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THE ROLE OF THE CENTRAL LIMIT THEOREM IN
DISCOVERING SHARP RATES OF CONVERGENCE TO
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In Dolera, Gabetta and Regazzini [Ann. Appl. Probab. 19 (2009) 186–
201] it is proved that the total variation distance between the solution f (·, t)
of Kac’s equation and the Gaussian density (0, σ 2) has an upper bound
which goes to zero with an exponential rate equal to −1/4 as t → +∞.
In the present paper, we determine a lower bound which decreases expo-
nentially to zero with this same rate, provided that a suitable symmetrized
form of f0 has nonzero fourth cumulant κ4. Moreover, we show that upper
bounds like Cδe

−(1/4)t ρδ(t) are valid for some ρδ vanishing at infinity when∫
R

|v|4+δf0(v) dv < +∞ for some δ in [0,2[ and κ4 = 0. Generalizations of
this statement are presented, together with some remarks about non-Gaussian
initial conditions which yield the insuperable barrier of −1 for the rate of con-
vergence.

1. Introduction. In order to determine the rates of relaxation to equilibrium
in kinetic theory, Kac derived the following Boltzmann-like equation, commonly
known as the Kac equation:

∂f

∂t
(v, t) = 1

2π

∫ 2π

0

∫
R

[f (v cos θ − w sin θ, t)

× f (v sin θ + w cos θ, t)(1)

− f (v, t) · f (w, t)]dw dθ (v ∈ R, t > 0)

with some specific probability density function f0 as initial datum. The resulting
Cauchy problem admits a unique solution within the class of all probability density
functions on R. Such a solution provides the probability distribution at any time
of the velocity of a single particle in a chaotic bath of like molecules moving on
the real line; see Kac (1956, 1959) and McKean (1966). It is well known that
the probability measure μ(·, t) determined by f (·, t) converges to a distinguished
Gaussian law in the variational metric, namely

dTV(μ(·, t);γσ ) := sup
B∈B(R)

|μ(B, t) − γσ (B)| → 0 (t → +∞)(2)
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where γσ denotes the Gaussian distribution with zero mean and variance σ 2 and,
for any metric space S, B(S) stands for the Borel class on S. It should be recalled
that (2) holds true if and only if the initial datum has finite second moment and σ 2

is the value of this moment. The proof of the “if” part of this assertion is given in
Dolera (2007) by adapting arguments explained in Carlen and Lu (2003), whereas
the proof of the “only if” part is contained in Gabetta and Regazzini (2008).

In regard to the speed of approach to equilibrium, it has been proven that

dTV(μ(·, t);γσ ) ≤ C∗e−(1/4)t (t ≥ 0)(3)

holds, with C∗ being some suitable constant depending only on the behavior of f0,
when f0 has finite fourth moment and

ϕ0(ξ) :=
∫

R

eiξxf0(x) dx = o(|ξ |−p) (|ξ | → +∞)(4)

is valid for some p > 0; see Dolera, Gabetta and Regazzini (2009). This work
will be refered to as DGR throughout the rest of the present paper. Inequality (3)
is known as McKean’s conjecture and the above statement constitutes the first
satisfactory support of this conjecture. Other bounds with respect to weak metrics
have been given in Gabetta and Regazzini (2010).

At the end of Section 2.2 of DGR, the question of whether the upper bound in
(3) can be improved is posed. To the best of the authors’ knowledge, this problem
has not yet been tackled, except for a hint on page 370 of Carlen, Carvalho and
Gabetta (2005). The main proposition in the present paper states that the answer is
in the affirmative only in the rather peculiar case in which the fourth cumulant of
the density f̃0(x) := {f0(x) + f0(−x)}/2 is zero. The term “fourth cumulant” of a
probability distribution Q on B(R) refers to the quantity

κ4(Q) :=
∫

R

(x − Q)4Q(dx) − 3
(∫

R

(x − Q)2Q(dx)

)2

,

with Q := ∫
R

xQ(dx), under the assumption that the fourth moment is finite. This
cumulant is zero, for example, when Q is Gaussian.

In view of this fact, one could comment on the main proposition by noting that
improvements of the rate expressed by (3) turn out to be impossible when f0 is
dissimilar to all of the members in the class of all Gaussian probability density
functions. For the sake of completeness, we recall that, given the Fourier–Stieltjes
transform q of Q, the r th cumulant of Q is defined to be the coefficient of (iξ)r/r!
in the Taylor expansion of log(q(ξ)); see, for example, Sections 3.14–3.15 of Stu-
art and Ord (1987).

As a further remark on the aforementioned proposition, it is worth noting its
resemblance to well-known facts related to the approximation of the distribution
function Fn of the “standardized” sum of n independent and identically distributed
random variables with finite variance, by the standard Gaussian distribution �.
Indeed, in general, Fn is approximated by �, except for terms of order 1/

√
n.

However, higher orders of approximation hold when the skewness and kurtosis of
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the common distribution of each summand are zero. Lyapounov (1901) was the
pioneer of these kinds of problems, followed by Cramér (1937), Esseen (1945)
and others.

The structure of the paper is as follows. Section 2 contains the presentation of
the main results. Section 3 deals with the basic preliminary facts which pave the
way for proofs of the main results. It is split into two subsections. The former con-
sists of a brief description of the probabilistic interpretation, according to which
μ(·, t) can be seen as distribution of a random weighted sum of random variables.
The latter is devoted to the analysis of the error associated with the approxima-
tion of the law of certain weighted sums of independent random variables to the
Gaussian distribution. Section 4 contains the proofs of the main results stated in
Section 2. Finally, some purely technical details are deferred to the Appendix, to-
gether with the proofs of two lemmas formulated in Section 3.

2. Presentation of the new results. In order to present the main results we
intend to prove in this paper, it is worth mentioning the following weak version of
Kac’s problem (1) proposed in Bobylev (1984). Taking the Fourier transform of
both sides of (1) yields

∂ϕ

∂t
(ξ, t) = 1

2π

∫ 2π

0
ϕ(ξ cos θ, t) · ϕ(ξ sin θ, t) dθ − ϕ(ξ, t)(5)

with initial datum ϕ0(ξ) := ∫
R

eiξxf0(x) dx. It should be noted that if ϕ0 is the
Fourier–Stieltjes transform of any (not necessarily absolutely continuous) prob-
ability distribution μ0 on B(R), then (5) can be thought of as a new problem
which generalizes (1). In any case, (5) admits a unique solution ϕ(·, t), which
characterizes—in the form of a Fourier–Stieltjes transform—a probability distrib-
ution μ(·, t) which, throughout the paper, will be said to be a solution of (5). Obvi-
ously, in problem (1), one has μ0(B) := ∫

B f0(v) dv and μ(B, t) := ∫
B f (v, t) dv

for every B in B(R).
In order to formulate the new results exhaustively, let mr and mr denote the

r th moment and the absolute r th moment of μ0, respectively, and let μ̃0 be the
symmetrized form of μ0 defined by

μ̃0(B) := {μ0(B) + μ0(−B)}/2, B ∈ B(R),(6)

where −B denotes the set {x|−x ∈ B}.
A precise statement of the fact that the rate −1/4 may be the best possible one

is contained in the following theorem.

THEOREM 2.1. Suppose that μ0 possesses finite fourth moment m4 and that
κ4(μ̃0) 	= 0. Moreover, let σ 2 be the value of m2. There then exists a strictly positive
constant C, depending only on the behavior of μ0, for which

dTV(μ(·, t);γσ ) ≥ Ce−(1/4)t(7)

holds true for every t ≥ 0.
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The proof of this theorem, deferred to Section 4, also contains a precise quan-
tification of C. Since

sup
B∈B(R)

|P(B) − Q(B)| = 1

2

∫
R

|p(x) − q(x)|dx

is valid whenever P and Q are absolutely continuous probability distributions with
densities p and q , respectively, as an immediate consequence of Theorem 2.1, it
follows that

1

2

∫
R

∣∣∣∣f (v, t) − 1

σ
√

2π
e−v2/(2σ 2)

∣∣∣∣dv ≥ Ce−(1/4)t (t ≥ 0)(8)

is true for the solution f (·, t) of (1), provided that the initial datum f0 yields a
probability measure μ0 with the same properties as in Theorem 2.1. From (8), it
plainly follows that any inequality such as∫

R

∣∣∣∣f (v, t) − 1

σ
√

2π
e−v2/(2σ 2)

∣∣∣∣dv ≤ C∗e−(1/4)tρ(t) (t ≥ 0)

is not valid when ρ vanishes at infinity. This clarifies why inequality (3) can be
viewed as sharp.

We now analyze the effect of assuming that κ4(μ̃0) = 0.

THEOREM 2.2. Consider Kac’s equation (1) with initial datum f0 such that
m4+δ < +∞ for some δ in [0,2[ and κ4(μ̃0) = 0. Further, let ϕ0, the Fourier
transform of f0, satisfy the usual tail condition (4) for some strictly positive p.
There then exist a strictly positive constant Cδ = Cδ(f0;p) and a function
ρδ : [0,+∞[→ [0,+∞[ which vanishes at infinity, for which∫

R

∣∣∣∣f (v, t) − 1

σ
√

2π
e−v2/(2σ 2)

∣∣∣∣dv ≤ Cδe
−(1/4)tρδ(t) (t ≥ 0).(9)

In particular, if δ belongs to ]0,2[, one can take

ρδ(t) = exp{(−3/4 + 2α4+δ)t}(10)

with αs := 1
2π

∫ 2π
0 |sin θ |s dθ .

Useful information for quantifying Cδ can be found in Sections 4.3, 4.4 and
Appendices A.2 and A.4.

Since even cumulants κ2m of the Gaussian distribution (0, σ 2) vanish for m ≥ 2
and supξ∈R|ϕ(ξ, t) − Reϕ(ξ, t)| ≤ 2e−t , one is led to think that the approach to
equilibrium of μ(·, t) might become faster when the symmetrized form of the ini-
tial datum gives an increasing number of zero even cumulants.

THEOREM 2.3. Consider problem (1) and maintain the same notation as be-
fore for f0, μ0, μ̃0, ϕ0 and αs . Further, assume that there exist an integer χ greater
than 2 and a number δ in [0,2[ for which:
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(i)
∫
R

|v|2χ+δf0(v) dv < +∞;
(ii) the cumulants κ2m of f̃0 vanish for m = 2, . . . , χ ;

(iii) ϕ0 meets (4) for some strictly positive p.

There then exists a strictly positive constant Cχ,δ = Cχ,δ(f0;p) for which∫
R

∣∣∣∣f (v, t) − 1

σ
√

2π
e−v2/(2σ 2)

∣∣∣∣dv ≤ Cχ,δe
−(1−2α2χ+δ)t (t ≥ 0)(11)

holds true.

Useful information for quantifying Cχ,δ can be found in Section 4.4 and Ap-
pendix A.2.

It should be noted that, except for the centered Gaussian law, the most common
distributions do not share condition (ii), at least for large values of χ . Therefore, it
is reasonable to believe that Theorem 2.1 covers the usual applications.

It would be interesting to check when, under suitable conditions for the ini-
tial distribution, the value −1 for the rate of relaxation to equilibrium is actually
obtained. The following propositions resolve this issue, under the additional con-
dition that all moments of μ0 are finite. It therefore remains to check whether this
moment assumption can actually be recovered from this high order of relaxation
to equilibrium. This problem will be tackled in a forthcoming work.

PROPOSITION 2.4. If μ0 possesses moments of every order and the solution
μ(·, t) of (5) satisfies

dTV(μ(·, t);γσ ) ≤ Ce−t

for some strictly positive constant C, then

μ0(·) = γσ (·) + oσ (·),(12)

where oσ is a finite signed measure satisfying oσ (A) = −oσ (−A) and γσ (A) +
oσ (A) ≥ 0 for every Borel subset A of R.

Observe that the Wild formula [cf. (13) in Section 3.1] implies that dTV(μ(·, t);
γσ ) = |oσ |e−t when the initial datum is of the type (12). Therefore, if one as-
sumes there exists some ρ : [0,+∞[ → [0,+∞[ vanishing at infinity so that
dTV(μ(·, t);γσ ) ≤ Ce−t ρ(t), then the total variation |oσ | of oσ satisfies |oσ | ≤
Cρ(t) for all positive t , which is tantamount to asserting that oσ is the null mea-
sure. This provides a proof for the following result.

COROLLARY 2.5. If μ0 has moments of every order and the solution μ(·, t)
of (5) satisfies

dTV(μ(·, t);γσ ) ≤ Ce−t ρ(t)

for some ρ vanishing at infinity and for some positive constant C, then μ(·, t) =
γσ (·) for every t ≥ 0.
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Thus, if all of the moments of μ0 are finite, then the value for the rate of con-
vergence to equilibrium that one cannot sharpen is just −1, unless μ0 is Gaussian.

3. Preliminaries. To pave the way for the proofs of the main statements,
this section presents some necessary preliminary facts and results. First, it ex-
plains the probabilistic meaning of Wild’s series, originally pointed out in McKean
(1966). Second, it gives new asymptotic expansions for the characteristic function
of weighted sums of independent and identically distributed random variables,
which complement analogous statements formulated in, for example, Chapter 8
of Gnedenko and Kolmogorov (1954), Chapter 6 of Petrov (1975) and Section 3.2
of DGR.

3.1. McKean’s interpretation of Wild’s sums. Following Wild (1951), one can
express the solution ϕ(·, t) of (5) as a time-dependent mixture of characteristic
functions, that is,

ϕ(ξ, t) = ∑
n≥1

e−t (1 − e−t )n−1q̂n(ξ ;ϕ0),(13)

where ⎧⎪⎨
⎪⎩

q̂1(ξ ;ϕ0) := ϕ0(ξ),

q̂n(ξ ;ϕ0) = 1

n − 1

n−1∑
k=1

q̂k(ξ ;ϕ0) � q̂n−k(ξ ;ϕ0) (n ≥ 2)

and � denotes the so-called Wild product defined by

g1(ξ) � g2(ξ) := 1

2π

∫ 2π

0
g1(ξ cos θ) · g2(ξ sin θ) dθ.

The Wild series, thanks to a symmetry property of the Wild product, yields a
useful decomposition of μ(·, t) which we will use later. Such a decomposition
involves the symmetrized form μ̃ of a probability measure μ defined by μ̃(B) :=
[μ(B) + μ(−B)]/2 for any B in B(R). It is well known that if μ(s)(·, t) denotes
the solution of (5) with initial datum μ̃0 [see (6)], then one can write

μ(·, t) − μ(s)(·, t) = o0(·)e−t(14)

with o0(·) := μ0(·) − μ̃0(·).
The next description of the probabilistic reinterpretation of (13) closely follows

Section 3.1 of DGR. Accordingly, we introduce, using exactly the same notation
adopted therein, the measurable space (�,F ) as a product, together with its co-
ordinate random elements ν, τ , θ := (θn)n≥1, υ := (υn)n≥1. We then recall the
definitions of the random elements δj , πj given in terms of McKean trees and put
β = (ν, τ, θ). Concerning the random variables πj , recall the fundamental equality

ν∑
j=1

π2
j ≡ 1,(15)
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which holds true whenever τ belongs to G(ν).
Now, for some fixed initial datum μ0 for problem (5), define a family (Pt )t≥0

of probability measures on (�,F ) according to (12) in DGR. Next, consider the
random variable

V =
ν∑

j=1

πjυj(16)

and note, via the Wild formula, that

μ(B, t) = Pt {V ∈ B} (
B ∈ B(R), t ≥ 0

)
μ(·, t) being the solution of (5) with μ0 as initial datum.

Consequently, the random variables υn turn out to be conditionally independent,
given β , with respect to each Pt . Moreover, since β and υ are independent, one can
think of the conditional probability distribution of V given β as the distribution of
a weighted sum of independent random variables. Indeed, for any fixed elementary
case ω in �, one can define the random variable

V (·) :=
ν(ω)∑
j=1

πj (ω)υj (·)(17)

on (�,F ), for which

Pt {V ≤ x|β}(ω) = Pt {V ≤ x} (x ∈ R, t ≥ 0)(18)

holds Pt -almost surely in ω. This last equality plays a central role in the rest of the
paper since it allows us to work on a finite sum of independent random variables
using typical tools of the central limit problem. In this context, it is important to
examine the behavior of the moments of the random variable V . Their evaluation
essentially depends on sums of powers of the πj via the following identity proven
in Gabetta and Regazzini (2006):

Et

[
ν∑

j=1

|πj |m
]

= e−(1−2αm)t ,(19)

αm being the same as in Section 2.

3.2. Some asymptotic expansions for the characteristic function of weighted
sums of independent random variables. As in Section 3.2 of DGR, the subject
to be investigated here is the behavior of the characteristic function of weighted
sums of independent and identically distributed random variables. The expansions
given here turn out to be more careful than the analogous ones contained in the
aforementioned work since it is now assumed that the common probability law of
the summands possesses moments of arbitrarily high order. Cumulants will play a
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central role in the analysis of the remainder terms. Finally, the study of the conver-
gence of weighted sums will provide appropriate conditions to improve the rate of
approach to equilibrium for solutions of (1).

In the rest of this subsection, (Xj )j≥1 stands for a sequence of independent
and identically distributed real-valued random variables on some probability space
(E,E ,Q) with common nondegenerate distribution ζ on (R,B(R)). It is assumed
that ζ is symmetric [that is, ζ(B) = ζ(−B) for every Borel set B of R] and pos-
sesses finite moments up to order k + δ, where k = 2χ , χ being some integer
greater than 1 and δ being an element of the interval [0,2[. Denote the r th moment
and the absolute r th moment of ζ by mr and mr , respectively. Note that the vari-
ance σ 2 of ζ coincides with m2. Set ψ(ξ) := ∫

R
eiξxζ(dx), which turns out to be an

even real-valued function, and for every positive integer n, define {c1,n, . . . , cn,n}
to be an array of real constants such that

n∑
j=1

c2
j,n = 1(20)

holds for every n. Now, let Vn be the sum of Y1,n, . . . , Yn,n, where

Yj,n := 1

σ
cj,nXj,n (j = 1, . . . , n)

and let ψn be the characteristic function of Vn. Consider the r th cumulant κr and
recall that, in general, it can be defined by

κr = r!∑
(∗)

(−1)s−1 · (s − 1)! ·
r∏

l=1

1

kl !
(

ml

l!
)kl

(r = 1, . . . , k)(21)

where the symbol (∗) means that the sum is carried out over all nonnegative integer
solutions (k1, . . . , kr) of equations

k1 + 2k2 + · · · + rkr = r,

k1 + k2 + · · · + kr = s

with the proviso that 00 = 1. Symmetry of ζ implies that existing cumulants of
odd order are equal to zero.

From a technical fact proved in the Appendix, Section A.1, after defining y0 :=
{[−6σ 2 + (36σ 4 + 12m4)

1/2]/m4}1/2, one has ψ(ξ) ≥ 1/2 if |ξ | ≤ y0 and

logψ(ξ) =
χ∑

r=1

(−1)r
κ2r

(2r)!ξ
2r + ξk · εk(ξ),(22)

where εk is continuous on [−y0, y0] and differentiable on [−y0, y0] \ {0}.
Moreover, this function satisfies εk(0) = 0 and limξ→0 �k(ξ) = 0, with

�k(ξ) := ξ · ε′
k(ξ). Consequently, M

(k)
0 := supξ∈[−y0,y0]|εk(ξ)| and M

(k)
1 :=
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supξ∈[−y0,y0]|�k(ξ)| are two finite constants which depend only on the behavior
of the common probability law ζ .

Now, following the same line of reasoning as in Chapter 6 of Petrov (1975), we
introduce the quantities

λ̃r,n := κ2r

σ 2r

n∑
j=1

c2r
j,n (r = 1, . . . , χ)(23)

and define the polynomials

P̃r,n(ξ) := ∑
(∗)

(
r∏

m=1

1

km!
(

λ̃m+1,n

(2m + 2)!
)km

)
(−1)r+sξ2(r+s)(24)

for r = 1, . . . , χ − 1. In addition, we introduce another family of functions ηk,n,
which will be used to approximate the characteristic functions ψn, defined by

ηk,n(ξ) = e−ξ2/2 +
χ−1∑
r=1

P̃r,n(ξ) · e−ξ2/2 (ξ ∈ R).(25)

At this stage, we are in a position to state a couple of preliminary results that play
an important role in the rest of the paper.

LEMMA 3.1. Assume that χ = 2 (i.e., k = 4) and δ = 0. There then exists a
positive constant C∗

4 , depending only on the behavior of ζ , such that

|ψn(ξ) − η4,n(ξ)| ≤ C∗
4ξ4e−ξ2/2

[
ξ4

n∑
j=1

c4
j,n +

n∑
j=1

c4
j,n

∣∣∣∣ε4

(
cj,nξ

σ

)∣∣∣∣
]
,(26)

|ψn(ξ) − η4,n(ξ)| ≤ C∗
4ξ4(1 + ξ4)e−ξ2/2

[
n∑

j=1

c6
j,n +

n∑
j=1

c4
j,n

∣∣∣∣ε4

(
cj,nξ

σ

)∣∣∣∣
]

(27)

and

|ψ ′
n(ξ) − η′

4,n(ξ)|
≤ C∗

4 |ξ |3(1 + ξ6)e−ξ2/2(28)

×
[

n∑
j=1

c6
j,n +

n∑
j=1

c4
j,n

(∣∣∣∣ε4

(
cj,nξ

σ

)∣∣∣∣ +
∣∣∣∣�4

(
cj,nξ

σ

)∣∣∣∣
)]

hold true for every |ξ | ≤ A4,n := σy0(
∑n

j=1 c4
j,n)

−1/4.

In (26)–(28), recall that ε4 is defined by (22) with k = 4, and ρ4(ξ) := ξε′
4(ξ).

For general k = 2χ and δ, we have the following result.
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LEMMA 3.2. If |ξ | ≤ Ak,δ,n := σy0(
∑n

j=1 c4
j,n)

−1/(k+δ), then

|ψn(ξ) − ηk,n(ξ)| ≤ C∗
k,δp0,k(ξ)|ξ |k+δe−ξ2/2

(
n∑

j=1

|cj,n|k+δ

)
(29)

and

|ψ ′
n(ξ) − η′

k,n(ξ)| ≤ C∗
k,δp1,k(ξ)|ξ |k−1+δe−ξ2/2

(
n∑

j=1

|cj,n|k+δ

)
,(30)

where C∗
k,δ is a constant depending only on the behavior of ζ and p0,k(ξ), p1,k(ξ)

are polynomials whose coefficients depend only on k.

The proofs of these lemmata are deferred to Section A.2, in which one can also
find instructions for the evaluation of C∗

4 , C∗
k,δ , p0,k(ξ) and p1,k(ξ). Inequalities

(29) and (30) immediately entail that

(∫ Ak,δ,n

−Ak,δ,n

|ψn(ξ) − ηk,n(ξ)|2 dξ

)1/2

≤ C∗
k,δak

(
n∑

j=1

|cj,n|k+δ

)
(31)

and

(∫ Ak,δ,n

−Ak,δ,n

|ψ ′
n(ξ) − η′

k,n(ξ)|2 dξ

)1/2

≤ C∗
k,δak

(
n∑

j=1

|cj,n|k+δ

)
,(32)

where ak is the maximum between (
∫
R

ξ2k(1 + ξ2)2p2
0,k(ξ)e−ξ2

dξ)1/2 and

(
∫
R

ξ2k−2(1 + ξ2)2p2
1,k(ξ)e−ξ2

dξ)1/2.

4. Proofs of the main results. We first prove Theorem 2.1 and then focus
on Proposition 2.4. In fact, they rest on similar arguments. We will then provide
proofs for Theorems 2.2 and 2.3 by adapting methods used in Section 4 of DGR.

Before starting, it is worth introducing some new symbols which will be used
hereafter. First, choose a version of the conditional distribution function Pt {V ≤
x|β} and call it F∗(x). In view of (18), it does not depend on t . F∗(x)[ω] will
indicate dependence of F∗(x) on a specific sample point ω in �. The Fourier–
Stieltjes transform of F∗(·)[ω] will be designated by ϕ∗(·)[ω]. Moreover, an in-
tegral over a measurable subset S of � will often be denoted by E[·;S]. Sym-
bols mr and mr for

∫
xrμ0(dv) and

∫ |x|rμ0(dx), respectively, will continue to be
used and σ 2 will designate the value of m2, while y0 will stand for the quantity
{[−6σ 2 + (36σ 4 + 12m4)

1/2]/m4}1/2.
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4.1. Proof of Theorem 2.1. Assume, initially, that μ0 is symmetric. For
simplicity, introduce the rescaled solution μσ (·, t), defined by μσ (B, t) :=
μ(σB, t), where σB := {y = σx|x ∈ B} for every B in the Borel class of R.
By the homogeneity of the total variation distance, we have dTV(μ(·, t);γσ ) =
dTV(μσ (·, t);γ ), where γ is shorthand for the standard normal law γ1. Now,
thanks to the elementary inequality

dTV(μσ (·, t);γ ) ≥ 1

2
sup
ξ∈R

|ϕ(ξ/σ, t) − e−ξ2/2|,(33)

one can employ the expansions given in Section 3.2. First, observe that for any
small ε in ]0, σy0], one has

sup
ξ∈R

|ϕ(ξ/σ, t) − e−ξ2/2|

≥ |ϕ(ε/σ, t) − e−ε2/2|
(34)

= |Et {Et [eiεV/σ |β] − e−ε2/2}|
=

∣∣∣∣
∫
�
{ϕ∗(ε/σ )[ω] − e−ε2/2}Pt (dω)

∣∣∣∣.
Next, after fixing any ω in �, substitute ν(ω) for n and πj (ω) for cj,n (j =
1,2, . . . , n) in Lemma 3.1. This way, ψn(ξ) changes into ϕ∗(ξ/σ ) and the restric-
tion that Lemma 3.1 imposes on ε becomes |ε| ≤ σy0 (

∑ν(ω)
j=1 π4

j (ω))−1/4. Clearly,
this bound holds Pt -almost surely for every t , whenever ε is not greater then σy0.
Hence, (26) can be applied with

η4(ξ)[ω] := e−ξ2/2 + κ4

4!σ 4

(
ν(ω)∑
j=1

π4
j (ω)

)
ξ4e−ξ2/2

in place of η4,n(ξ). If R∗
4(ξ)[ω] stands for ϕ∗(ε/σ )[ω] − η4(ξ)[ω], then the last

member in (34) can be written as∣∣∣∣∣
∫
�

R∗
4(ε)[ω]Pt (dω) + κ4

4!σ 4 ε4e−ε2/2
∫
�

(
ν(ω)∑
j=1

π4
j (ω)

)
Pt (dω)

∣∣∣∣∣
=

∣∣∣∣
∫
�

R∗
4(ε) dPt + κ4

4!σ 4 ε4e−ε2/2e−(1/4)t

∣∣∣∣(35)

≥
∣∣∣∣ |κ4|
4!σ 4 ε4e−ε2/2e−(1/4)t −

∣∣∣∣
∫
�

R∗
4(ε) dPt

∣∣∣∣
∣∣∣∣,

where the equality follows from (19) and the inequality follows from |a + b| ≥
||a| − |b||. Now, the claim is that there exists an ε independent of t and small
enough to have ∣∣∣∣

∫
�

R∗
4(ε) dPt

∣∣∣∣ ≤ |κ4|
2 · 4!σ 4 ε4e−ε2/2e−(1/4)t(36)
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for every nonnegative t . To this end, recall the following: that ε4 [see (22)] is a
continuous function depending only on the initial datum μ0 so that ε4(0) = 0; that
|κ4| is strictly positive; that the constant C∗

4 = C∗
4 (μ0) can never be chosen equal

to zero. The inequality

|ε4(x)| ≤ |κ4|
4 · 4!σ 4C∗

4

is surely satisfied for every x belonging to a suitable nondegenerate interval
[−x, x] included in [−y0, y0]. Thus, taking (26) into account, one can write

∫
�

[
C∗

4ε4e−ε2/2
ν(ω)∑
j=1

π4
j (ω)

∣∣∣∣∣ε4

(π4
j (ω)ε

σ

)∣∣∣∣∣
]

Pt (dω)

(37)

≤ |κ4|
4 · 4!σ 4 ε4e−ε2/2e−(1/4)t

for every ε in ]0, σx] and t ≥ 0. Moreover,

C∗
4ε8e−ε2/2e−(1/4)t ≤ |κ4|

4 · 4!σ 4 ε4e−ε2/2e−(1/4)t

is valid for every nonnegative t , provided that ε is chosen not greater than x :=
(

|κ4|
4·4!C∗

4 σ 4 )1/4. Thus, in view of (26), (36) is satisfied for ε in ]0,min{σx;x}].
To conclude the proof in the symmetric case, fix ε as above in order to have (36)

and use the following elementary fact: if |b| ≤ |a|/2, then ||a| − |b|| = |a| − |b| ≥
|a|/2. Applying this to (35), we get∣∣∣∣ |κ4|

4!σ 4 ε4e−ε2/2e−(1/4)t −
∣∣∣∣
∫
�

R∗
4(ε) dPt

∣∣∣∣
∣∣∣∣ ≥ |κ4|

2 · 4!σ 4 ε4e−ε2/2e−(1/4)t ,

which, in view of (34), provides a lower bound for dTV(μ(·, t);γσ ). When μ0 is
symmetric, the constant C̃, which appears in Theorem 2.1, can be taken to be equal
to |κ4|

4·4!σ 4 ε4e−ε2/2 with ε in ]0,min{σx;x}].
When μ0 is not symmetric, we employ its symmetrized form μ̃0 and recall (14)

to obtain ∣∣μ(s)(B, t) − γσ (B)
∣∣ = |μ(B, t) − o0(B)e−t − γσ (B)|
≤ |μ(B, t) − γσ (B)| + 2e−t

≤ dTV(μ(·, t);γσ ) + 2e−t (B ∈ B(R)
)
,

which plainly entails

dTV
(
μ(s)(·, t);γσ

) ≤ dTV(μ(·, t);γσ ) + 2e−t .(38)

From the first part of the proof, one can find a constant C̃(μ̃0) ≤ 2 for which

dTV
(
μ(s)(·, t);γσ

) ≥ C̃(μ̃0)e
−(1/4)t .
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Hence,

dTV(μ(·, t);γσ ) ≥ dTV
(
μ(s)(·, t);γσ

) − 2e−t

≥ C̃(μ̃0)e
−(1/4)t − 2e−t ≥ 1

2 C̃(μ̃0)e
−(1/4)t

holds, provided that t ≥ t̂ := − log[(C̃(μ̃0)/4)4/3], where t̂ is strictly positive. To
conclude the proof, observe that (7) is valid, taking, for example,

C̃ = C̃(μ0) := min
{

1

2
C̃(μ̃0); inf

t∈[0,t̂]
dTV(μ(·, t);γσ )

}
.

Finally, inft∈[0,t̂] dTV(μ(·, t);γσ ) is strictly positive in view of the existence of the
minimum combined with the uniqueness of the solution of Kac’s equation. This
point is clarified in Appendix A.3.

4.2. Proof of Proposition 2.4. To prove this proposition under the assumption
that all of the moments of μ0 are finite, it will suffice to prove that all of the
cumulants κ̃2m of even order of μ̃0 are zero for m = 2,3, . . . . Thanks to (38), the
inequality, which appears in the statement of Proposition 2.4, can be rewritten as

dTV
(
μ(s)(·, t);γσ

) ≤ (C + 2)e−t .(39)

In view of this fact, we can assume, without real loss of generality, that μ0 is
symmetric. Then, supposing that κ2m = 0 for m = 2, . . . , s − 1 and κ2s 	= 0 for
some integer s greater than 2, we have contradicted (39).

As in the previous subsection, write

2dTV(μ(·, t);γσ ) ≥ sup
ξ∈R

|ϕ(ξ/σ, t) − e−ξ2/2|
(40)

≥
∣∣∣∣
∫
�
{ϕ∗(ε/σ )[ω] − e−ε2/2}Pt (dω)

∣∣∣∣,
where ε is any positive constant not greater than σy0. Following the general lines
of Section 3.2, define

η2s(ξ)[ω] := e−ξ2/2 + (−1)s
κ2s

(2s)!σ 2s

(
ν(ω)∑
j=1

π2s
j (ω)

)
ξ2se−ξ2/2.

After setting R∗
2s(ξ)[ω] := ϕ∗(ε/σ )[ω] − η2s(ξ)[ω], the last part of (40) becomes∣∣∣∣∣

∫
�

R∗
2s(ε)[ω]Pt (dω) + (−1)s

κ2s

(2s)!σ 2s
ε2se−ε2/2

∫
�

(
ν(ω)∑
j=1

π2s
j (ω)

)
Pt (dω)

∣∣∣∣∣
=

∣∣∣∣
∫
�

R∗
2s(ε) dPt + (−1)s

κ2s

(2s)!σ 2s
ε2se−ε2/2e−(1−2α2s )t

∣∣∣∣(41)

≥
∣∣∣∣ |κ2s |
(2s)!σ 2s

ε2se−ε2/2e−(1−2α2s )t −
∣∣∣∣
∫
�

R∗
2s(ε) dPt

∣∣∣∣
∣∣∣∣.
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Now, if |ε| ≤ σy0, an application of (29), with k = 2s and δ = 1 combined with
(19), yields∣∣∣∣

∫
�

R∗
2s(ε) dPt

∣∣∣∣ ≤
∫
�

|R∗
2s(ε)|dPt

≤ C∗
2s,1|ε|2s+1[9(1 + |ε|h(s))]e−ε2/2e−(1−2α2s+1)t(42)

≤ C∗
2s,1|ε|2s+1[9(1 + (σy0)

h(s))]e−ε2/2e−(1−2α2s+1)t

for every nonnegative t . Here, h(s) := 2s2 − s and the term [9(1 + |ε|h(s))] is an
upper bound for the polynomial p0,k in (29); see also (81) in the Appendix. If ε

satisfies the further restriction

|ε| ≤ 1

2C∗
2s,1

· 1

9(1 + (σy0)h(s))
· |κ2s |
(2s)!σ 2s

,

then one can rewrite (42) as∣∣∣∣
∫
�

R∗
2s(ε) dPt

∣∣∣∣ ≤ |κ2s |
2 · (2s)!σ 2s

ε2se−ε2/2e−(1−2α2s )t .(43)

Hence, inequalities (41) and (43) entail that

|κ2s |
2 · (2s)!σ 2s

ε2se−ε2/2e−(1−2α2s )t ≤ 2dTV(μ(·, t);γσ ) ≤ 2(C + 2)e−t

for every nonnegative t , which contradicts the fact that (1−2α2s) is strictly smaller
than 1. Thus, κ2s must vanish, implying that μ0 = γσ since γσ is uniquely deter-
mined by its moments. Finally, if μ0 is not symmetric, then μ̃0 = γσ .

4.3. Proof of Theorem 2.2 when k + δ = 4. We shall closely follow the proof
of Theorem 2.1 in DGR. First, let us assume that the condition

f0 and, consequently, f (·, t) are even functions(H)

holds. This does not limit the generality of subsequent reasoning, thanks to (9)–
(10) of DGR. Since d

dv
F∗(v) represents a version of the conditional probability

density function of V given β , in view of basic properties of conditional expecta-
tion, one has ∫

R

∣∣∣∣f (v, t) − 1

σ
√

2π
e−v2/(2σ 2)

∣∣∣∣dv

=: ‖f (v, t) − gσ (v)‖1 ≤ Et

[∥∥∥∥ d

dv
F∗(v) − gσ (v)

∥∥∥∥
1

]
(44)

= Et

[∥∥∥∥ d

dv
F∗(σv) − g1(v)

∥∥∥∥
1

]
,
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where gσ (v) dv = γσ (dv). Moreover, from Proposition 2.2 of DGR, which can be
applied to f0, thanks to the hypotheses in Theorem 2.2 and (H), there exist α and
λ for which

|ϕ0(ξ)| ≤
(

λ2

λ2 + ξ2

)α

(45)

holds true for every real ξ . In particular, one can set α = (2 · 2/p�)−1, p being the
same as in (4) and s� standing for the least integer not less than s. Define U ⊂ �

by

U := {ν ≤ n} ∪
{

ν∏
j=1

πj = 0

}
∪

{
ν∑

j=1

π4
j ≥ δ

}
(46)

with n = 17 · 2/p� and

δ = min
{

1

2nn! ;
σ 8

16y4
0m4

3

}
≤ 1

2nn! .

Next, check that U belongs to F and rewrite the last term in (44) as

Et

[∥∥∥∥ d

dv
F∗(σv) − g1(v)

∥∥∥∥
1
;U

]
+ Et

[∥∥∥∥ d

dv
F∗(σv) − g1(v)

∥∥∥∥
1
;Uc

]
.(47)

By the same arguments as the ones used to prove (22) in DGR, one obtains

Pt {ν ≤ n} ≤ ne−t and Pt

{
ν∏

j=1

πj = 0

}
= 0.

As for the third component of the union in the definition of U , one can combine
Markov’s (with power 2) and Lyapunov’s inequalities to get

Pt

{
ν∑

j=1

π4
j ≥ δ

}
≤ 1

δ2
Et

[(
ν∑

j=1

π4
j

)2]
≤ 1

δ2
Et

[
ν∑

j=1

π6
j

]
≤ 1

δ2
e−(3/8)t .

The exponent 3/8 follows from the application of (19) with m = 6. Now, com-
bining all of the above computations leads to an estimate for the probability of U

under Pt , that is,

Pt (U) ≤ [n + 1/δ2]e−(3/8)t (t ≥ 0).(48)

Inequality (48) leads immediately to the upper bound

Et

[∥∥∥∥ d

dv
F∗(σv) − g1(v)

∥∥∥∥
1
;U

]
≤ 2Pt (U) ≤ 2[n + 1/δ2]e−(3/8)t .(49)
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To control the integral over Uc appearing in (47), we invoke the Beurling inequal-
ity formulated in Proposition 4.1 of DGR to obtain

Et

[∥∥∥∥ d

dv
F∗(σv) − g1(v)

∥∥∥∥
1
;Uc

]
(50)

≤ 1√
2

Et

[{∫
R

|�|2 dξ +
∫

R

|�′|2 dξ

}1/2

;Uc

]
,

where � := ϕ∗(ξ/σ ) − e−ξ2/2 and �′ := d
dξ

�. Applicability of this result is
justified by the fact that the restriction to Uc of the conditional characteristic
function ξ �→ ϕ∗(ξ) := ∫

R
eiξx dF∗(x) belongs to H 1(R). To see this, note that

ϕ∗(ξ)[ω] = o(|ξ |−34) is valid for |ξ | → +∞ and for ω in Uc. Indeed, thanks to
conditional independence and (45), one has

|ϕ∗(ξ)| ≤
n∏

j=1

(
λ2

λ2 + π2
j ξ2

)α

and the claimed “tail behavior” of ϕ∗ follows from the definitions of n and α,
together with the fact that the random numbers πj do not vanish on Uc. To com-
plete the argument for H 1(R) regularity, use Remark A.2 in Section A.3 of the
Appendix of DGR.

Now, the expectation in the right-hand side of (50) is dominated by

Et

[(∫
{|ξ |≤A}

|�|2 dξ

)1/2

;Uc

]
+ Et

[(∫
{|ξ |≥A}

|�|2 dξ

)1/2

;Uc

]
(51)

+ Et

[(∫
{|ξ |≤A}

|�′|2 dξ

)1/2

;Uc

]
+ Et

[(∫
{|ξ |≥A}

|�′|2 dξ

)1/2

;Uc

]

with

A = A(β) := σy0

(
∑ν

j=1 π4
j )1/4

.

At this stage, we apply (27) to the evaluation of the first integral in (51) after
observing that the function η4,n(ξ) here equals e−ξ2/2 almost surely since κ4 = 0.
This leads to(∫

{|ξ |≤A}
|�|2 dξ

)1/2

≤ 2
√

2�(17/2)C∗
4

(
ν∑

j=1

π6
j

)
(52)

+ √
2C∗

4

[∫
R

ξ8(1 + ξ4)2e−ξ2

(
ν∑

j=1

π4
j

∣∣∣∣ε̃4

(
πjξ

σ

)∣∣∣∣
)2

dξ

]1/2
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with

ε̃4(x) :=

⎧⎪⎪⎨
⎪⎪⎩

logϕ0(x) + (σ 2/2)x2 − (κ4/4!)x4

x4 , if 0 < |x| ≤ σy0,

ε̃4(σy0), if |x| > σy0,
0, if x = 0.

Note that ε̃4 is a bounded continuous function. Take expectations of both sides of
(52) and recall (19) to obtain

Et

(∫
{|ξ |≤A}

|�|2 dξ

)1/2

≤ 2
√

2�(17/2)C∗
4e−(3/8)t(53)

+ √
2C∗

4 Et

[∫
R

ξ8(1 + ξ4)2e−ξ2

(
ν∑

j=1

π4
j

∣∣∣∣ε̃4

(
πjξ

σ

)∣∣∣∣
)2

dξ

]1/2

.

In view of Section A.4,

lim
t→+∞ρ

(1)
0 (t) = 0,(54)

where

ρ
(1)
0 (t) := e(1/4)tEt

[∫
R

ξ8(1 + ξ4)2e−ξ2

(
ν∑

j=1

π4
j

∣∣∣∣ε̃4

(
πjξ

σ

)∣∣∣∣
)2

dξ

]1/2

.

Similarly, apply (28) to evaluate the second integral in (51) as follows:(∫
{|ξ |≤A}

|�′|2 dξ

)1/2

≤ 4
√

�(19/2)C∗
4

(
ν∑

j=1

π6
j

)

(55)

+ 2
√

2C∗
4

[∫
R

ξ6(1 + ξ12)e−ξ2

(
ν∑

j=1

π4
j

∣∣∣∣ε̃4

(
πjξ

σ

)∣∣∣∣
)2

dξ

]1/2

+ 2
√

2C∗
4

[∫
R

ξ6(1 + ξ12)e−ξ2

(
ν∑

j=1

π4
j

∣∣∣∣�̃4

(
πjξ

σ

)∣∣∣∣
)2

dξ

]1/2

with

�̃4(x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x
d

dx
ε̃4(x), if 0 < |x| < σy0,

l := lim
u↑σy0

�̃4(u), if |x| ≥ σy0,

0, if x = 0.
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Once again, take expectations of both sides of (55) and use (19) to get

Et

(∫
{|ξ |≤A}

|�′|2 dξ

)1/2

≤ 4
√

�(19/2)C∗
4e−(3/8)t

(56)

+ 2
√

2C∗
4 Et

[∫
R

ξ6(1 + ξ12)e−ξ2

(
ν∑

j=1

π4
j

∣∣∣∣ε̃4

(
πjξ

σ

)∣∣∣∣
)2

dξ

]1/2

+ 2
√

2C∗
4 Et

[∫
R

ξ6(1 + ξ12)e−ξ2

(
ν∑

j=1

π4
j

∣∣∣∣�̃4

(
πjξ

σ

)∣∣∣∣
)2

dξ

]1/2

.

Another application of Section A.4 leads us to state the following important facts:

lim
t→+∞ρ

(2)
0 (t) = lim

t→+∞ρ
(3)
0 (t) = 0,(57)

where

ρ
(2)
0 (t) := e(1/4)tEt

[∫
R

ξ6(1 + ξ12)e−ξ2

(
ν∑

j=1

π4
j

∣∣∣∣ε̃4

(
πjξ

σ

)∣∣∣∣
)2

dξ

]1/2

and

ρ
(3)
0 (t) := e(1/4)tEt

[∫
R

ξ6(1 + ξ12)e−ξ2

(
ν∑

j=1

π4
j

∣∣∣∣�̃4

(
πjξ

σ

)∣∣∣∣
)2

dξ

]1/2

.

After determining upper bounds for integrals of the type
∫
{|ξ |≤A}, it remains to

examine the remaining summands in (51). Minkowski’s inequality yields(∫
{|ξ |≥A}

|�|2 dξ

)1/2

≤
(∫

{|ξ |≥A}
|ϕ∗(ξ/σ )|2 dξ

)1/2

+
(∫

{|ξ |≥A}
|e−ξ2/2|2 dξ

)1/2

and (∫
{|ξ |≥A}

|�′|2 dξ

)1/2

≤
(∫

{|ξ |≥A}

∣∣∣∣ d

dξ
ϕ∗(ξ/σ )

∣∣∣∣
2

dξ

)1/2

+
(∫

{|ξ |≥A}
|ξe−ξ2/2|2 dξ

)1/2

.

From a well-known inequality, proved in, for example, Lemma 2 of VII.1 in Feller
(1968), and since maxx≥0 xke−αx2 = [k/(2eα)]k/2, one obtains(∫

{|ξ |≥A}
e−ξ2

dξ

)1/2

≤
(

15

2

)15/4

e−15/4(σy0)
−8

ν∑
j=1

π6
j
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and (∫
{|ξ |≥A}

ξ2e−ξ2
dξ

)1/2

≤ 2 + √
2

2

(
17

2

)17/4

e−15/4(σy0)
−8

ν∑
j=1

π6
j .

Equation (19) can then be applied to obtain

Et

(∫
{|ξ |≥A}

e−ξ2
dξ

)1/2

≤
(

15

2

)15/4

e−15/4(σy0)
−8e−(3/8)t(58)

and

Et

(∫
{|ξ |≥A}

ξ2e−ξ2
dξ

)1/2

≤ 2 + √
2

2

(
17

2

)17/4

e−15/4(σy0)
−8e−(3/8)t .(59)

At this point, to control the remaining integrals over {|ξ | ≥ A}, we proceed as in
formula (30) of DGR to write

[(∫
{|ξ |≥A}

|ϕ∗(ξ/σ )|2 dξ

)1/2

+
(∫

{|ξ |≥A}

∣∣∣∣ d

dξ
ϕ∗(ξ/σ )

∣∣∣∣
2

dξ

)1/2]
· 1Uc

(60)

≤ 2
√

2
(∫ +∞

A
|ϕ∗(ξ/σ )|dξ

)1/2

· 1Uc +
√

2|ϕ∗(A/σ)| · 1Uc.

For ω in Uc, the bound

A(ω) ≤ σ 3

2m3
∑ν(ω)

j=1 |πj (ω)|3

holds true, thanks to the definition of δ and the Lyapunov inequality. Thus,
Lemma 12 in Chapter 6 of Petrov (1975) can be applied to the characteristic func-
tion ϕ∗(ξ/σ ) with b = 1/2 to deduce√

2|ϕ∗(A/σ)| ≤ √
2e−A2/12 ≤ √

2(48/e)4A−8

= √
2(48/e)4(σy0)

−8
ν∑

j=1

π6
j ,

which entails that

Et

√
2|ϕ∗(A/σ)| ≤ √

2(48/e)4(σy0)
−8e−(3/8)t .(61)

It remains to analyze

(∫ +∞
A

|ϕ∗(ξ/σ )|dξ

)1/2

· 1Uc =
(∫ +∞

A

ν∏
j=1

∣∣∣∣ϕ0

(
πjξ

σ

)∣∣∣∣dξ

)1/2

· 1Uc .
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An estimate of this term is made using Proposition 2.2 in DGR, together with (33),
(34) and (35) therein, with ε = 1/(2n!). We then have(∫ +∞

A
|ϕ∗(ξ/σ )|dξ

)1/2

· 1Uc ≤
[
λσ

∫ +∞
A/λσ

(
1

εη2n

)α

dη

]1/2

(62)

= D

(
ν∑

j=1

π4
j

)(2nα−1)/8

.

The definition of n in (46) yields (2αn − 1)/8 = 2. Moreover,

D := 1

4εα/2

(λσ)17/2

(σy0)8

(63)

≤ 213/4
[(

3

2σ 2

)17/4

+
(

2

1 − M

)17/4

(Lp)17/2p

]

with

Lp := sup
ξ∈R

[|ξ |p · |ϕ0(ξ)|]

and

M = exp
{
− 3π2

64(3 + (Lp)4/p)2

( √
2σ

82/p�σ 3 + 40π
√2/p�m4

)2}
.

Taking expectation in (62) gives

Et

[(∫ +∞
A

|ϕ∗(ξ/σ )|dξ

)1/2

· 1UC

]
≤ De−(3/8)t .(64)

The claimed upper bound (9) follows from (49), (53), (56), (58), (59), (61)
and (64).

4.4. Proof of Theorems 2.2 and 2.3 when 2χ + δ > 4. This proof differs from
the previous one only in the choice of the constants. One can start from (44) under
hypothesis (H). Thanks to (H) and the hypotheses of the theorems to be proven,
one can apply Proposition 2.2 of DGR to get (45) with α = (2 · 2/p�)−1.

Now, define U exactly as in (46) with n = [k(k + 2) + 1] · 2/p� and

δ = min
{

1

2nn! ;
σ 8

16y4
0m4

3

}
≤ 1

2nn! .

The probability of U is then estimated, under each Pt , using the facts that

Pt {ν ≤ n} ≤ ne−t and Pt

{
ν∏

j=1

πj = 0

}
= 0,
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whereas, for the third component of the union in the definition of U , one can
combine Markov’s (with exponent k/2) and Lyapounov’s inequalities to get

Pt

{
ν∑

j=1

π4
j ≥ δ

}
≤ 1

δk/2
Et

[(
ν∑

j=1

π4
j

)k/2]

≤ 1

δk/2
Et

[
ν∑

j=1

πk+2
j

]
≤ 1

δ
k/2 e−(1−2αk+2)t .

Thus,

Pt (U) ≤ [n + 1/δk/2]e−(1−2αk+2)t (t ≥ 0).(65)

Now, split the term Et [‖ d
dv

F∗(σv) − g1(v)‖1] into the sum of two contributions,
exactly as in (47), and note that (65) entails that

Et

[∥∥∥∥ d

dv
F∗(σv) − g1(v)

∥∥∥∥
1
;U

]
≤ 2Pt (U) ≤ 2[n + 1/δ

k/2]e−(1−2αk+2)t .(66)

To control the integral over Uc, we once again invoke Beurling’s inequality (see
Proposition 4.1 in DGR) to write (50). Applicability of this result rests on the same
arguments as those provided in Section 4.3. The right-hand side of (50) is split into
a sum of four terms, exactly as in (51), with

A = A(β) := σy0

(
∑ν

j=1 π4
j )1/(k+δ)

.

Now, apply (31) to the evaluation of the first integral in (51), noting that the func-
tion ηk,n(ξ) equals e−ξ2/2 almost surely since κ2r = 0 for r = 2, . . . , χ . This leads
to

Et

[(∫
{|ξ |≤A}

|�|2 dξ

)1/2]
≤ C∗

k,δak · e−(1−2α2χ+δ)t(67)

and

Et

[(∫
{|ξ |≤A}

|�′|2 dξ

)1/2]
≤ C∗

k,δak · e−(1−2α2χ+δ)t .(68)

After determining upper bounds for integrals of the type
∫
{|ξ |≤A}, it remains to

examine the remaining summands in (51). Minkowski’s inequality gives(∫
{|ξ |≥A}

|�|2 dξ

)1/2

≤
(∫

{|ξ |≥A}
|ϕ∗(ξ/σ )|2 dξ

)1/2

+
(∫

{|ξ |≥A}
|e−ξ2/2|2 dξ

)1/2

and (∫
{|ξ |≥A}

|�′|2 dξ

)1/2

≤
(∫

{|ξ |≥A}

∣∣∣∣ d

dξ
ϕ∗(ξ/σ )

∣∣∣∣
2

dξ

)1/2

+
(∫

{|ξ |≥A}
|ξe−ξ2/2|2 dξ

)1/2

.
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Integrals involving the Gaussian density are controlled as in the previous subsec-
tion, giving

Et

(∫
{|ξ |≥A}

e−ξ2
dξ

)1/2

(69)

≤
(

k(k + 2) − 1

2e

)(k(k+2)−1)/4

(σy0)
−k(k+2)/2e−(1−2αk+2)t

and

Et

(∫
{|ξ |≥A}

ξ2e−ξ2
dξ

)1/2

(70)

≤ 2 + √
2

2

(
k(k + 2) + 1

2e

)(k(k+2)+1)/4

(σy0)
−k(k+2)/2e−(1−2αk+2)t .

To control the remaining integrals over the region {|ξ | ≥ A}, we proceed as before,
writing (60). For ω in Uc, the bound

A(ω) ≤ σ 3

2m3
∑ν(ω)

j=1 |πj (ω)|3

holds true, thanks to the definition of δ and the Lyapunov inequality. We then set
b = 1/2 in Lemma 12 from Chapter 6 of Petrov (1975) to deduce that√

2|ϕ∗(A/σ)|
≤ √

2e−A2/12

≤ √
2
(

3k(k + 2)

e

)(k(k+2))/4

(σy0)
−(k(k+2))/2 ·

(
ν∑

j=1

π4
j

)(k(k+2))/(2(k+δ))

≤ √
2
(

3k(k + 2)

e

)(k(k+2))/4

(σy0)
−(k(k+2))/2 ·

(
ν∑

j=1

πk+2
j

)

and, therefore,

Et

√
2|ϕ∗(A/σ)| ≤ √

2
(

3k(k + 2)

e

)(k(k+2))/4

(σy0)
−(k(k+2))/2

(71)
× e−(1−2αk+2)t .

Finally, in regard to (
∫ +∞

A |ϕ∗(ξ/σ )|dξ)1/2 · 1Uc , one can write

(∫ +∞
A

|ϕ∗(ξ/σ )|dξ

)1/2

· 1Uc = Dk

(
ν∑

j=1

π4
j

)(2nα−1)/8

,(72)
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where the constant Dk is given by√
λσ(2n!)α
2αn − 1

(
λ

y0

)(2αn−1)/2

.

The definition of n given at the beginning of this subsection yields (2αn −
1)/8 > k/2. Now, taking expectation in (72) entails that

Et

[(∫ +∞
A

|ϕ∗(ξ/σ )|dξ

)1/2

· 1UC

]
≤ Dke

−(1−2αk+2)t .(73)

To obtain (11), it will suffice to combine the previous inequalities.

APPENDIX

This appendix contains all of the elements which are necessary to complete the
proofs given in Section 4. It is split into four parts. The first focuses on a quantifi-
cation of the numbers y0 such that the Fourier–Stieltjes transform of a symmetric
probability law turns out to be greater than 1/2 on [−y0, y0]. The second presents
the proofs of Lemmas 3.1 and 3.2. The third aims to clarify the conclusion of the
proof of Proposition 2.4. Finally, the fourth provides a proof for (54) and (57).

A.1. Specification of y0. Let ψ be the Fourier–Stieltjes transform of a sym-
metric probability law ζ on (R,B(R)), namely ψ(ξ) := ∫

R
eiξxζ(dx) for every

real ξ . Assume that m4 := ∫
R

x4ζ(dx) is finite and put σ 2 := ∫
R

x2ζ(dx), y0 :=
{[−6σ 2 + (36σ 4 + 12m4)

1/2]/m4}1/2. If |ξ | ≤ y0, then ψ(ξ) ≥ 1/2.

PROOF. By the Taylor expansion for characteristic functions, one can write
ψ(ξ) = 1 − (σ 2/2)ξ2 + R(ξ) with |R(ξ)| ≤ (m4/24)ξ4; see, for example, Sec-
tion 8.4 in Chow and Teicher (1997). The desired bound is obtained if

1 − σ 2

2
ξ2 − m4

24
ξ4 ≥ 1

2

holds true for every ξ belonging to some interval. Now, one can note that the
biquadratic equation m4ξ

4 +12σ 2ξ2 −12 = 0 possesses exactly two real solutions,
namely ±y0, and the previous inequality is satisfied for every ξ in [−y0, y0]. �

A.2. Proofs of Lemmas 3.1 and 3.2.

PROOF OF LEMMA 3.1. Set ψj,n for the characteristic function of Yj,n (j =
1,2, . . . , n) and use the definition of Vn, combined with independence, to write

ψn(ξ) =
n∏

j=1

ψj,n(ξ) =
n∏

j=1

ψ

(
cj,nξ

σ

)
.
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If |ξ | ≤ A4,n, then it easily follows that

∣∣∣∣cj,nξ

σ

∣∣∣∣ ≤
∣∣∣∣∣cj,nσy0

σ

(
n∑

r=1

c4
r,n

)−1/4∣∣∣∣∣ ≤ y0.

Now, using elementary properties of the logarithm, one can combine expansion
(22) with property (20) of each array {c1,n, . . . , cn,n} to obtain

logψn(ξ) =
n∑

j=1

logψj,n(ξ)

=
n∑

j=1

[
−1

2
σ 2

c2
j,nξ

2

σ 2 + 1

4!κ4
c4
j,nξ

4

σ 4 + c4
j,nξ

4

σ 4 ε4

(
cj,nξ

σ

)]

= −1

2
ξ2 + λ̃2,n

4! ξ4 + R4(ξ),

where

R4(ξ) :=
n∑

j=1

c4
j,nξ

4

σ 4 ε4

(
cj,nξ

σ

)
.

Inverting the logarithm, one gets

ψn(ξ) = e−ξ2/2 · exp
{
λ̃2,n

4! ξ4
}

· exp{R4(ξ)}.(74)

It is easily verified that the restrictions |u| := |λ̃2,nξ
4|/4! ≤ κ4y0/4! and |R4(ξ)| ≤

M
(4)
0 y4

0 hold true when |ξ | ≤ A4,n, and that λ̃2,nξ
4/4! = P̃1,n(ξ). Finally, set

F(x) := ex − 1 − x. At this point, we have all the tools needed to prove (26)
and (27). Indeed,

|ψn(ξ) − η4,n(ξ)| = e−ξ2/2|eu exp{R4(ξ)} − 1 − u|
= e−ξ2/2|eu exp{R4(ξ)} − eu + F(u)|
≤ e−ξ2/2eu| exp{R4(ξ)} − 1| + e−ξ2/2|F(u)|.

By elementary arguments, if x is any real number satisfying |x| ≤ c, one has

|ex − 1| ≤ e|x| − 1 ≤
(

ec − 1

c

)
|x|.

This fact can be applied to R4(ξ) to get

| exp{R4(ξ)} − 1| ≤ ξ4 ·
(

eM
(4)
0 y4

0 − 1

σ 4y4
0

)
·
(

n∑
j=1

c4
j,n

∣∣∣∣ε4

(
cj,nξ

σ

)∣∣∣∣
)
.
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Moreover, since the inequality

|F(u)| ≤ max|x|≤κ4y0/4!

[∣∣∣∣F(x)

x2

∣∣∣∣
]
ξ8

(
n∑

j=1

c4
j,n

)2

holds, one can conclude that

|ψn(ξ) − η4,n(ξ)|

≤ e−ξ2/2ξ4 · exp
{
κ4y

4
0

4!
}(

eM
(4)
0 y4

0 − 1

σ 4y4
0

)
·
(

n∑
j=1

c4
j,n

∣∣∣∣ε4

(
cj,nξ

σ

)∣∣∣∣
)

(75)

+ e−ξ2/2 max
|x|≤κ4y

4
0/4!

[∣∣∣∣F(x)

x2

∣∣∣∣
]
ξ8

(
n∑

j=1

c4
j,n

)2

.

After setting

C∗∗
4 := exp

{
κ4y

4
0

4!
}(

eM
(4)
0 y4

0 − 1

σ 4y4
0

)
+ max

|x|≤κ4y
4
0/4!

[∣∣∣∣F(x)

x2

∣∣∣∣
]
,

the derivation of (26) and (27) follows by rewriting (75) in a more convenient form.
To get (26), it is enough to observe that

∑n
j=1 c4

j,n ≤ 1, while to deduce (27), one

can combine the inequality (
∑n

j=1 c4
j,n)

2 ≤ ∑n
j=1 c6

j,n with max{1; ξ4} ≤ (1+ ξ4).
To prove (28), we start from (74) and take the derivative with respect to ξ . Thus,

one obtains

|ψ ′
n(ξ) − η′

4,n(ξ)|
≤ exp{R4(ξ)} · |R′

4(ξ)| · |η4,n(ξ) + F(u)e−ξ2/2|
+ |η′

4,n(ξ)| · | exp{R4(ξ)} − 1|

+ exp{R4(ξ)} ·
∣∣∣∣ d

dξ
F (u)

∣∣∣∣ · e−ξ2/2 + exp{R4(ξ)} · |F(u)| · |ξ |e−ξ2/2.

Arguing as in the first part of this proof, we have

|η′
4,n(ξ)| · | exp{R4(ξ)} − 1|

≤
(

eM
(4)
0 y4

0 − 1

σ 4y4
0

)
·
(

1 + κ4

4!σ 4

)
|ξ |5(1 + ξ4)e−ξ2/2(76)

×
(

n∑
j=1

c4
j,n

∣∣∣∣ε4

(
cj,nξ

σ

)∣∣∣∣
)
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and

exp{R4(ξ)} · |F(u)| · |ξ |e−ξ2/2

(77)

≤ max|x|≤κ4y0/4!

[∣∣∣∣F(x)

x2

∣∣∣∣
]

exp
{
M

(4)
0 y4

0
}|ξ |9e−ξ2/2

(
n∑

j=1

c4
j,n

)2

.

Moreover,

exp{R4(ξ)} · |R′
4(ξ)| · |η4,n(ξ) + F(u)e−ξ2/2|

= exp{R4(ξ)} · |R′
4(ξ)| · e−ξ2/2eu

(78)

≤ exp
{
M

(4)
0 y4

0
} · exp

{
κ4y

4
0

4!
}

4σ−4|ξ |3e−ξ2/2 ·

×
[

n∑
j=1

c4
j,n

∣∣∣∣ε4

(
cj,nξ

σ

)∣∣∣∣ +
n∑

j=1

c4
j,n

∣∣∣∣�4

(
cj,nξ

σ

)∣∣∣∣
]

and

d

dξ
F (u) = λ̃2,n

3! ξ3(eu − 1),

whence

exp{R4(ξ)} ·
∣∣∣∣ d

dξ
F (u)

∣∣∣∣ · e−ξ2/2

(79)

≤ exp
{
M

(4)
0 y4

0
} κ2

4

3!4!σ 8

(
exp{κ4y

4
0/4!} − 1

κ4y
4
0/4!

)
|ξ |7e−ξ2/2

(
n∑

j=1

c4
j,n

)2

.

Now, set

C∗∗∗
4 :=

(
eM

(4)
0 y4

0 − 1

σ 4y4
0

)
·
(

1 + κ4

4!σ 4

)
+ max|x|≤κ4y0/4!

[∣∣∣∣F(x)

x2

∣∣∣∣
]

exp
{
M

(4)
0 y4

0
}

+ exp
{
M

(4)
0 y4

0
} · exp

{
κ4y

4
0

4!
}

4σ−4

+ exp
{
M

(4)
0 y4

0
} κ2

4

3!4!σ 8

(
exp{κ4y

4
0/4!} − 1

κ4y
4
0/4!

)

and combine (76), (77), (78) and (79), after noting that |ξ |5(1+ ξ4)+|ξ |9 +|ξ |3 +
|ξ |7 ≤ 4|ξ |3(1 + ξ6) holds for every ξ . Finally, in order to have the same multi-
plicative constant in the right-hand sides of (26), (27) and (28), replace C∗∗

4 and
4C∗∗∗

4 with C∗
4 := max{C∗∗

4 ;4C∗∗∗
4 }. �
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PROOF OF LEMMA 3.2. In view of the independence of the random variables
Xj,n and (22), one gets

logψn(ξ) = −1

2
ξ2 +

χ∑
r=2

(−1)r
λ̃r,n

(2r)!ξ
2r + Rk+δ(ξ),

where

Rk+δ(ξ) :=
n∑

j=1

ck
j,nξ

k

σ k
εk+δ

(
cj,nξ

σ

)
,

whence

ψn(ξ) = e−ξ2/2 · exp

{ χ∑
r=2

(−1)r
λ̃r,n

(2r)!ξ
2r

}
· exp{Rk+δ(ξ)}.(80)

Now, consider the function z �→ fξ (z) = exp{gξ (z)} with

gξ (z) :=
χ−1∑
r=1

(−1)r+1 λ̃r+1,n

(2r + 2)!ξ
2(r+1)zr

and its Taylor polynomial of order (χ − 1) at z = 0, say pχ−1(z). Then, recall the
Faà di Bruno formula, that is,

d(χ)

dt(χ)
exp{(y(t))}

= ∑
(∗)

χ !
k1!k2! · · ·kχ ! exp{(y(t))}

(
y(1)(t)

1!
)k1(y(2)(t)

2!
)k2

· · ·
(

y(χ)(t)

χ !
)kχ

with (∗) meaning that the sum is carried out over all nonnegative integer solutions
(k1, . . . , kχ ) of the equation k1 + 2k2 + · · · + χkχ = χ . An application of this
formula entails that

pχ−1(z) = 1 +
χ−1∑
r=1

P̃r,n(ξ)zr ,

the functions P̃r,n(ξ) having been defined in (24). Thus, when z = 1, the Lagrange
remainder can be written with a suitable u ∈ [0,1] as

1

χ !f
(χ)
ξ (u) = fξ (u)

∑
(∗)

1

k1!k2! · · ·kχ !
(

g
(1)
ξ (u)

1!
)k1(g

(2)
ξ (u)

2!
)k2

· · ·
(

g
(χ)
ξ (u)

χ !
)kχ

,

which, after repeated application of the multinomial formula, leads to
∣∣∣∣ 1

χ !f
(χ)
ξ (u)

∣∣∣∣ ≤ fξ (u)
∑
(∗)

χ−1∏
m=1

∑
{l1+···+lχ−m=km}

|Al1
1,m(ξ) · · ·Alχ−m

χ−m,m(ξ)|
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with Ah,m(ξ) := (−1)h+m
(h+m−1

m

) λ̃h+m,n

(2(h+m))!ξ
2(h+m). We can then introduce the

quantity

Wχ :=
[ χ∏

s=2

max
{

κ2s

σ 2s
;1

}]χ

to obtain, after an application of the Lyapunov inequality,∑
{l1+···+lχ−m=km}

|Al1
1,m(ξ) · · ·Alχ−m

χ−m,m(ξ)|

≤ χχWχξ2mkm(ξ2 + ξk−2)km ·
(

n∑
j=1

ck+2
j,n

)2mkm/k

,

whence∣∣∣∣ 1

χ !f
(χ)
ξ (u)

∣∣∣∣ ≤ fξ (u) · χχ2
Wχ−1

χ ξk[(ξ2 + ξk−2)2 + (ξ2 + ξk−2)χ ] ·
(

n∑
j=1

ck+2
j,n

)

and, using the bound |ξ | ≤ Ak,δ,n,

|gξ (u)| ≤
χ∑

s=2

κ2sy
2s
0 := Bχ.

Then,

|ψn(ξ) − ηk,n(ξ)|
≤ e−ξ2/2{[fξ (1) − pχ−1(1)] + [

eRk+δ(ξ) − 1
]}

(81)

≤ e−ξ2/2

[
eBχ χχ2

Wχ−1
χ ξk[(ξ2 + ξk−2)2 + (ξ2 + ξk−2)χ ] ·

(
n∑

j=1

ck+2
j,n

)

+
(

exp{M(k+δ)
0 yk

0} − 1

M
(k+δ)
0 yk

0

)
2mk+δ

k!σk+δ

(
n∑

j=1

|cj,n|k+δ

)
|ξ |k+δ

]
.

After observing that ξk[(ξ2 + ξk−2)2 + (ξ2 + ξk−2)χ ] ≤ |ξ |k+δ(1 + ξ2)[2ξ2 +
2ξ2k−6 + 2χξk−2 + 2χξχk−k−2] for every ξ , one can take p0,k in (29) to be equal
to 1 + (1 + ξ2)[2ξ2 + 2ξ2k−6 + 2χξk−2 + 2χξχk−k−2].

As for |ψ ′
n − η′

k,n|, note that the inequality

|ψ ′
n(ξ) − η′

k,n(ξ)|
≤ |ξ | · |ψn(ξ) − ηk,n(ξ)| + e−ξ2/2

∣∣∣∣ d

dξ
fξ (1)

∣∣∣∣ · | exp{Rk+δ(ξ)} − 1|
(82)

+ e−ξ2/2|fξ (1)| exp{Rk+δ(ξ)}|R′
k+δ(ξ)|

+ e−ξ2/2
∣∣∣∣ d

dξ

(
fξ (1) − pχ−1(1)

)∣∣∣∣
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obtains. As regards the first summand, it will suffice to multiply the upper bound
stated in (81) for |ψn − ηk,n| by |ξ |. The latter factor in the second addend of (82)
can be dominated by the last addend in (81), while, for the former factor, one has

∣∣∣∣ d

dξ
fξ (1)

∣∣∣∣ ≤ exp{Bχ }
χ−1∑
r=1

κ2r+2y
2r+1
0

(2r + 1)!σ .

As for the third addend, recall that |fξ (1)| ≤ exp{Bχ } and |Rk+δ(ξ)| ≤ yk
0M

(k+δ)
0 .

Moreover, |R′
k+δ(ξ)| ≤ ∑n

j=1 σ−kξk−1|cj,n|k{k|εk+δ(cj,nξ/σ )| + |ξσ−1cj,n ×
ε′
k+δ(cj,nξ/σ )|} and, in view of Theorem 1 in Section 8.4 of Chow and Teicher

(1997), (|εk+δ(x)|+ |xε′
k+δ(x)|) ≤ 4mk+δ|x|δ/(k − 1)!. It remains to deal with the

last summand in (82). Since ∂
∂ξ

pχ−1 is a Taylor polynomial for ∂
∂ξ

fξ , one can use
the Bernstein integral form of the remainder to obtain∣∣∣∣ ∂

∂ξ

(
fξ (1) − pχ−1(1)

)∣∣∣∣
≤ 1

(χ − 1)!
∫ 1

0
(1 − u)χ−1

χ∑
l=0

(
χ

l

) ∣∣∣∣ ∂l

∂ul
fξ (u)

∣∣∣∣du

×
n∑

j=1

c
2(χ−l+1)
j,n

χ−1∑
r=χ−l

|ξ |2r+1 κ2(r+1)

σ 2(r+1)

≤
χ∑

l=0

1

(χ − l)!e
Bχ

∑
(∗)l

l∏
m=1

1

km!
(

1

m!
χ−1∑
r=m

κ2(r+1)

σ 2(r+1)
|ξ |2r+2

)km

×
χ−1∑

r=χ−l

|ξ |2r+1 κ2(r+1)

σ 2(r+1)

(
n∑

j=1

c2l+2
j,n

)
·
(

n∑
j=1

c
2(χ−l+1)
j,n

)
.

To conclude, think of the last two sums of the cj,n’s as moments of order 2l and
2(χ − l), respectively, and apply the Lyapunov inequality to each sum to write(

n∑
j=1

c2l+2
j,n

)
·
(

n∑
j=1

c
2(χ−l+1)
j,n

)
≤

n∑
j=1

ck+2
j,n .

�

A.3. A complement to the proof of Theorem 2.1. We clarify why
inft∈[0,t̂] dTV(μ(·, t);γσ ) must be strictly positive under the hypothesis that κ4(μ̃0)

is different from zero. Suppose, on the contrary, that inft∈[0,t̂] dTV(μ(·, t);γσ ) = 0.
Then, as t �→ dTV(μ(·, t);γσ ) is continuous on [0,+∞[, by the Wild expansion,
there exists t∗ in [0, t̂] such that dTV(μ(·, t∗);γσ ) = 0. On the one hand, if t∗ = 0,
then μ0 coincides with γσ and this contradicts the hypothesis that κ4(μ̃0) is differ-
ent from zero. On the other hand, if t∗ > 0, then one can conclude, in view of the
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Wild expansion, that μ0 possesses moments of every order and is symmetric. A di-
rect consequence of (1) is that m2k(t) := ∫

R
x2kμ(dx, t) satisfies an ordinary first

order differential equation, which admits the constant
∫
R

x2kγσ (dx) as a stationary
solution. Hence, since we are assuming that m2k(t

∗) is equal to such a constant,
the uniqueness of the solutions of the equations under consideration implies that
m2k(t) = ∫

R
x2kγσ (dx) for every t in [0,∞[ and every positive integer k. In other

words, μ0 coincides with γσ , which once again contradicts the fact that κ4(μ̃0) is
different from zero.

A.4. The proofs of (54) and (57). The proofs of (54) and (57) follow from the
following proposition. Let g : R → [0,+∞[ be an integrable function and ε : R →
R be a continuous, bounded function with ε(0) = 0. Then

lim
t→+∞H(t) := e(1/4)tEt

{(∫
R

g(ξ)

[
ν∑

j=1

π4
j |ε(πj ξ)|

]2

dξ

)1/2}
= 0.

PROOFS OF (54) AND (57). We fix an arbitrary small positive δ and show that
there exists a value tδ for which |H(t)| < δ, for every t > tδ . First, in view of the
fact that ε(·) is continuous and ε(0) = 0, there exists a strictly posityve number x

such that the inequality

|ε(x)| ≤ δ

3
√‖g‖1

holds for every x in [−x, x] with ‖g‖1 = ∫
R

g(ξ) dξ . Set π := max1≤j≤ν πj and
B := x/|π |. B is well defined since, due to (15), π 	= 0. Now,{∫

R

g(ξ)

[
ν∑

j=1

π4
j |ε(πj ξ)|

]2

dξ

}1/2

≤
{∫

{|ξ |≤B}
g(ξ)

[
ν∑

j=1

π4
j |ε(πj ξ)|

]2

dξ

}1/2

+
{∫

{|ξ |≥B}
g(ξ)

[
ν∑

j=1

π4
j |ε(πj ξ)|

]2

dξ

}1/2

.

For the integral over the internal region, one can write{∫
{|ξ |≤B}

g(ξ)

[
ν∑

j=1

π4
j |ε(πj ξ)|

]2

dξ

}1/2

≤ δ

3
√‖g‖1

(
ν∑

j=1

π4
j

)√‖g‖1

and, taking expectation,

e(1/4)tEt

{(∫
{|ξ |≤B}

g(ξ)

[
ν∑

j=1

π4
j |ε(πj ξ)|

]2

dξ

)1/2}
≤ δ/3,
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after a standard application of (19). At this point, we define M to be the maximum
of |ε| and determine a positive value s such that∫

{|ξ |≥s}
g(ξ) dξ ≤

(
δ

3M

)2

.

Given S := {ω||π(ω)| < x/s}, we write

e(1/4)tEt

{(∫
{|ξ |≥B}

g(ξ)

[
ν∑

j=1

π4
j |ε(πj ξ)|

]2

dξ

)1/2}

= e(1/4)tEt

{[∫
{|ξ |≥B}

g(ξ)

[
ν∑

j=1

π4
j |ε(πj ξ)|

]2

dξ

]1/2

;S
}

+ e(1/4)tEt

{[∫
{|ξ |≥B}

g(ξ)

[
ν∑

j=1

π4
j |ε(πj ξ)|

]2

dξ

]1/2

;Sc

}
.

One can observe that B(ω) > s for ω in S. We then have

e(1/4)tEt

{[∫
{|ξ |≥B}

g(ξ)

[
ν∑

j=1

π4
j |ε(πj ξ)|

]2

dξ

]1/2

;S
}

≤ e(1/4)t

{∫
{|ξ |≥s}

g(ξ) dξ

}1/2

MEt

[
ν∑

j=1

π4
j

]
≤ δ/3.

For the remaining term,

e(1/4)tEt

{[∫
{|ξ |≥B}

g(ξ)

[
ν∑

j=1

π4
j |ε(πj ξ)|

]2

dξ

]1/2

;Sc

}
≤ e(1/4)tM

√‖g‖1Pt (S
c).

An application of Markov’s inequality with exponent 6 yields an upper bound for
the probability of Sc, that is,

Pt (S
c) ≤ Et [|π |6] ·

(
s

x

)6

≤ Et

[
ν∑

j=1

π6
j

]
·
(

s

x

)6

≤ e−(3/8)t ·
(

s

x

)6

.

Hence,

e(1/4)tM
√‖g‖1Pt (S

c) ≤ e−(1/8)tM
√‖g‖1 ·

(
s

x

)6

.

Taking tδ = max{−8 log[(δ/3) · (x/s)6 · M−1‖g‖−1/2
1 ];1} makes the right-hand

side of the last inequality smaller than δ/3 for every t > tδ . This completes the
proof. �
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