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A B S T R A C T   

Altered metabolic function has many detrimental effects on the body that can manifest as cardiovascular and 
liver diseases. Traditional approaches to understanding and treating metabolic dysfunction-associated disorders 
have been organ-centered, leading to silo-type disease care. However, given the broad impact that systemic 
metabolic dysfunction has on the human body, approaches that simultaneously involve multiple medical spe-
cialists need to be developed and encouraged to optimize patient outcomes. In this review, we highlight how 
several of the treatments developed for cardiac care may have a beneficial effect on the liver and vice versa, 
suggesting that there is a need to target the disease process, rather than specifically target the cardiovascular or 
liver specific sequelae of metabolic dysfunction.   

1. Introduction 

Cardio-metabolic diseases are the optimal setting to explore the 
crosstalk between the heart and liver, and the meeting point for multi-
disciplinary evaluations where cardiologists and hepatologists can find 
common ground for collaboration. Recent research advances pave the 
way to a better understanding of the complex pathogenic mechanisms 
underlying cardiometabolic conditions and their association with car-
diovascular disease. The liver is at “the core” of several metabolic dis-
orders and the related histopathological changes range from steatosis, or 
non-alcoholic fatty liver disease (NAFLD), to steatohepatitis (NASH), to 
cirrhosis. These states are all associated with various cardiovascular 
ailments. 

Recently, experts in the field raised concerns that the nomenclature 
currently in use (NAFLD) highlights what is not the root-cause of the 
liver ailment, rather than stressing the dysmetabolic diseases underlying 
this condition [1–3]. This led to an effort by multiple stakeholders to 

reach a consensus on changing the nomenclature and the diagnostic 
criteria for fatty liver infiltration. In 2023, an international working 
group proposed to replace NAFLD with the term metabolic dysfunc-
tion–associated steatotic liver disease (MASLD) [4]. The new definition 
highlights the dependence of hepatic steatosis on the presence of dys-
metabolic conditions such as the metabolic syndrome, diabetes mellitus, 
obesity, with and without hypertension. For patients consuming more 
than 140–350 g/week of alcohol for women, and 210–420 g/week for 
men, a new nomenclature was also introduced: metabolic and alcohol 
related/associated liver disease (MetALD) (Fig. 1). The new nomencla-
ture and diagnostic criteria received wide support as they do not carry 
the stigma attached to the word “fatty”, and have important implications 
for patient advocacy and public health [5]. 

The connection among MASLD, diabetes mellitus, obesity, and car-
diovascular disease lies in a pathophysiological pathway intricately 
entwining lipid and glucose metabolism. This interplay culminates in a 
prolonged systemic inflammatory state known as meta-inflammation 
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(Fig. 2) [6]. The liver plays a pivotal role in preserving evolutionary 
interactions between immune responses and metabolism. Safeguarding 
this delicate equilibrium is paramount for overall health, carrying sig-
nificant implications for numerous chronic non-communicable diseases. 

Recently, several drugs initially designed to target specific cardiac or 
metabolic disorders were shown through post-marketing surveillance 
studies to exhibit pleiotropic effects on the liver and the heart. The 
discovery that these drugs may positively affect a non-target organ 
offered a new perspective into drug development, that in the future will 
likely shift towards addressing common pathogenetic mechanisms in 
patients with multiple comorbidities. 

The aim of this narrative review is to highlight drugs that demon-
strate a favorable cardiometabolic profile and discuss their potential to 
foster an interdisciplinary dialogue between cardiologists and hepatol-
ogists (Fig. 3). Such a collaboration holds the promise of enhancing 
outcomes in patients with MASLD. We will discuss which drugs cardi-
ologists use that may enhance liver health and which drugs hepatolo-
gists use that may benefit the heart. 

In view of the updated terminology and to avoid confusion induced 
by using too many acronyms, this review will rename the initial labeling 
used by the authors of manuscripts on steatotic liver disease from 
NAFLD, NASH and metabolic associated fatty liver disease (MAFLD), to 
MASLD and MASH (metabolic dysfunction-associated steatohepatitis). 
This choice is supported by the convincing evidence that the overlap 
between NAFLD and MASLD is over 95% [4,7,8]. 

2. What can cardiology offer hepatology? 

Table 1 provides an overview of the potential impact that drugs 
primarily used in the cardiovascular setting can have on liver health. 

2.1. Statins and bempedoic acid 

Statins are at “the core” of cardiovascular disease prevention and 
treatment. The American Heart Association advises their use in a public 
health approach in all people with high cardiovascular risk [9]. Animal 
studies have provided some evidence that statins may improve 
MASLD/MASH [10–12]. Statins do not appear to reduce liver fat per se, 
but might mitigate the risk linked with MASLD through their lipid 
lowering, anti-inflammatory, antioxidant and anti-fibrotic effects [13, 
14]. In a randomized clinical trial (RCT) of 613 military personnel with 
MASLD/MASH randomized to either diet and exercise or one of 3 statins 
(atorvastatin, rosuvastatin and pitavastatin) for 1 year, treatment with 
statins improved both liver steatosis (measured via the MASLD activity 
score: NAS) and liver fibrosis (estimated with the FIB-4 score) [15]. In a 

Korean population study of 11,539,409 people followed for up to 6 
years, treatment with statins was associated with a lower incidence of 
MASLD and lower progression to liver fibrosis in people who developed 
MASLD during follow-up [16]. It is important to note that both of these 
studies used non-invasive scores derived from biochemical parameters 
to diagnose MASLD and liver fibrosis, but no histological or imaging 
techniques. However, in a RCT including 1005 patients, a combination 
of atorvastatin 20 mg with 1 g vitamin C and 1000 IU vitamin E daily 
was associated with a 71% reduction in risk of hepatic steatosis 
compared to placebo as diagnosed by liver CT imaging [17]. Finally, 
among 1201 patients submitted to liver biopsy for suspected MASH, the 
107 subjects receiving statins showed a dose-dependent lower risk of 
developing liver steatosis, steatohepatitis and liver fibrosis compared to 
statin naïve patients [18]. Of note, statins have been reported to reduce 
portal hypertension and mortality in patients with chronic liver disease 
[19], as well as the risk of liver cancer in patients with MASLD [20]. 

Although statins are recommended for the prevention of cardiovas-
cular events in patients at risk of MASLD, including those with diabetes 
mellitus, obesity, and metabolic syndrome, they are under-utilized in 
this setting. Published evidence suggests that up to 50% of MASLD pa-
tients with a clear indication for these drugs, and 33% of those with 
clinical atherosclerotic cardiovascular disease do not receive statins [21, 
22]. While available data do not conclusively demonstrate a reduction in 
cardiovascular disease (CVD) mortality with statins in patients with 
MASLD, post-hoc analyses of RCTs suggest that the combination of 
statins and ezetimibe reduced CVD events in these patients [23,24]. In a 
post-hoc analysis of the GREACE study, that recruited 1600 patients 
with coronary artery disease, treatment with atorvastatin in patients 
with suspected MASLD was associated with a 68% relative risk reduction 
of recurrent CV events compared to patients with suspected MASLD who 
did not receive atorvastatin [23]. Of interest, patients with MASLD may 
derive a greater benefit from statins than people without MASLD [23, 
24]. 

Bempedoic acid reduces cholesterol levels via downregulation of 
ATP-citrate lyase and upregulation of AMP-activated protein kinase 
(AMPK). Its primary effect is the reduction of cholesterol synthesis in the 
liver. Reduction of gluconeogenesis and plasma levels of C-reactive 
protein (by AMPK activation) are additional potentially beneficial ef-
fects of bempedoic acid [25]. Data from RCTs showed that bempedoic 
acid can reduce LDL-C about 30% when used alone [26,27], to about 
45–55%, when used in combination with ezetimibe [27], or 
high-intensity statins [26]. In patients with type 2 diabetes mellitus 
(T2DM), the cholesterol-lowering effect of bhempedoic acid is more 
pronounced [28]. Animal studies showed that downregulation of 
ATP-citrate lyase may have a role in reducing fibrosis, and progression 

Fig. 1. New nomenclature for fatty liver disease endorsed by the American Association for the study of Liver Disease (Modified from Rinella ME et al. [4]).  
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of MASLD to MASH through impairment of proliferation and activation 
of hepatic stellate cells [29,30]. These encouraging preliminary results 
await confirmatory evidence in human studies [25]. 

2.2. Ezetimibe 

Ezetimibe reduces intestinal absorption of cholesterol [31] and has 
an additive LDL-C lowering effect when added to statins, with reduction 
in cardiovascular events [32]. In an early study, ezetimibe in combi-
nation with a low-fat diet reduced visceral adipose tissue, intrahepatic 
triglycerides and serum markers of inflammation in obese patients with 
insulin resistance and presumed MAFLD [33]. The impact of ezetimibe 
on MASLD/MASH was explored in a few post-hoc analyses of RCTs. A 
sub-analysis of the IMPROVE-IT (Improved Reduction of Outcomes: 
Vytorin Efficacy International trial) including 14,819 patients with a 
recent acute coronary syndrome, examined the effect of the combination 
of simvastatin + ezetimibe vs. simvastatin alone on liver fibrosis, 
assessed by NAFLD fibrosis score. The combination was associated with 
reduced risk of recurrent CV events only in patients with high NAFLD 
fibrosis scores, implying a protective role of ezetimibe in patients with 
MASLD/MASH [24]. Two RCTs specifically assessed the effect of ezeti-
mibe in biopsy-proven MASLD/MASH [34,35]. In a trial including 32 
patients, treatment with ezetimibe did not improve liver steatosis and 
lobular inflammation, but it was associated with reduction of liver 
fibrosis and ballooning [34]. In a double-blind placebo-controlled trial 
including 50 patients with MASH, ezetimibe was associated with 
reduced liver steatosis after 24 weeks of treatment, but no significant 
difference was observed between ezetimibe and placebo [35]. 

2.3. PCSK9 and its inhibitors 

Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors 
interfere with the activity of PCSK9, a serine protease responsible for the 
regulation of the LDL-C serum levels. LDL-C binds to the LDL receptor 
(LDLr) on the hepatocyte membrane and the complex is then internal-
ized in an endosome where the LDLr is normally recycled back to the 
hepatocyte membrane [36]. By binding to the epidermal growth 
factor-like repeat A domain of the LDLr, PCSK9 leads to degradation of 
LDLr in the lysosomes of hepatocytes. Accordingly, PCSK9 inhibition 
increases the number of available LDLr on the hepatocyte surface 
leading to a reduction in serum LDL-C level [37]. There are two distinct 
forms of PCSK9s: one that operates extracellularly and another that 
functions intracellularly. The intracellular form of this protein may in-
fluence liver steatosis by interfering with the metabolism of apolipo-
protein B48, apolipoprotein-a, the fatty acid transporter CD36 (cluster of 
differentiation 36), and the very low-density lipoprotein receptor 
(VLDLr). 

The effect of PCSK9 on liver steatosis and fibrosis was examined in a 
biopsy study of 201 patients with suspected MASH. Ruscica et al. [38] 
reported that circulating PCSK9 levels were associated with liver fat 
accumulation and correlated with the severity of steatosis, necrosis and 
inflammation, hepatocyte ballooning, and fibrosis stage, independent of 
other confounders. However, in a study of 64 patients with morbid 
obesity and MASLD undergoing bariatric surgery, PCSK9 mRNA was not 
associated with the severity of liver steatosis, lobular inflammation and 
hepatocellular ballooning [39]. Similarly, conflicting results were re-
ported in other studies with both positive [38,40,41] and negative as-
sociations of PCSK9 [42] with liver steatosis. 

The influence of PCSK9 inhibition on liver steatosis can be inferred 

Fig. 2. Pathophysiology of metabolic dysfunction associated steatotic liver disease. 
HDL high-density lipoprotein; IDL intermediate density lipoprotein; IL-1, interleukin 1; IL-6 interleukin 6; LDL low-density lipoprotein; MASLD, metabolic 
dysfunction associated steatotic liver disease; MBOAT7, membrane bound O-acyltransferase domain containing 7; PNPLA3, patatin like phospholipase domain 
containing 3; SAT, subcutaneous adipose tissue; SNS sympathetic nervous system; TM6SF2, Transmembrane 6 superfamily member 2; TNF-alpha, tumor necrosis 
factor alpha; VAT, visceral adipose tissue; VLDL very low-density lipoprotein. 
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from observations conducted on patients with loss-of function variants 
in the PCSK9 gene [43]. Grimaudo et al. examined the PCSK9 
rs11591147 loss of function variant in a multicenter study of 1874 pa-
tients at risk of MASH [43]. Carriers of the mutation presented lower 
circulating LDL-C levels and were protected against MASLD (OR: 0.42; 
95% CI: 0.22–0.81), MASH (OR: 0.48; 95% CI: 0.26–0.87) and fibrosis 
(OR: 0.55; 95% CI: 0.32–0.94) independent of other clinical, metabolic 
and genetic factors. PCSK9 hepatic expression was directly correlated 
with liver steatosis [44]. The PCSK9 loss of function variant described by 

Welty et al. in patients with hypobetalipoproteinaemia was associated 
with a lower risk of liver damage [45]. Other PCSK9 loss of function 
variants were found to be associated with increased hepatic uptake of 
free fatty acids and hepatic steatosis [43]. Baragetti et al. conducted a 
study on the loss of function R46L variant, among the 2606 patients 
enrolled in the PLIC (Progressione Della Lesione Intimale) study. Car-
riers had a larger total and android fat mass, epicardial fat thickness and 
a two-fold higher prevalence of hepatic steatosis [46]. However, genetic 
studies conducted using the UK-Biobank did not confirm that a loss of 

Fig. 3. A proposed shared approach to treatment of metabolic dysfunction associated steatotic liver disease by cardiology and hepatology specialists.  

Table 1 
Cardiovascular drugs with a potential effect on steatotic liver disease.  

Medication Class, mechanism of action Indication Hepatic impact in patients 
with MASLD/MASH and 
significant liver fibrosis 

Cardiometabolic impact Potential side effects 

Atorvastatin, 
rosuvastatin, 
simvastatin, 
pitavastatin 

Statins, 
hydroxymethylglutaryl- 
coenzyme A reductase 

Primary and 
secondary 
cardiovascular 
prevention; lipid- 
lowering 

Possible beneficial effect 
on liver steatosis and 
fibrosis 

Primary and secondary prevention 
of cardiovascular disease, lipid- 
lowering, decreased incidence of 
the first and recurrent CV events 
and mortality 

Muscle pain, myopathy, 
gastrointestinal (mild-to- 
moderate), flu-like 
symptoms; insulin 
resistance (?) 

Bempedoic acid ATP citrate lyase inhibitor Primary and 
secondary 
cardiovascular 
prevention; lipid- 
lowering 

No sufficient data; possible 
beneficial effect on liver 
fibrosis in animal studies 

Lipid-lowering, decreased number 
of CV events in patients with high 
CV risk 

Muscle pain, flu-like 
symptoms 

Ezetimibe Inhibition of intestinal and 
biliary cholesterol 
absorption 

Primary and 
secondary 
cardiovascular 
prevention; lipid- 
lowering 

Uncertain effect on liver 
steatosis; possible 
reduction of liver fibrosis 
in long-term use 

Lipid-lowering, decreased 
incidence of the first and recurrent 
CV events and mortality when in 
combination with statins 

Muscle pain, 
gastrointestinal, flu-like 
symptoms 

Evolocumab, 
alirocumab 

PCSK9 inhibitors Primary and 
secondary 
cardiovascular 
prevention; lipid- 
lowering 

Conflicting results on 
improvement of liver 
steatosis and liver fibrosis 

Lipid-lowering, reduced risk of CV 
events 

Flu-like symptoms, high 
glucose levels, pain and 
redness at the injection site 

Dapaglifozin, 
empaglifozin 

Sodium-glucose 
cotransporter 2 inhibitors 

Heart failure, diabetes 
mellitus 

May improve liver 
steatosis, reduction of liver 
aminotransferase levels 

Reduces risk of clinical events in 
patients with chronic heart failure, 
regardless of ejection fraction and 
presence/absence of diabetes 

Fatigue, polyuria, 
polydipsia, frequent urinary 
tract infections 

Semaglutide GLP-1RA T2DM, overweight/ 
obesity 

Steatosis improvement, 
MASH resolution, no 
fibrosis improvement 

Weight loss, insulin sensitivity 
improvement, lipid improvement, 
reduced MACE in people with 
T2DM and overweight/obesity 

Gastrointestinal (mild to 
moderate diarrhea, nausea), 
pancreatitis (rare) 

CV: cardiovascular. GLP-1RA: glucagon like peptide 1 receptor agonist. MASLD: metabolic dysfunction–associated steatotic liver disease. MASH: metabolic dys-
function–associated steato-hepatitis. PCSK9: Proprotein convertase subtilisin/kexin type 9. T2DM: type 2 diabetes mellitus. 
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function variant for gene PCSK9-p.Arg46Leu is associated with an 
increased risk of MASLD [47]. Demers et al. offered a potential expla-
nation for these conflicting results [46]. They showed that PCSK9 me-
diates the degradation of CD36, a hepatocyte receptor involved in the 
transport of long-chain fatty acids and triglyceride storage, and thus can 
limit fatty acids uptake and triglyceride accumulation in the liver [48]. 
Accordingly, inhibition of PCSK9 could potentially increase the risk of 
MASLD by increasing CD36-mediated liver fat uptake. 

Data on the effect of PCSK9 inhibitors in clinical practice are very 
limited and mainly based on presumed steatotic liver disease using 
serum biomarkers. Shafiq et al. performed a retrospective chart review 
on 29 patients treated with PCSK9 inhibitors for a mean duration of 2 
years. The ALT levels decreased significantly compared to the pre- 
treatment period, and 73% of patients who had a radiological diag-
nosis of hepatic steatosis achieved resolution on imaging during treat-
ment [49]. Scicali et al. reported an improvement of steatosis 
biomarkers in an observational study of 26 patients with genetically 
confirmed familial hypercholesterolemia and MASLD treated with a 
PCSK9 inhibitor [50]. The very limited data available to date do not 
allow us to conclude that PCSK9 inhibitors are an effective treatment 
option for MASLD. 

2.4. Sodium-glucose cotransporter 2 inhibitors 

Sodium-glucose cotransporter 2 inhibitors (SGLT2i) help improve 
glycemia in T2DM by promoting urinary glucose excretion, and are also 
beneficial for treatment of heart failure through a number of mecha-
nisms that go beyond osmotic diuresis [51]. Dapaglifozin and empa-
glifozin are now recommended for the treatment of heart failure with 
reduced, mildly reduced or preserved ejection fraction [52], and there is 
a high prevalence of heart failure with preserved ejection fraction 
among patients with MASLD. Additionally, recent data from 
meta-analyses of RCTs showed that SGLT2i improve liver function pa-
rameters and metabolic outcomes among patients with MASLD and 
MASH. Mantovani et al. published a meta-analysis of 7 active-controlled 
and placebo-controlled phase-2 RCTs that employed SGLT2i (empagli-
fozin, dapaglifozin, canaglifozin) for the treatment of MASLD in patients 
with T2DM [53,54]. Compared to placebo or standard of care, treatment 
with SGLT2i (especially empagliflozin and dapagliflozin) was associated 
with a significant improvement in liver fat content in four RCTs [55–58], 
along with a significant reduction in body weight (~3.5 kg) and HbA1c 
level (~0.5%). In all RCTs, treatment with SGLT2i was also associated 
with a significant reduction in serum aminotransferase levels. In a 
meta-analysis that included a total of 839 patients with MASLD, dapa-
glifozin led to a greater reduction in alanine aminotransaminase, 
aspartate aminotransaminase, gamma-glutamyl transferase, tri-
glycerides, body weight, body mass index, HbA1c, and fasting plasma 
glucose compared to standard of care [59]. Similar results were reported 
by Sun et al. [60]. 

2.5. Glucagon-like peptide-1 receptor agonists 

Semaglutide is a glucagon-like peptide-1 receptor agonist (GLP-1RA) 
approved for treatment of T2DM and for chronic weight management in 
overweight and obese patients [61,62]. Among all molecules in devel-
opment for treating MASH, semaglutide stands out with the most robust 
evidence on cardiovascular outcomes, with 2 RCTs available in patients 
with T2DM and obesity [63,64]. In the SUSTAIN-6 trial, targeting 2735 
people with T2DM, semaglutide treatment was associated with a sig-
nificant reduction in risk of cardiovascular death, nonfatal myocardial 
infarction, or nonfatal stroke compared to standard of care [64]. Simi-
larly, in the recently published SELECT study, semaglutide was superior 
to placebo in reducing the incidence of death from cardiovascular cau-
ses, non-fatal myocardial infarction, or non-fatal stroke in 1704 over-
weight or obese individuals with a history of cardiovascular disease but 
no diabetes mellitus, after a mean follow-up of 40 months [63]. 

Consistent with these results, two RCTs conducted in patients with 
MASH showed that semaglutide induced significant weight loss, and 
improved HbA1c, triglycerides, and LDL-C levels [65,66]. Semaglutide 
may exert its beneficial effects on MASLD via weight loss and increased 
insulin sensitivity, and the associated reduction in cytosolic lipid over-
load and inflammation [67]. Preclinical studies suggested a direct effect 
of semaglutide on liver inflammation independent of weight loss [68]. 
Despite the positive weight and biochemical effects, the 2 RCTs 
mentioned above gave conflicting results with reference to hepatic 
benefits of semaglutide [65,66]. Newsome et al. studied the effect of 
different doses of daily subcutaneous semaglutide in patients with 
MASH and stage 2–3 (F2–F3) liver fibrosis [65]. At 72 weeks, sem-
aglutide 0.4 mg/daily induced MASH resolution (defined as no more 
than mild residual inflammatory cells infiltration and no hepatocyte 
ballooning) in the absence of fibrosis worsening, in 59% of the patients 
compared to 17% of patients receiving placebo. In contrast, Loomba 
et al. [66], could not confirm MASH resolution in a 48-week RCT with 
once-weekly semaglutide 2.4 mg in patients with cirrhosis secondary to 
MASH. The failure of semaglutide to achieve a significant fibrosis 
improvement may have been due by the relatively short duration of 
follow-up [65,66]. 

A phase 3 RCT in patients with MASLD and liver fibrosis stage F2–F3 
is currently ongoing, with an interim analysis expected in the second 
quarter of 2024 [69]. The latest guidelines of the American Association 
for the Study of Liver Diseases state that semaglutide can be considered 
for treatment of T2DM and obesity in patients with MASH, although the 
drug has no proven anti-fibrotic effect [70]. Besides semaglutide, other 
GLP-1RAs have been tested in MASLD including liraglutide, exenatide, 
lixisenatide, and dulaglutide [71]. However, only liraglutide has been 
tested in an RCT in the setting of MASH: the LEAN trial [72]. This study, 
conducted on a small sample of 52 patients with biopsy-proven steato-
hepatitis, reported significantly greater resolution of inflammation and 
lower rates of liver fibrosis progression in patients taking liraglutide 
compared to placebo [72]. 

2.6. Metformin 

In clinical and preclinical studies, metformin has been shown to 
improve markers of liver steatosis. In animal studies metformin 
decreased hepatic steatosis and inflammation in diet-induced obesity 
models [73,74], upregulated hepatic leptin receptors and decreased 
hepatic triglyceride content [75]. 

Clinical studies showed that metformin can reduce mean trans-
aminase serum level and improve insulin sensitivity, with some patients 
experiencing normalization of transaminase levels and a decrease in 
liver volume [73]. Additionally, metformin has been associated with a 
decrease in hepatic steatosis index scores in patients with type 2 diabetes 
mellitus over a 2-year treatment period [76]. Additional preclinical 
studies showed that metformin can improve liver function, decrease 
liver collagen deposition, regulate inflammatory and oxidative stress 
markers in animal models of liver fibrosis [77–80], and induce apoptosis 
in hepatic stellate cells, that are key effector cells in the fibrogenic 
process [78,80]. Despite these promising findings from animal and in 
vitro studies, there is a lack of evidence that metformin improves liver 
histology in patients with MASLD and MASH. As a consequence, the 
American Association for the Study of Liver Diseases (AASLD) does not 
recommend metformin for the treatment of MASH [70]. 

2.7. Sulfonylureas 

There is limited to no evidence linking sulfonylureas to improved 
liver function in MASLD. A sub-group analysis of the TOSCA.IT trial 
showed that indices of MASLD did not improve after treatment with 
sulfonylureas, in contrast to pioglitazone [81]. In a comparative study 
tofogliflozin led to an overall improvement in liver histology, while 
glimepiride improved only hepatocellular ballooning [82]. Dai et al. 
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showed that use of sulfonylurea was associated with an increased risk of 
liver fibrosis [83]. This suggests that sulfonylureas may not be the 
optimal choice for glycemic management in patients with MASLD due to 
their limited effects on liver steatosis and potential association with liver 
fibrosis. The American Association of Clinical Endocrinology (AACE) 
and AASLD do not specifically address the impact of sulfonylureas on 
liver fibrosis [84]. 

2.8. Omega-3 polyunsaturated fatty acids and fibrates 

Despite a large experimental literature showing a positive effect of 
omega-3 polyunsaturated fatty acids and fibrates on liver enzymes and 
hepatic triglyceride content [85,86], there is no clinical trial evidence of 
either of these 2 drugs improving liver histology or outcomes in humans 
affected by MASL/MASH. 

3. What can hepatology offer cardiology? 

Lifestyle interventions such as diet and physical activity, although 
highly effective if sustained, are not sufficient to halt the rising tide of 
MASLD related morbidity and mortality [87]. 

3.1. Pharmacological approaches for treating MASLD 

To date, there is no officially approved drug to specifically target 
MASLD. However, vitamin E and pioglitazone have been recommended 
for treating MASH [88]. In addition, several novel therapeutic molecules 
have reached phase-3 clinical trial stage for treating MASLD; the most 
promising are resmetirom, lanifibranor and FGF21 inhibitors [89]. 
Prioritizing drugs with additional cardiovascular benefits appears to be 
an important consideration for the MASLD population, where cardio-
vascular disease is the leading cause of mortality [90]. Table 2 provides 
an overview of the hepatic and cardiovascular effects of these drugs. 

3.2. Vitamin E 

Vitamin E is a liposoluble antioxidant that contributes to cellular 
signaling and regulates gene expression, exhibiting anti-inflammatory 
and anti-apoptotic properties [91]. In two RCTs, administration of 800 
IU of vitamin E daily resulted in greater MASH resolution, defined as 
reduction in steatohepatitis and inflammation compared to placebo, in 
both adults and children [88,92]. Similarly, in another clinical trial 
targeting HIV patients with MASLD, vitamin E treatment decreased liver 
enzymes and improved hepatic steatosis and hepatocyte apoptosis [93]. 
However, none of these studies demonstrated a beneficial effect of 
vitamin E on liver fibrosis, and current hepatology guidelines recom-
mend its use only as a short-term therapeutic option for patients with 

MASLD and no diabetes, at risk of rapidly progressing disease [70,93, 
94]. Given the central role of oxidative stress in atherosclerosis, several 
studies have investigated the antioxidant properties of vitamin E in 
cardiovascular disease, with mixed results [95]. An association between 
low vitamin E levels and cardiovascular events was reported in several 
observational studies [96–98]. Patients supplemented with vitamin E 
appeared to have a lower incidence of myocardial infarction and angina 
[99], as well as a reduced risk of all-cause mortality and mortality from 
coronary artery disease [100]. However, subsequent interventional 
studies yielded mixed results, with some reporting a protective effect on 
cardiovascular events [101–104], and others failing to show a signifi-
cant benefit [105–108]. Along the same lines, a metanalysis on this topic 
produced inconclusive results [95]. This may reflect the high hetero-
geneity of the RCTs investigating this drug, in which different doses of 
vitamin E were administered, no baseline vitamin E levels were ob-
tained, and heterogeneous populations were included. Overall, vitamin 
E has a good safety profile. Although some authors warned of a possible 
association between vitamin E and bleeding disorders, particularly 
hemorrhagic stroke [109], this evidence was not confirmed in a recent 
metanalysis [110]. Similarly, a possible association with prostate cancer 
has been suggested but not proven [111]. 

3.3. Peroxisome proliferator-activated receptors (PPARs) ligands 

Pioglitazone is a thiazolidinedione that binds to the peroxisome 
proliferator-activated receptors gamma (PPARγ) and is approved for the 
treatment of T2DM [112]. By activating PPARγ, it improves insulin 
resistance, inflammation, and lipid metabolism [113]. Consistent with 
its biological mechanisms, initial evidence showed a beneficial effect on 
MASH histology [114]. However, in the PIVENS trial, targeting 247 
patients with MASH with or without T2DM, pioglitazone did not meet 
the pre-specified primary endpoint, despite some improvement in he-
patic steatosis and inflammation [88]. In a subsequent 18-month RCT, 
pioglitazone achieved ≥2-point reduction in NAS (NAFLD Activity 
Score: steatosis, inflammation, hepatocyte ballooning), with a trend 
toward regression of fibrosis compared to placebo [115]. Two recent 
meta-analyses concluded that pioglitazone is superior to placebo in 
achieving both MASH resolution and 1-stage improvement in fibrosis 
[116,117]. Observational studies [118,119], RCTs [120] and metanal-
yses [121,122], as well as imaging studies [123–125], have supported 
the beneficial cardiovascular effects of pioglitazone. Despite this 
promising evidence, pioglitazone is no longer commonly used in dia-
betes care and is not currently being studied in any phase 3 RCTs. This is 
likely due to its side effect profile that include weight gain and fluid 
retention that can lead to heart failure exacerbation, bone loss with 
increased risk of fractures, and a controversial risk of bladder cancer 
[126]. 

Table 2 
MASH-targeted drugs and their potential cardiometabolic effect.  

Medication Class, 
mechanism of 
action 

Indication Hepatic impact in patients with 
MASLD/MASH and significant 
liver fibrosis 

Cardiometabolic effect Potential side effects 

Vitamin E Fat soluble 
vitamin 

NA Steatosis improvement, MASH 
resolution, no fibrosis 
improvement 

Conflicting evidence on cardiovascular outcomes Hemorrhagic stroke? Prostate cancer? 

Pioglitazone PPARγ agonist T2DM Steatosis improvement, MASH 
resolution, fibrosis 
improvement? 

Weight gain, insulin sensitivity improvement, lipid 
profile improvement, reduced atherosclerosis 
progression, reduced MACE in people with T2DM 

Weight gain, heart failure 
exacerbation in patients with heart 
failure, bone loss, bladder cancer? 

Lanifibranor Pan-PPAR 
agonist 

NA Steatosis improvement, MASH 
resolution, fibrosis 
improvement 

Lipid profile improvement Diarrhea, nausea, peripheral edema, 
anemia 

Resmetirom THR-β agonist NA steatosis improvement, fibrosis 
improvement, MASH 
resolution 

Lipid profile improvement Gastrointestinal (mild to moderate 
diarrhea, nausea). 

MACE: major adverse cardiovascular event. MASLD: metabolic dysfunction–associated steatotic liver disease. MASH: metabolic dysfunction–associated steato- 
hepatitis. PPAR: peroxisome proliferator-activated receptor ligand. THR-β: beta thyroid hormone receptor. T2DM: type 2 diabetes mellitus. 
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Another PPAR agonist, lanifibranor, has shown promising results in 
MASH trials by simultaneously improving adipogenesis, inflammation 
and fibrosis [127], and unlike pioglitazone, it has progressed to phase 3 
RCTs. Lanifibranor is an oral pan-PPAR agonist that targets PPARα, 
PPARδ and PPARγ [127]. In the phase 2b NATIVE trial, lanifibranor 
achieved both MASH resolution and improvement of ≥1 fibrosis stage 
[127]. In the ongoing phase 3 RCT, NATiV3, 1000 patients with MASH 
and F2–F3 liver fibrosis will be randomized to lanifibranor versus pla-
cebo to assess steatohepatitis resolution and fibrosis improvement 
[128]. Lanifibranor increases HDL cholesterol levels and reduces tri-
glyceride and HbA1c levels compared to placebo [127]. It also induces a 
dose-dependent increase in serum adiponectin levels, suggesting a 
beneficial modulation of adipose tissue function. Despite the reported 
weight gain, patients taking lanifibranor showed improvement in MASH 
histology [127]. Of interest, lanifibranor induced weight gain appears to 
be a result of body fat remodeling, with a shift from visceral to meta-
bolically healthy subcutaneous adipose tissue [127]. This effect, previ-
ously observed with pioglitazone [129], aligns with evidence that 
adipose tissue dysfunction and visceral adiposity, rather than obesity per 
se, play a central role in MASH [130]. 

3.4. Beta thyroid hormone receptor (THR-β) activators 

The beta thyroid hormone receptor (THR-β) is emerging as a prom-
ising pharmacological target for the treatment of fibrosis in MASH. 
Frequently disrupted and downregulated in this condition, THR-β has 
demonstrated a pivotal role in regulating liver metabolic and fibrogenic 
pathways [131]. Resmetirom is an oral, liver-targeted, selective THR- β 
agonist, currently standing as the front runner for FDA approval in 
MASH therapy. After a successful phase 2 RCT, showing reduction of 
liver fat content at 12 weeks and the resolution of MASH at 36 weeks in 
84 patients with biopsy-proven MASH [132], resmetirom has progressed 
to four phase 3 RCTs: MAESTRO-NAFLD-1 and its extension 
MAESTRO-NAFLD-OLE in patients with presumed MASH; 
MAESTRO-NASH in patients with biopsy-proven MASH and significant 
fibrosis; and MAESTRO-NASH-OUTCOMES in patients with MASH and 
biopsy proven compensated cirrhosis [133]. The first 52-week interim 
analyses of MAESTRO-NAFLD-1 and MAESTRO-NASH trials showed 
that resmetirom reduced hepatic fat with little effect on liver fibrosis 
[134] and good MASH resolution with ≥1 stage fibrosis improvement 
[135]. Notably, in these RCTs resmeritom exhibited a favorable effect on 
atherogenic particles, with significant reduction in LDL-C, apolipopro-
tein B, triglycerides, as well as apolipoprotein CIII, lipoprotein(a), 
remnant-cholesterol, and very low-density lipoprotein cholesterol 
compared to placebo [134,135]. Resmetirom appears to be safe, with no 
increase in serious treatment-emergent adverse events [132,134]. The 
most common side effects reported were diarrhea and nausea of mild to 
moderate intensity, occurring at the start of treatment and lasting 
approximately 2 weeks [132,134]. 

4. Summary 

This narrative review discussed emerging and established therapies 
that may offer a clinical advantage in the management of both cardiac 
and hepatic diseases. The new classification of steatotic liver disease 
stresses the importance of metabolic pathways as the etiologic factors 
underlying the development of fatty liver with untoward cardiovascular 
outcomes. 

In this manuscript we aimed to introduce metabolic health as the 
goal of therapy. This construct considers the net patients’ advantage 
with regards to multiple metabolic parameters captured by body 
composition data (BMI, visceral and liver fat accumulation), lipid frac-
tions, glycemia, insulin resistance, kidney function and bone turnover. 
The pathway to improve metabolic health includes first and foremost 
lifestyle interventions, followed by the introduction of drugs that may 
offer pleiotropic activity in different disease states, as is the case for the 

drugs mentioned in this review. In this scenario, the focus is not the 
treatment of single morbidities but rather the simultaneous treatment of 
multiple comorbidities. The drugs discussed likely act on common in-
flammatory pathways that are at the core of multiple comorbidities and 
aging. Therapy should also target liver fibrosis, since several studies 
showed that all-cause mortality (mostly driven by cardiovascular dis-
ease) increases proportionally with the increase in liver fibrosis stage 
[136]. 

This review suggests that cardiometabolic conditions should be 
approached with a cascade of care from primary prevention to treatment 
of advanced disease. Some of the authors of this review are neither 
cardiologists nor hepatologists, but rather infectious disease experts in 
HIV disease. People living with HIV often face multiple aging-related 
morbidities and are affected by frailty, seeking care in specialized 
clinics designed to facilitate a multidisciplinary holistic approach that 
addresses their diverse health needs across various dimensions. Meta-
bolic health is not just the absence of metabolic diseases but rather a 
road map for healthy living. This perspective paves the way to a patient 
centered model of care in which the goal of treatment is the improve-
ment of health-related quality of life and wellness in general. Such an 
approach would break down barriers between personalized medicine 
and the current standard of care. 

Primary care providers play a crucial role in increasing awareness 
and engaging vulnerable individuals in a new care model, fostering 
collaboration between hospital consultants and general practitioners to 
achieve shared objectives. This goal can be achieved through various 
avenues, including: [a] organizing educational meetings that delve into 
local epidemiology, clinical presentations, and treatment opportunities; 
[b] utilizing electronic health records accessible to multiple stake-
holders to coordinate medical care; and [c] empowering patients to 
advocate for and adopt healthy living practices. This interdisciplinary 
dialogue offers an opportunity to deliver comprehensive management of 
MASLD, considering both the multiple comorbidities and the overall 
metabolic health of the individual. 
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