} (resp. if a0j · a1j ≤ 0 ∀j ∈ {0, 1});

- if ai,j �= 0 ∀i, j ∈ N2, let us also consider the A10 + A11 − A00 −
A01 edges internal to I × I, having both the end-points in the set
{W0, . . . , WA10+A11−1} ⊂ {0}× I = {1}× I, parallel to 	w′ ≡ (A10 +
A11 − 1,−μ(A)(A00 + A01)).

6Note that, in the case aij = 0, the geometrical realization of α′
i simply coincides with

the canonically identified edges I × {0} = I × {1} (if j = 1) or {0} × I = {1} × I (if j = 0).
7Obviously, via pairwise identification ∼ of opposite edges in I × I, V0 = W0 and

VA00+A01−1 = WA10+A11−1. Moreover, note that the edge I × {0} = I × {1} (resp.
{0} × I = {1} × I) of K̄1 results to be subdivided into A00 + A01 − 1 (resp. A10 + A11 − 1)
edges, as well as the geometrical realization of α′

0 (resp. α′
1) in K̄2.

8It is easy to check that condition det(A) ∈ {±1} directly excludes both the case A00 >
A10, A01 < A11 and the case A00 < A10, A01 > A11.
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Note that both K̄1 and K̄2 consist of
∑

i,j∈{0,1} |aij| − 1 cells, among which

4−2n0(A) are triangular cells and
∑

i,j∈{0,1} |aij|−5+2n0(A) are quadrangular

ones, n0(A) being the number of null elements in A; moreover, the required
bijective cell-map Φ̄A : K̄1 → K̄2, with |Φ̄A| = φ̃A, is easily induced by φ̃A(ci) =
α′

i = ai0c
′
0 + ai1c

′
1 (with correct orientations).

Second step: We construct two coloured triangulations K1 and K2 of the
torus T , so that a bijective coloured simplicial map ΦA : K1 → K2 exists ,
with |ΦA| = φ̃A.
K1 (resp. K2) is simply obtained from K̄1 (resp. K̄2) by performing a bari-
centric subdivision and by labelling every vertex of K1 (resp. K2) with the
dimension of the corresponding cell of K̄1 (resp. K̄2). Hence, the bijective
cell-map Φ̄A : K̄1 → K̄2 canonically induces a bijective coloured simplicial
map ΦA : K1 → K2, with the property |ΦA| = φ̃A.

Third step: We construct a coloured triangulation H̄1 (resp. H̄2) of the

orientable I-bundle over the Klein bottle K, K
∼× [0, 1], so that ∂H̄1 = K1

(resp. ∂H̄2 = K2).
For, let P1 (resp. P2) be a copy of the three-tetrahedron solid triangular prism
depicted in Figure 1(a), which gives rise - via suitable pairwise identification
of six boundary triangles, as indicated in Figure 1(b) - to the so called “square

orientable” triangulation of K
∼× [0, 1] (see [3]; Definition 3.2.5 and Figure

3.12), with a boundary square triangulating the torus, as indicated in Figure
1(c). Then, let P̄1 (resp. P̄2) be the cell complex consisting of exactly one
3-cell, whose boundary is obtained from ∂P1 (resp. ∂P2) by subdividing its
boundary square according to the torus triangulation K̄1 (resp. K̄2); finally,

let H̄1 (resp. H̄2) be the coloured simplicial triangulation of K
∼× [0, 1] obtained

from P̄1 (resp. P̄2) by performing a baricentric subdivision, by labelling every
vertex with the dimension of the corresponding cell of P̄1 (resp. P̄2) and by
pairwise identifying all boundary faces, except those reproducing K1 (resp.

K2), according to “square orientable triangulation” of K
∼× [0, 1].

Figure 1(a)
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Figures 1(b) and 1(c)

Fourth step: A coloured triangulation K̄A of the closed 3-manifold KB(A)
is obtained from H̄1 and H̄2 by means of the identification of ∂H̄1 (reproducing
K1) with ∂H̄2 (reproducing K2) according to Φ̄A.

In order to complete the algorithmic construction, it is now sufficient to
consider the edge coloured graph ΓKB(A) such that ΓKB(A) = Γ(K̄A) (as
described in the previous paragraph).

�

Example 1. If A =

(
0 1
1 −2

)
∈ GL(2; Z), then KB(A) turns out to be

equivalent to KB(A′), with A′ =

(−2 −1
−1 0

)
∈ GL(2; Z) (see Lemma 2.1).

Then, the first step of the described algorithm yields the cell-complexes K̄1

and K̄2 triangulating the torus T depicted in Figure 2(a) (where the bijective
cell-map Φ̄A′ : K̄1 → K̄2 with |Φ̄A′| = φ̃A′ is visualized by labelling the pairs
of corresponding cells by equal symbols (for example, (x, x′)). Further, Figure
2(b) illustrates the coloured triangulations K1 and K2 of the torus T obtained
in the second step (where the equally labelled simplices are assumed to corre-
spond each other in the bijective coloured simplicial map ΦA′ : K1 → K2, with
|ΦA′ | = φ̃A′). Finally, in Figure 2(c) the boundaries of two coloured simplicial

subdivisions of the “square orientable triangulation” of K
∼× [0, 1] (yielding

the triangulations H̄1 and H̄2, with an inner 3-colured vertex, as indicated
in the third step) are depicted, and the equally labelled 2-simplices indicate
the boundary identifications necessary to yield KA′ from H̄1 ∪ H̄2 (forth step).
The resulting edge-coloured graph ΓKB(A′) = Γ(KA′) is shown in Figure 2(d),
where the 3-coloured edges are understood through the equal labelling of pairs
of 3-adjacent vertices.
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Example 2. If A =

(
2 3
−1 −2

)
∈ GL(2; Z), the first step of the described al-

gorithm yields the cell-complexes K̄1 and K̄2 triangulating the torus T depicted
in Figure 3(a) (where the bijective cell-map Φ̄A′ : K̄1 → K̄2 with |Φ̄A′ | = φ̃A′

is visualized by equally labelling of the corresponding cells). Further, 3(b)
illustrates the coloured triangulations K1 and K2 of the torus T obtained in
the second step (where the equally labelled 2-simplices are assumed to cor-
respond each other in the bijective coloured simplicial map ΦA′ : K1 → K2,
with |ΦA′ | = φ̃A′). Subsequent steps of the described algorithm follow as in
Example 1.
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Remark 1. Note that, in virtue of Lemma 2.1, any manifold obtained by
pasting together two copies of the orientable I-bundle over the Klein bottle
(i.e. any manifold of type KB(A)) turns out to admit a 4-coloured graph
ΓKB(A) (obtained as an output of the algorithmic procedure of Theorem 4.1,
for a suitable A ∈ GL(2; Z)) representing it.
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Remark 2. For every A ∈ GL(2; Z)), the 4-coloured graph ΓKB(A) represent-
ing KB(A) enjoys the following combinatorial features (which may be easily
checked by direct computation via the corresponding geometrical properties of
the coloured triangulation K̄A):

2p = #V (ΓKB(A)) = 4(7
∑

i,j∈{0,1} |aij| − 2 + 5n0(A) + A10 − A01);

g01 = 2(
∑

i,j∈{0,1} |aij | + 5);

g02 = g03 = g13 = 7
∑

i,j∈{0,1} |aij | − 2 + 5n0(A) + A10 − A01;

g12 = 5
∑

i,j∈{0,1} |aij| − 8 + 5n0(A) + A10 − A01;

g23 = 2(2
∑

i,j∈{0,1} |aij| + n0(A));

g0̂ =
∑

i,j∈{0,1} |aij | − 3 + n0(A);

g1̂ = 2
∑

i,j∈{0,1} |aij| + n0(A);

g2̂ =
∑

i,j∈{0,1} |aij | + 5;

g3̂ = 2.

Proposition 4.2 For every A ∈ GL(2; Z), the following relations hold:

a) ρ(ΓKB(A)) =
∑

i,j∈{0,1} |ai,j| + 4;

b) G(KB(A)) ≤ 4.

Further, if A ∈ GL(2; Z) contains a null element, then:

c) G(KB(A)) ≤ 3.

Proof. If ε̄ = (0, 2, 1, 3), a direct computation yields:

ρε̄(ΓKB(A)) =g01 − g2̂ − g3̂ + 1 = 2
∑

i,j∈{0,1}
|aij| + 10 − (

∑
i,j∈{0,1}

|aij| + 5) − 2 + 1 =

=
∑

i,j∈{0,1}
|aij| + 4

On the other hand, it is easy to check that, for any permutation ε′ of Δ3,
ρε′(ΓKB(A)) ≥ ρε̄(Γ(A)) holds; thus, statement (a) follows.

In order to prove statement (b), it is necessary to note that, if σ, σ′ are two cells
of the cellular triangulation K̄1 of the bidimensional torus T, sharing a com-
mon boundary edge e, with e /∈ ∂(T ), then the {0, 1}-coloured cycle of ΓKB(A),
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dual to the {2, 3}-labelled edge of K̄A having the baricenter of σ (resp. σ′) as
an end-point, has exactly one common vertex with any {2, 3}-coloured cycle
of ΓKB(A), dual to one of the ({0, 1}-labelled) edges of K̄A subdividing e: this
means that any such common vertex identifies a so called generalized dipole,
which is a combinatorial structure that may be easily eliminated by a finite
sequence of elementary moves on edge-coloured graphs, yielding a new graph,
with one less {0, 1}-coloured cycle, representing the same 3-manifold (see [11]
for details). It is not difficult to check that, since K̄1 contains

∑
i,j∈{0,1} |aij |−2

edges not belonging to ∂(T ), the combinatorial structure of K̄A allows to per-
form in ΓKB(A), for every A ∈ GL(2; Z), a finite sequence of

∑
i,j∈{0,1} |aij|−2

“independent” generalized dipole eliminations; moreover, ΓKB(A) contains at
least two other “independent” generalized dipoles, involving colours {0, 1} and
{2, 3}, corresponding to inner 1-coloured vertices of the coloured triangulation

H̄1 of K
∼× [0, 1]. The whole sequence of generalized dipole eliminations gives

rise to a new 4-coloured graph Γ′
KB(A) representing KB(A), so that

ρε̄(Γ
′
KB(A)) = ρε̄(ΓKB(A)) − [(

∑
i,j∈{0,1}

|aij | − 2) + 2] = 4.

This completes the proof of statement (b).

Finally, let us consider the case of a matrix A ∈ GL(2; Z) containing a null
element. A direct check allows to verify that Γ′

KB(A) contains at least an-
other “independent” generalized dipole, involving colours {0, 1} and {2, 3},
corresponding to the 1-coloured vertex of the coloured triangulation H̄1 of

K
∼× [0, 1], which is the baricenter of the boundary edge m̄ ∈ {m1, m2} (see

Figure 1) which is not subdivided in K̄1 .
Hence, the additional hypothesis that A contains a null element allows to

obtain - through a further generalized dipole elimination - a new graph Γ′′
KB(A)

representing KB(A); statement (c) now directly follows:

∃̄i, j̄ ∈ {1, 2}, aīj̄ = 0 =⇒ ρε̄(Γ
′′
KB(A)) = ρε̄(Γ

′
KB(A)) − 1 = 3.

�

We are now able to easily prove the already quoted upper bound results about
Heegaard genus of manifolds of type KB(A).

Proof of Proposition 2.3.
Statement (a) directly follows from Proposition 4.2 (b), via Lemma 2.1 and
Remark 1.
On the other hand, statement (b) is a direct consequence of Proposition 4.2
(c).

�
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5. Recognition of manifolds of type KB(A) among

elements of existing crystallization catalogues

In [6], together with previous work [15], (resp. in [4]) a complete catalogue
C(30) (resp. C̃(26)) of orientable (resp. non-orientable) 3-manifolds admitting
coloured triangulations up to 30 (resp. 26) tetrahedra is obtained, and its ele-
ments are deeply analyzed; as a consequence, the following results are proved:

Proposition 5.1

a) [15] Exactly 69 non-homeomorphic prime orientable 3-manifolds exist,
which admit a coloured triangulation consisting of at most 28 tetrahedra;

b) [6] Exactly 41 non-homeomorphic prime orientable 3-manifolds exist,
which admit a coloured triangulation consisting of 30 tetrahedra and do
not admit a coloured triangulation consisting of less than 30 tetrahedra;

c) [4] Exactly 7 non-homeomorphic prime non-orientable 3-manifolds exist,
which admit a coloured triangulation consisting of at most 26 tetrahedra.

�

For details about the orientable represented manifolds, see [7].9

Now, we will apply the above described algorithmic construction of edge
coloured graphs representing manifolds of type KB(A), in order to combina-
torially recognize all manifolds of type KB(A) belonging to Lins’s catalogue
C(28) [15] (resp. to Casali-Cristofori’ catalogue C(30) [6]) of closed connected
orientable 3-manifolds represented by edge-coloured graphs up to 28 (resp. 30)
vertices.

Proposition 5.2 Exactly six manifolds of type KB(A), for suitable matri-
ces A ∈ GL(2; Z) with det(A) = −1, admit a pseudosimplicial triangulation
consisting of ad most 30 tetrahedra.
More precisely, if r2p

k denotes the k − th element with 2p vertices (p ≤ 15)
belonging to the crystallizations catalogues due to Lins [15] and to Casali-
Cristofori [6], we have:

(a) the orientable 3-manifold corresponding to r24
5 is the manifold KB(A),

with A =

(
0 1
1 0

)
;

9As far as the non-orientable case is concerned, Theorem I of [4] proves that the involved
manifolds are: the four euclidean non-orientable 3-manifolds, the non-trivial S2 bundle over
S1, the topological product between the real projective plane RP2 and S1, and the torus

bundle over S1, with monodromy induced by matrix
(

0 1
1 −1

)
.
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(b) the orientable 3-manifold corresponding to r26
5 is the manifold KB(A),

with A =

(
1 1
1 0

)
;

(c) the orientable 3-manifold corresponding to r28
6 is the manifold KB(A),

with A =

(−1 0
1 1

)
;

(d) the orientable 3-manifold corresponding to r28
19 is the manifold KB(A),

with A =

(
0 1
1 −2

)
;

(e) the orientable 3-manifold corresponding to r30
21476 is the manifold KB(A),

with A =

(
1 −2
−1 1

)
;

(f) the orientable 3-manifold corresponding to r30
45716 is the manifold KB(A),

with A =

(−1 −1
1 2

)
.

Proof. Note that, within Lins’s and Casali-Cristofori’ catalogues ([15] and [6]),
the topological identification of the six represented manifolds of type KB(A),
for suitable matrices A ∈ GL(2; Z) with det(A) = −1, has been already ob-
tained through GM-complexity computation and homology group comparison
or - in the 30 vertices cases - through Matveev’s program Three-manifold Rec-
ognizer (see [7]; Table 1 and Table 2).

Hence, we have only to take into account the “first” element of the quoted
catalogues which represents KB(A), for each one of the six involved matrices.

(a) Let A =

(
0 1
1 0

)
. Since A ∈ GL(2; Z), we can directly apply the algo-

rithmic procedure of the previous section: the coloured pseudocomplex KA is

obtained from the two coloured simplicial triangulations H̄1 and H̄2 of K
∼×[0, 1]

(with an inner 3-coloured vertex) whose boundaries are depicted in Figure 4,
by means of the pairwise identification of 2-simplices labelled x, x′, for each
label x.

It is not difficult to check that the associated order 96 4-coloured graph ΓKB(A)
may be transformed by a finite sequence of eliminations of dipoles and ρ-
pairs (for example, by making use of the corresponding functions of DUKE III
program) into an order 32 rigid crystallization Γ′

KB(A) having code

c(Γ′
KB(A)) = EABCDHFGJILKNMPO LKMOFEDNHBJAPIGC

OINLKACMBHPDJGFE.
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Figure 4

A direct computation allows to prove Γ′
KB(A) to admit a so called cluster,

which is a combinatorial structure that may be easily eliminated by a finite
sequence of elementary moves on edge-coloured graphs, yielding a new graph
Γ′′

KB(A), with two less vertices, representing the same 3-manifold (see Figure
5, or [15]; Proposition 24 for details). On the other hand, Γ′′

KB(A) may be
further simplified via two 2-dipole eliminations (for example, by making use of
the corresponding function of DUKE III program), so to obtain the order 26
4-coloured graph Γ′′′

KB(A) having code

c(Γ′′′
KB(A)) = CABFDEIGHKJML ILDCJGFEMHBKA

DMGACIEKLBHFJ ;

since this code identifies, up to permutation of vertices and colours, the element
r26
3 ∈ C(28), and since Lins’s classification ensures the represented 3-manifold

to be the same as r24
5 ∈ C(28), part (a) of the statement follows.
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Figure 5

(b) Let A =

(
1 1
1 0

)
. Since A ∈ GL(2; Z), we can directly apply the algo-

rithmic procedure of the previous section: the coloured pseudocomplex KA is

obtained from the two coloured simplicial triangulations H̄1 and H̄2 of K
∼×[0, 1]

(with an inner 3-coloured vertex) whose boundaries are depicted in Figure 6,
by means of the pairwise identification of 2-simplices labelled x, x′, for each
label x.
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It is not difficult to check that the associated order 96 4-coloured graph ΓKB(A)
may be transformed by a finite sequence of eliminations of dipoles and ρ-
pairs (for example, by making use of the corresponding functions of DUKE III
program) into an order 32 rigid crystallization Γ′

KB(A) having code

c(Γ′
KB(A)) = EABCDHFGKIJNLMPO NPLJFEDIHGCKOAMB

LJIKHDOMCBFPEGNA.

A direct computation allows to prove Γ′
KB(A) to admit a cluster, which may

be easily eliminated by a finite sequence of elementary moves on edge-coloured
graphs, yielding a new graph Γ′′

KB(A), with two less vertices, representing the
same 3-manifold (as already pointed out in part (a) of the present proof, see
Figure 5 or [15]; Proposition 24 for details).

The code of Γ′′
KB(A) is

c(Γ′′
KB(A)) = DABCGEFJHIMKLON JONLDKHGFAIECMB

HGKMAJNEDFCOIBL.

Since this code identifies r30
39343 ∈ C(30) (i.e. the element number 39343 of the

crystallization catalogue C(30)), which belongs to the same “equivalence class”
of r26

5 ∈ C(28), the represented manifolds surely belong to the same homeomor-
phism class: in fact, in [6], the complete classification of the manifolds encoded
by catalogue C(30) is performed via an automatic partition of crystallizations
into equivalence classes which are proved to be in one-to-one correspondence
with the homeomorphism classes of the represented manifolds. Hence, part
(b) of the statement follows.

(c) Let A =

(−1 0
1 1

)
. Since A ∈ GL(2; Z), we can directly apply the

algorithmic procedure of the previous section: the coloured pseudocomplex
KA is obtained from the two coloured simplicial triangulations H̄1 and H̄2 of

K
∼× [0, 1] (with an inner 3-coloured vertex) whose boundaries are depicted in

Figure 7, by means of the pairwise identification of 2-simplices labelled x, x′,
for each label x.

It is not difficult to check that the associated order 96 4-coloured graph ΓKB(A)
may be transformed by a finite sequence of eliminations of dipoles and ρ-
pairs (for example, by making use of the corresponding functions of DUKE III
program) into an order 34 rigid crystallization Γ′

KB(A) having code

c(Γ′
KB(A)) = EABCDHFGKIJMLONQP MPNGFEDIHCLKOJQBA

NMLFKICQDHPGBAEOJ.
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Figure 7

The program “Γ-class” yielding the automatic partition of crystallizations into
equivalence classes whose elements represent - up to homeomorphism - the
same manifold (see [6] and [7] for details), allows to prove that Γ′

KB(A) belongs
to the same “equivalence class” of r28

6 ∈ C(28); hence, part (c) of the statement
follows.

(d) Let A =

(
0 1
1 −2

)
. As already pointed out in Example 1, the al-

gorithmic procedure of the previous section, applied to the equivalent ma-

trix A′ =

(−2 −1
−1 0

)
∈ GL(2; Z), yields the order 124 4-coloured graph

ΓKB(A′) = Γ(KA′) depicted in Figure 2(d) (where the 3-coloured edges are
understood through the equal labelling of the pairs of 3-adjacent vertices).

It is not difficult to check that ΓKB(A′) may be transformed by a finite se-
quence of eliminations of dipoles and ρ-pairs (for example, by making use
of the corresponding functions of DUKE III program) into an order 42 rigid
crystallization Γ′

KB(A′) having code
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c(Γ′
KB(A′)) = EABCDHFGJIMKLONQPSRUT

MULSPEKIHGJNTCFORQDAB

SLHMTBICOFNJPKGUAEQRD.

The program “Γ-class” yielding the automatic partition of crystallizations into
equivalence classes whose elements surely represent - up to homeomorphism -
the same manifold (see [6] and [7] for details), allows to prove that Γ′

KB(A′)
belongs to the same “equivalence class” of r28

19 ∈ C(28); hence, part (d) of the
statement follows.

(e) Let A =

(
1 −2
−1 1

)
. Since A /∈ GL(2; Z), we apply the algorithmic

procedure of the previous section to the equivalent matrix A′ =

(
1 2
1 1

)
∈

G̃L(2; Z) : the coloured pseudocomplex KA′ is obtained from the two coloured

simplicial triangulations H̄1 and H̄2 of K
∼× [0, 1] (with an inner 3-coloured

vertex) whose boundaries are depicted in Figure 8, by means of the pairwise
identification of 2-simplices labelled x, x′, for each label x.
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It is not difficult to check that the associated order 128 4-coloured graph
ΓKB(A′) may be transformed by a finite sequence of eliminations of dipoles and
ρ-pairs (for example, by making use of the corresponding functions of DUKE
III program) into an order 38 rigid crystallization Γ′

KB(A′) having code

c(Γ′
KB(A′)) = EABCDHFGKIJNLMQOPSR

NMJQFEDOHCLKBAIRSPG

RJIFOPNQLBSCKGMDHAE.

The program “Γ-class” yielding the automatic partition of crystallizations into
equivalence classes whose elements represent - up to homeomorphism - the
same manifold (see [6] and [7] for details), allows to prove that Γ′

KB(A) be-
longs to the same “equivalence class” of r30

21476 ∈ C(30); hence, part (e) of the
statement follows.

(f) Let A =

(−1 −1
1 2

)
. Since A /∈ GL(2; Z), we apply the algorithmic

procedure of the previous section to the equivalent matrix A′ =

(
2 1
−1 −1

)
∈

G̃L(2; Z) (see Lemma 2.1): the coloured pseudocomplex KA′ is obtained from

the two coloured simplicial triangulations H̄1 and H̄2 of K
∼× [0, 1] (with an

inner 3-coloured vertex) whose boundaries are depicted in Figure 9, by means
of the pairwise identification of 2-simplices labelled x, x′, for each label x.

It is not difficult to check that the associated order 132 4-coloured graph
ΓKB(A′) may be transformed by a finite sequence of dipole eliminations (for
example, by making use of the corresponding function of DUKE III program)
into an order 34 rigid crystallization Γ′

KB(A′) having code

c(Γ′
KB(A′)) = DABCHEFGKIJMLONQP KQJEDLOIHGPFNMCAB

GPLKJIADQEHNBCMOF.

The program “Γ-class” yielding the automatic partition of crystallizations
into equivalence classes whose elements surely represent - up to homeomor-
phism - the same manifold (see [6] and [7] for details), allows to prove that
Γ′

KB(A) belongs to the same “equivalence class” of r30
45716 ∈ C(30); hence, part

(f) of the statement follows.
�
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