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Highlights

• Models for an actual logistic problem about distribution of goods with trucks and drones working together.
• Effective use of constraint programming.
• Improvements of several state-of-the-art upper and lower bounds for optimal solutions.



Constraint Programming models for the parallel drone
scheduling vehicle routing problem

Roberto Montemanni∗, Mauro Dell’Amico

Department of Sciences and Methods for Engineering, University of Modena and Reggio
Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy

Abstract

Drones are currently seen as a viable way for improving the distribution of
parcels in urban and rural environments, while working in coordination with
traditional vehicles like trucks. In this paper we consider the parallel drone
scheduling vehicle routing problem, where the service of a set of customers
requiring a delivery is split between a fleet of trucks and a fleet of drones.
We consider two variations of the problem. In the first one, the problem is
more theoretical, and the target is the minimization of the time required to
complete the service and have all the vehicles back to the depot. In the second
variant, more realistic constraints involving operating costs, capacity limitation
and workload balance, are considered, and the target is to minimize the total
operational costs. We propose different constraint programming models to deal
with the two problems. An experimental champaign on the instances previously
adopted in the literature is presented to validate the new solving methods. The
results show that, on top of being a viable way to solve problems to optimality,
the models can also be used to derive effective heuristic solutions and high-
quality lower bounds for the optimal cost, if the execution is interrupted before
its natural end.

Keywords: Parallel Drone Scheduling Vehicle Routing Problems, Constraint
Programming, Drones, Optimization

1. Introduction

In the last few years, drone technology has seen investments for billion of
dollars, due to its potentials. Forbes [4] defined such a phenomenon the “Drone
Explosion”. Drones can be applied to many sectors, among which logistics,
surveillance and disaster relief [13]. The most prominent application is probably
logistics related to e-commerce, which has experienced an exponential growing
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in the last decades (Statista, [18]). In [19], the authors forecast that autonomous
vehicles will deliver about 80% of all parcels in the following ten years. Several
advantages associated with the use of aerial drones can be identified: they do
not have to stick to the road network but can fly approximately straight line.
Moreover, they are not affected by road traffic congestions. The technology
might lead to innovative solutions of interest for the companies (operational
costs reduction), for the customers (faster deliveries) and for the whole society
(sustainability). In this work we will focus on operational delivery strategies
with a mixed fleet using both trucks and drones.

The seminal work of Murray and Chu [10] pioneered a new routing problem
in which a truck and a drone collaborate to make deliveries. From an operations
research perspective, the authors present two new prototypical variants expand-
ing from the traditional Traveling Salesman Problem (TSP) called the Flying
Sidekick TSP (FSTSP) and the Parallel Drone Scheduling TSP (PDSTSP). In
both cases a truck and drones collaborate to deliver parcels, the difference being
however that in the former model drones can be launched and collected from
the truck during its tour, while in the latter one drones are operated directly
from the central depot, while the truck executes a traditional delivery tour. In
the remainder of the paper we will focus on the latter problem, addressing the
interested reader, for example, to [2] for full details and some solution strategies
for the FSTSP.

More formally, in the PDSTSP there is a truck that can leave the depot,
serve a set of customers, and return to the depot, and a set of drones, each of
which in the meantime can leave the depot, serve a customer, and return to the
depot before serving other customers. Not all the customer can be served by
the drones, either due to their location or the characteristic of their parcel. The
objective of the problem is to minimize the completion time of the last vehicle
returning to the depot (or a cost function related to this), while serving all the
customers.

A first Mixed Integer Linear Programming (MILP) model for the PDSTSP
and some simple heuristic methods are proposed in [10]. A more refined mixed
integer programming model and the first metaheuristic method, based on a
two steps strategy, embedding a dynamic programming-based component, are
discussed in [6]. A similar two steps approach, but based on matheuristics
concepts is presented in [1]. A hybrid ant colony optimization metaheuristic is
discussed in [3]. In [8] a constraint programming approach is discussed, which
is able to solve to optimality all the benchmark instances previously adopted
in the literature for both exact and heuristic methods. An improved variable
neighbour search metaheuristic is discussed in [5]. More recently, in [12] another
exact approach based on branch-and-cut was proposed, together with some new
benchmark problems.

Several PDSTSP variants are also introduced and studied in the literature.
We refer the interested reader to [13] and [14] for a complete survey. In the
following we review only the extensions of the original problem relevant to the
present study, where multiple trucks are employed out of a same depot, and more
realistic constraints involving load balancing, capacity and costs are eventually
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considered.
The recent work [7] discusses the Parallel Drone Scheduling Multiple Trav-

eling Salesman Problem what we will here refer to as the MT-PDSVRP ( Min-
Time Parallel Drone Scheduling Vehicle Routing Problem), which is a straight-
forward extension of the PDSTSP where multiple trucks are employed and the
target is to minimize the time required to complete the delivery to the last
customer serviced and go back to the depot. The authors propose a hybrid
metaheuristic algorithm along the line of the method previously introduced in
[6], a mixed integer linear model and a branch-and-cut approach working on such
a model. What is basically the same problem is also introduced at the same
time in [16], where the authors propose three mixed integer linear programming
models, one of which is arc-based and the other two are set covering-based, to-
gether with a branch-and-price approach based on one of the set covering-based
models. A heuristic version of the branch-and-cut method is also discussed,
targeting larger instances. A more realistic variation of the PDSTSP, which we
will refer to as the MC-PDSVRP (Min-Cost Parallel Drone Scheduling Vehicle
Routing Problem) is introduced in [11]. In this version of the problem concepts
such as capacity, load balancing and decoupling of costs and times are taken into
account. A formal definition of the problem will be provided in Section 3. The
authors propose a mixed integer linear programming model and a ruin&recreate
metaheuristic for the problem.

In this paper we aim to explore the potential of constraint programming on
PDSVRPs, in the hope of exploiting the recent advances of solvers in dealing
with TSP and VRP problems. We present tailored models for the different
PDSVRPs considered. Experimental results show that several best-known up-
per and lower bounds can be obtained by the new models. Based on such results,
some considerations about the performance of the different models, related to
the characteristics of the benchmark instances considered, are also provided.

The rest of the paper is organized as follows. Section 2 is devoted to the
the MT-PDSTSP. The problem is formally defined and two Constraint Pro-
gramming models are presented. Symmetrically, in Section 3 the MC-PDSVRP
is discussed, again presenting Constraint Programming models. Experimental
results for both the models are discussed in Section 4, while Section 5 contains
some conclusions and ideas for future work.

2. The Min-Time Parallel Drone Scheduling Vehicle Routing Prob-
lem

The MT-PDSVRP can be represented on a complete directed graph
G = (V,A), where the node set V = {0, 1, . . . , n} represents the depot (node 0)
and a set of customers C = {1, . . . , n} to be serviced. A set T of homogeneous
trucks and a set D of homogeneous drones are available to deliver parcels to the
customers. Each truck starts from the depot 0, visits a subset of the customers,
and returns back to the depot, operating a single route. The drones operate
back and forth trips from the depot to customers, delivering one parcel per trip
and operating multiple routes if necessary. Not all the customers can be served
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Figure 1: An example of an instance is provided on the left; we assume that two trucks and
two drones are available (travel times are omitted for the sake of simplicity). A solution of
the MT-PDSVRP is provided on the right. The black and blue arcs represent the tour of the
two truck. The first visits nodes 2 and 3 before going back to the depot, the second visits
nodes 6 and 7 and goes back to the depot. The dashed red arcs depict the missions of the
first drone (that serves nodes 1 and 8), while the dashed green arcs depict the missions of the
second drone (that serves nodes 4 and 5).

by a drone, due to the weight of the parcel, an excessive distance of the customer
location from the depot, or eventual terrain obstacles such as hills or areas with
high-rise buildings. Let CD ⊆ C denotes the set of customers that can be served
by drones. These customers are referred to as drone-eligible in the remainder of
the paper. The travel time incurred by a truck to go from node i to node j is
denoted as tTij , while the time required by a drone to serve a customer i (back

and forth) is denoted as tDi . The trucks and the drones start from the depot at
time 0, and the objective of the MT-PDSVRP is to minimize the time required
to complete all the deliveries and to have all the trucks and all the drones back
at the depot. Note that since truck and drones work in parallel, the objective
function translates into minimizing the time required by the vehicle of the fleet
with the longest total operational time.

An example of a solution of the MT-PDSVRP for a small instance is provided
in Figure 1.

2.1. Constraint programming models

We propose two alternative models that exploit different functions made
available by modern Constraint Programming solvers. In the first model the
truck tours are represented as separated non-overlapping entities, while in the
second they are modelled similarly to the classic giant tour representation [9].
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2.1.1. MT-3IDX: A model based on separated truck tours

The variables of the model that will be referred to as MT-3IDX are as follows.
The binary variable zkij , with k ∈ T and i, j ∈ V takes value 1 (or equivalently
True) if node i is visited right before node j in the tour of truck k, and value 0 (or
equivalently False) otherwise. The binary variable xdi, with d ∈ D and i ∈ CD,
takes value 1 is the customer i is visited by the drone d, and value 0 otherwise.
Finally, the variable α is a continuous variable introduced to implement the
min max objective function. The model is as follows.

MT−3IDX : minα (1)

s.t. Circuit(zkij ; i, j ∈ V ; i 6= 0 ∨ j 6= 0) k ∈ T (2)∑
d∈D

xdi +
∑
k∈T

¬zkii = 1 i ∈ CD (3)∑
k∈T

∑
i inV

¬zkij = 1 j ∈ C \ CD (4)

α ≥
∑
i∈V

∑
j∈V,i6=j

tTijzkij k ∈ T (5)

α ≥
∑
i∈CD

tDi xdi d ∈ D (6)

zkij ∈ {0; 1} k ∈ T ; i, j ∈ V (7)

xdi ∈ {0; 1} d ∈ D, i ∈ CD (8)

The objective function (1) minimizes α, that will be assigned the time taken
by the latest vehicle to complete its tasks. Constrains (2) assures that the z
variables associated to each truck k take values in such a way to form a valid
tour, eventually with self-loops for the variables associated to customers visited
by the drones. This is imposed through the use of the “Circuit” statement. In
the logic of such a command, if a customer i is not visited by the a truck k then
zkii is set to 1. Constrains (3) imposes that if a customer i ∈ CD is not visited
by any truck, then one of the drones in D must visit it. Note that the negation
operator “¬” is used, and that if zkii = 1 ∀k ∈ T , then customer i is not visited
by any truck. Constraints (4) imposes that if a customer i ∈ C \ CD then one
truck in T must visit it. Inequality (5) constraints α to be at least as large as
the length of the tour of each truck. Constrains (6) set α to be at least as large
as the time spent by each drone d to execute the tasks assigned to it. Finally,
constrains (7) and (8) define the variables domain.

This model presents the drawback of having a considerable number of vari-
ables, in the order of O(|T | · |V |2 + |D| · |V |). Moreover, these variables are also
constrained to take mutually-consistent values. This might affect the quality of
the lower bounds in some circumstances.

2.1.2. MT-2IDX: A model based on a giant truck tour

In this section we present a model with less variables than that discussed in
Section 2.1.1. This is achieved by exploiting the “MultipleCircuit” statement
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present in modern Constraint Programming tools [15].
The meaning of variables x remain the same as in Section 2.1.1, while z

variables are substituted by a new set of variables y, with yij , i, j ∈ V , that for
i 6= j takes value 1 if node i is visited right before node j in one of the truck
tours, and value 0 otherwise. When i = j, yii takes value 1 if node i is visited by
a drone, 0 otherwise. A new set of continuous variables γi, i ∈ V is introduced
to account for the operating time of each truck k ∈ T . The resulting model is
as follows.

MT−2IDX : minα (9)

s.t. MultipleCircuit(yij , i, j ∈ V ; i 6= 0 ∨ j 6= 0) (10)∑
j∈V \{0}

y0j ≤ |T | (11)

∑
d∈D

xdi + ¬yii = 1 i ∈ C (12)

γ0 = 0 (13)

yij =⇒ γj = γi + tTij i ∈ V ; j ∈ V \ {0} (14)

yi0 =⇒ α ≥ γi + tTi0 i ∈ V \ {0} (15)

α ≥
∑

j∈CD

tDj xdj d ∈ D (16)

yij ∈ {0; 1} i, j ∈ V (17)

xdi ∈ {0; 1} d ∈ D, i ∈ CD (18)

γi ≥ 0 i ∈ V (19)

The objective function (9) minimizes α, that will be assigned the time taken
by the latest vehicle to complete its tasks. Constrains (10) assures that the
y variables take values in such a way to form a set of valid truck tours, and
eventually self-loops for the variables associated to customers visited by the
drones. This is imposed through the use of the “MultipleCircuit” statement.
Constrain (12) states that the number of truck tours (outgoing arcs from the
depot 0) is limited to |T |. Constrains (11) imposes that if each customer i ∈ C
must be visited either by a truck (yii = 0) or by one of the drones in D.
Constraint (13) initializes to 0 the time counter at the depot. Constraints (14)
increase the operational time of each truck (by setting the time each customer
i is visited). Inequalities (15) force α to be at least as large as the last return
time of a truck to the depot. Constrains (16) counts the total operating time
of each drone d and imposes that α must be greater than it. Finally, constrains
(17), (18) and (19) define the domain of the variables.

With respect to the model discussed in 2.1.1, MT-2IDX has the advantage of
having less variables, with those used to model the truck tours which are reduced
to O(|V |2 + |D| · |V |) (the factor |T | is not present anylonger). However, the
new model requires extra new constraints in the order of O(|V |2) and extra new
variables in the order of O(|V |) to account for the length of each single truck
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tour.

3. The Min-Cost Parallel Drone Scheduling Vehicle Routing Problem

The MC-PDSVRP is a modification of the MT-PDSVRP described in Sec-
tion 2, where more realistic components are considered, leading to a model with
more complex objective function and more constraints. In particular, the fol-
lowing elements are added to concepts already analyzed for the MT-PDSVRP
and have to be taken into account: A transportation cost cTij is incurred by a

truck to travel on the edge (i, j) ∈ E, while cDi is the transportation costs in-
curred by each drone to complete a mission to customer i ∈ CD. These costs are
used to define a new objective function to be minimized. The delivery request
from each customer i ∈ C is associated with a parcel weight wi. Each truck
has to respect some capacity constraints, being limited to transport at most QT

units of weight in its route. Finally, there are upper bounds τT and τD on the
maximum working time for each truck and drone, respectively. Note that these
latter constraints are normally used to introduce load-balancing concepts into
the optimization.

3.1. Constraint programming models

Analogously to what seen in Section 2.1 for the MT-PDSVRP, two models
will be presented.

3.1.1. MC-3IDX: A model based on separated truck tours

The variables used in this model are the same used for the model MT-3IDX
in Section 2.1.1.

MC−3IDX : min
∑
k∈T

∑
i∈V

∑
j∈V,j 6=i

cTijzkij +
∑
k∈D

∑
i∈V

cDi xki (20)

s.t. Circuit(zkij ; i, j ∈ V ) k ∈ T (21)∑
d∈D

xdj +
∑
k∈T

∑
i inV

¬zkij = 1 j ∈ CD (22)∑
k∈T

∑
i inV

¬zkij = 1 j ∈ C \ CD (23)∑
i∈V

∑
j∈V,i6=j

tTijzkij ≤ τT k ∈ T (24)

∑
j∈CD

tDj xdj ≤ τD d ∈ D (25)

∑
j∈C

wjzkij ≤ QT k ∈ T (26)

zkij ∈ {0; 1} k ∈ T, i, j ∈ V (27)

xdi ∈ {0; 1} d ∈ D, i ∈ CD (28)
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The objective function (20) minimizes the total cost, given by sum of the
costs of each truck and drone, incurred to service all the customers. Constrains
(21) assures that the z variables associated to each truck k take values in such
a way to form a valid tour, eventually self-loops for the variables associated to
customers visited by the drones. Constraints (22) imposes that if a customer
i ∈ CD is not visited by any truck, then one of the drones in D must visit
it. Constraints (23) imposes that if a customer i ∈ C \ CD then one truck in
T must visit it. Inequalities (24) make sure that each truck does not exceed
its maximum working time. Inequalities (25) are the constraints on maximum
working time for the drones. Constraints (26) model the capacity constraints for
the trucks. Finally, constraints (27) and (28) define the domain of the variables.

The more realistic settings of this problem with respect to the Min-Time
version discussed in Section 2.1.1, imply a newly designed objective function
and O(|T |+ |D|) new constraints to account for budget limitations.

3.1.2. MC-2IDX: A model based on a giant truck tour

The variables used in this model are the same used for the model MT-2IDX
in Section 2.1.2, with the addition of the new set of continuous variables βi,
i ∈ V which is introduced to count the weight carried by each truck k ∈ T .

MC−2IDX : min
∑
i∈V

∑
j∈V,j 6=i

cTijyij +
∑
d∈D

∑
i∈V

cDi xdi (29)

s.t. MultipleCircuit(yij , i, j ∈ V ; i 6= 0 ∨ j 6= 0) (30)∑
d∈D

xdi + ¬yii = 1 i ∈ C (31)∑
j∈V \{0}

y0j ≤ |T | (32)

∑
j∈CD

tDj xdj ≤ τD d ∈ D (33)

β0 = 0 (34)

yij =⇒ βj = βi + wj i ∈ V ; j ∈ V \ {0} (35)

βi ≤ QT i ∈ V \ {0} (36)

γ0 = 0 (37)

yij =⇒ γj = γi + tTij i ∈ V ; j ∈ V \ {0} (38)

yi0 =⇒ γi + tTi0 ≤ τT i ∈ V \ {0} (39)

yij ∈ {0; 1} i, j ∈ V (40)

xdi ∈ {0; 1} d ∈ D, i ∈ CD (41)

βi, γi ≥ 0 i ∈ V (42)

The objective function (29) minimizes the total cost, given by sum of the costs
of each truck and drone, incurred to service all the customers. Constrains (30)
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assures that the y variables take values in such a way to form a set of valid
truck tours, and eventually self-loops for the variables associated to customers
visited by the drones. Constrains (31) imposes that if each customer i ∈ C must
be visited either by a truck (yii = 0) or by one of the drones in D. Constrain
(32) states that the number of truck tours (outgoing arcs from the depot 0) is
limited to |T |. Constrains (33) limits the total operating time of each drone d
to the maximum allowed value τD. Constraint (34) initializes to 0 the weight
counter at the depot. Constraints (35) increase the weight transported by each
truck. Inequalities (36) impose that the incremental weight βi at each customer
i ∈ V can never exceed the maximum capacity QT of each truck. Constraint
(37) initializes to 0 the time counter at the depot. Constraints (38) increase the
operational time of each truck (by setting the time each customer i is visited).
Inequalities (39) impose that the incremental time γi at each customer i ∈ V ,
plus the time required to the truck to go back to the depot, can never exceed
the maximum operating time τT of each truck. Finally, constrains (40), (41)
and (42) define the variables domain.

When comparing the number of variables and constraints of the new model
with those of MC-3IDX, an analysis similar to that discussed in Section 2.1.2
for the Min-Time variation of the problem can be sketched: the number of
variables is reduced from O(|T | · |V |2 + |D| · |V |) to O(·|V |2 + |D| · |V |), but
extra constraints, in the order of O(|V |2) are in this case required to model the
budget constraints for the trucks.

4. Computational experiments

The constraint programming models described in Sections 2 and 3 have been
implemented in Python 3.9 and solved via the CP-SAT solver of Google OR-
Tools 9.5.2237 [15]. The experiments have been run on a computer equipped
with 32 GB of RAM and an Intel Core i7 12700F CPU with 12 cores (8 with
a maximum frequency of 4.9 GHz and 4 with a maximum frequency of 3.6
GHz). Note that in the experiments reported in the remainder of this sec-
tion, a completely fair comparison among the different methods proposed is not
possible, due to the different experimental conditions (programming language
used, length and multiplicity of the runs, hardware and number of cores used).
However, and notwithstanding this premise, the potentialities of the different
approaches clearly emerge from the experiments.

The outcome of the experimental champaign we run is discussed in the re-
mainder of this section, and is organized according to the different problems
attacked. All the tables present the information of the instances and for each
method considered, the maximum computation time allowed is reported (in the
label of the columns), although the hardware is different for each method. For
each instance/method combination, the cost of the best heuristic solution re-
trieved, and eventually the lower bound found are reported. A dash means no
result was retrieved in the given time (or - for some of the methods we compare
with - the experiment was not attempted). Every time one of the new models
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we propose improve a best-known bound, the relative entry is in bold. Analo-
gously, every time one of the new models we propose does not match or improve
a best-known bound, the relative entry is in italic. Finally, proven optimal so-
lutions retrieved by any of the methods considered, are marked with an asterisk
in the tables. All the new best-known solutions retrieved in the present work
are available upon request to the corresponding author.

4.1. MT-PDSVRP

The results are subdivided based on the source of the instances in the fol-
lowing subsections.

4.1.1. Instances from Mbiadou Saleu et al. [7]

A first set of benchmarks for the MT-PDSVRP was created in [7] starting
from classic instances for the Capacitated Vehicle Routing Problem. A total of
20 instances with a number of customers ranging between 50 and 199 has been
obtained. Note that for each instance considered here and in the remainder of
the paper, the number of nodes of each instance can be inferred by its name
(or it is written explicitly if this is not the case. We refer the interested reader
to [7] for full details about the elements of the new instances and the complete
sources for the instances. The outcome of the experiments is summarized in
Table 1, where the results are those obtained by a branch and cut (BC) approach
running on a MILP model and those of the best of nine variations of a hybrid
metaheuristc approach (HM). Both the methods are discussed in [7]. The BC
solver was run on a computer with an Intel Xeon CPU E5-2670 CPU with 2x8
cores running at 2.6 GHz and 62.5 GB of RAM, with a maximum computation
time of 10800 seconds, while the HM variations was run on a computer with
an Intel core i5-6200U CPU running at 2.4 GHz and 8 GB of RAM, with a
maximum computation time of 1000 seconds for each variation. The solver was
run on the models discussed in Section 2.1 for a maximum of 10800 seconds.

The results presented in Table 1 indicate that the new CP-based approaches
are competitive with state-of-the-art methods. In particular, new improved
lower bounds were provided for all the instances considered, and 2 new best-
known heuristic solutions were also retrieved. The comparison between the new
CP models indicate that the model MT-3IDX discussed in Section 2.1.1, and
characterized by the set of variables z with 3 indices, performs better. In par-
ticular, it provides substantially tighter lower bounds. The given instances are
not too large, so the advantage of MT-3IDX can be motivated by the intrinsical
simplicity of the model, that does not require extra-variables and constraints to
measure the length of each truck tour. However, MT-3IDX was not capable of
handling the last instance, which by its nature allows a large number of possible
drone missions, and consequently a large number of z variables. In this case, the
model MT-2IDX, with its smaller memory footprint, is the only viable option to
have a good lower bound. It is interesting also to observe that the quality of the
heuristic solutions produced by the CP methods is constantly high, although
not always matching the state-of-the-art provided by the best of nine purely
heuristic methods, the results of which are those summarized in column HM.
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Table 1: MT-PDSVRP - Instances originated from CVRPLIB in Mbiadou Saleu et al. [7].

Instances Mbiadou Saleu et al. [7] MT-3IDX MT-2IDX
BC (10800 sec) HM (9x1000 sec) (10800 sec) (10800 sec)

Name |T | |D| LB UB UB LB UB LB UB
CMT1 (51 nodes) 3 2 145.87 188.00 166.00 158.27 168.00 103.25 174.00
CMT2 (76 nodes) 5 5 101.66 3630.86 130.23 108.00 158.00 65.33 144.00
CMT3 (101 nodes) 4 4 161.07 4537.11 184.00 165.98 222.00 98.07 210.00
CMT4 (151 nodes) 6 6 - - 160.38 125.39 288.00 72.73 180.00
CMT5 (200 nodes) 9 8 - - 138.00 82.84 312.00 55.67 158.00
E-n51-k5 3 2 145.87 188.00 168.00 159.34 166.00 103.22 174.00
E-n76-k8 4 4 127.05 2975.51 154.00 132.49 180.00 81.13 164.00
E-n101-k8 4 4 161.07 4537.11 184.00 165.64 244.00 98.03 224.00
M-n151-k12 6 6 - - 154.00 126.57 270.00 72.78 188.00
M-n200-k16 8 8 - - 144.00 95.21 302.00 59.19 166.00
P-n51-k10 5 5 81.35 230.00 111.07 90.13 118.00 52.60 124.00
P-n55-k7 4 3 101.49 308.00 126.00 111.00 136.00 70.40 130.00
P-n60-k10 5 5 84.30 246.00 114.00 95.00 124.00 54.89 120.00
P-n65-k10 5 5 94.66 580.00 126.00 105.41 144.00 61.46 138.00
P-n70-k10 5 5 99.42 3166.25 128.00 108.00 164.00 64.34 150.00
P-n76-k5 3 2 181.36 280.00 200.00 189.91 206.00 129.06 214.00
P-n101-k4 2 2 321.80 4725.47 342.00 329.90 340.00 198.00 362.00
X-n110-k13 7 6 - - 1864.00 1365.68 2702.00 766.70 2048.00
X-n115-k10 5 5 - - 2258.00 1850.38 2920.00 1031.21 2488.00
X-n139-k10 5 5 - - 2492.00 - - 1118.67 2744.00

4.1.2. Instances from Raj et al. [16]

A second set of instances for the MT-PDSTSP was originated from TSPLIB
[17] in [16], by defining the missing elements according to what done previously
in [6] for the PDSTSP. Only the instances with more than one truck are reported
here, since those with one truck boil down the problem to a PDSTSP, and all the
optimal solutions can be found in [8]. The number of customers range between
48 and 229. Full details about the instances can be found in [16]. Three methods
are considered for comparison purposes, all discussed in [16]: an arc-based MILP
model; a branch and price (BP) method based on a set covering MILP model,
and a math-heuristic method (MH) based on the same latter model. All the
experiments for these methods were run on a computer equipped with an Intel
i7-6700 CPU (with 8 cores running at 4 GHz) and 16 GB of RAM, with 3600
seconds for MILP and MH, and 2400 seconds for BC. The CP-based solvers
we propose were run for a maximum time of 3600 seconds. The results are
summarized in Tables 2 and 3.

The results of Table 2 indicates that the CP model MT-3IDX is very suit-
able for these instances, being able to provide all the state-of-the-art lower
bounds and all the best-known heuristic solutions except one, with substantial
improvements over previously known best results. It is remarkable also that
five instances were closed here for the first time. The performance of the model
MT-2IDX appears less brilliant, in particular on the larger instances considered,
on which no solution or meaningful bound was produced in the given time. An
explanation for this unwanted situation can be found in the use of the com-
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Table 2: MT-PDSVRP - Instances with 2 trucks originated from TSPLIB in Raj et al. [16].

Instances Raj et al. [16] MT-3IDX MT-2IDX
MILP (3600 s) BP (2400 s) MH (3600 s) (3600 s) (3600 s)

Name |T | |D| UB UB UB LB UB LB UB

att48 0 80 2 2 18206.00 17032.00 17056.00 16940.18 16940.18* 9785.69 17288.00

att48 0 80 2 4 16730.00 16500.00 16500.00 16500.00 16500.00* 6562.48 16564.00

att48 0 80 2 6 16500.00 16500.00 16500.00 16500.00 16500.00* 4980.66 16500.00

berlin52 0 80 2 2 3328.20 3415.00 3415.00 3285.00 3285.00* 2240.63 3480.00

berlin52 0 80 2 4 2995.00* 2995.00 2995.00 2995.00 2995.00* 1498.57 2995.00

berlin52 0 80 2 6 2995.00* 2995.00 2995.00 2995.00 2995.00* 1141.20 2995.00

eil101 0 80 2 2 392.00 316.00 305.40 293.00 293.00* 197.44 331.00
eil101 0 80 2 4 408.00 266.80 253.70 232.84 248.00 131.60 283.00
eil101 0 80 2 6 320.00 219.00 215.30 198.00 212.00 99.15 272.00
gr120 0 80 2 2 1145.00 806.30 764.00 703.50 735.00 478.18 866.00
gr120 0 80 2 4 1092.00 676.00 646.00 590.54 676.00 318.78 777.00
gr120 0 80 2 6 1082.00 769.00 581.20 518.00 549.00 239.10 688.00
pr152 0 80 2 2 122961.00 55477.00 48967.00 38873.80 41371.00 18792.17 46897.00
pr152 0 80 2 4 - 54980.00 52353.00 33593.10 41295.58 12533.75 44059.00
pr152 0 80 2 6 - 50855.40 50854.40 31020.74 37413.00 9503.63 43573.00
gr229 0 80 2 2 - 1403.70 1403.70 881.91 1064.97 0.00 -
gr229 0 80 2 4 - 1346.20 1346.20 818.33 1064.97 0.00 -
gr229 0 80 2 6 - 1327.60 1327.60 776.98 1056.10 0.00 -
* Optimality proven.

mand “MultipleCircuit”: it is designed to effectively handle instances up to 150
customers maximum and not too many trucks, while the largest instances have
here up to 229 customers and up to 9 trucks.

The results of Table 3 confirm the previous impressions. Only, in this case the
CP model MT-3IDX otperforms the other methods less clearly. This indicates a
degradation in the performance when the number of trucks considered increases.
This is due to the coordination required by the x variables corresponding to
different tours (this function is completely embedded in the “MultipleCircuit”
command at the basis of model MT-2IDX). On a few instances MT-3IDX found
sub-optimal heuristic solutions, although it remarkably provided an optimality
proof for the first instance. The model MT-2IDX was able to produce for these
instances two new state-of-the-art heuristic solutions, indicating that this latter
method might be indicated for problems with more trucks available, especially
if the number of customers is not too large, and anyway within certain limits.
If the number of trucks becomes too large, issues are however incurred by the
model MT-2IDX (see Table 1).

4.2. MC-PDSVRP

The instances considered in this section are those originally proposed in
Nguyen et al. [11]. They are based on several statistical data shared by logistics
service providers and common practices, so although being generated as random,
they can be considered as realistic. The numbers of customers considered are
30, 50, 100, 200 and 400 (the first element of the name of each instance reflects
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Table 3: MT-PDSVRP - Instances with 3 trucks originated from TSPLIB in Raj et al. [16].

Instances Raj et al. [16] MT-3IDX MT-2IDX
MILP (3600 s) BP (2400 s) MH (3600 s) (3600 s) (3600 s)

Name |T | |D| UB UB UB LB UB LB UB

att48 0 80 3 2 19824.00 15218.00 14062.00 13452.00 13452.00* 7811.15 14652.00
att48 0 80 3 4 17194.00 13394.00 14652.00 10605.21 13394.00 5690.68 13394.00
att48 0 80 3 6 16226.00 13756.00 13394.00 10369.78 13394.00 4441.85 13394.00
berlin52 0 80 3 2 3205.00 3403.10 2995.00 2471.35 2935.00 1777.81 2995.00
berlin52 0 80 3 4 2665.00 2635.00 2625.00 2013.82 2625.00 1285.27 2925.00
berlin52 0 80 3 6 2625.00 2625.00 2625.00 2132.20 2625.00 1015.52 2925.00
eil101 0 80 3 2 - 260.00 235.00 209.00 252.00 157.04 278.00
eil101 0 80 3 4 - 221.00 200.10 177.00 198.00 112.23 227.00
eil101 0 80 3 6 - 228.00 181.00 155.20 218.00 87.91 204.00
gr120 0 80 3 2 - 611.00 597.00 509.50 688.00 381.29 734.00
gr120 0 80 3 4 - 536.00 528.00 444.00 688.00 272.58 601.00
gr120 0 80 3 6 - 590.90 527.20 397.50 526.00 212.84 547.00
pr152 0 80 3 2 - 48135.00 48135.00 25154.41 38395.00 15033.25 36443.00
pr152 0 80 3 4 - 43024.00 43024.00 21913.95 36940.00 10799.23 37183.00
pr152 0 80 3 6 - 46403.00 46403.00 20584.69 36940.00 8526.30 36281.00
gr229 0 80 3 2 - 1145.40 1145.40 579.62 981.59 0.00 -
gr229 0 80 3 4 - 1132.30 1132.30 561.47 969.92 0.00 -
gr229 0 80 3 6 - 1130.00 1130.00 517.37 1004.89 0.00 -
* Optimality proven.

this information). We refer the reader to [11] for the full details of the instances
(loading capacities, speeds, battery endurance for the drones, etc).

The results of our experiments are summarized in Tables 4, 5, 6, 7 and 8,
divided according the size of the instances. On top of the CP models discussed in
Section 3.1, that are run for a maximum of 1800 seconds, the methods considered
in the comparison are those presented in [11], namely a MILP model and Ruin
and Recreate heuristic algorithm (RR). The experiments for the latter methods
were run on a computer equipped with an AMD Ryzen 3700X CPU running at
4.0 GHz and 16 GB of RAM, with a time limit of 3600 seconds. Note that the
RR method was run 30 times, and the best result is reported here.

The results reported in Tables 4 and 5 suggest that the MILP model is the
most viable method to solve the small problems with 30 and 50 customers: sev-
eral instances are solved to optimality within the given time. However, on some
of the instances with 50 customers, MILP is not able to provide any solution.
The RR heuristic also obtains remarkably good results, always matching or im-
proving the best known figures. We believe that taking the best of 30 runs
was an important factor in these results, because this allows a good random
exploration of the search space. The CP models performed reasonably well on
these instances in terms of heuristic solution found, and were able to provide
the first non-trivial lower bounds (no lower bound was provided in previous
publications). It is worth noticing that the model MC-2IDX seems to perform
better than MC-3IDX on these small Minimum Cost instances, especially on
the instances with 50 customers. This observation is discordant with respect

13



Table 4: MC-PDSVRP - Instances with 30 customers from Nguyen et al. [11].

Instances Nguyen et al. [11] MC-3IDX MC-2IDX
MILP (3600 sec) RR (30x3600 sec) (1800 sec) (1800 sec)

Name |T | |D| UB UB LB UB LB UB

30-r-0-c 10 4 128.67* 128.67 101.69 128.67 103.11 128.67
30-r-0-e 10 4 300.85 300.85 104.85 300.85 150.61 300.85
30-r-0-r 10 4 199.76 199.76 110.71 199.76 125.00 199.76

30-r-1-c 10 4 58.30* 58.30 58.30 58.30* 58.30 58.30*

30-r-1-e 10 4 243.11 243.11 117.48 243.11 148.43 243.11
30-r-1-r 10 4 164.75 164.75 106.82 164.75 116.50 164.75

30-r-2-c 10 4 91.57* 91.57 69.04 91.57 80.43 91.57
30-r-2-e 10 4 235.25 235.25 111.62 235.25 151.10 235.25
30-r-2-r 10 4 211.26 211.26 101.11 211.26 135.88 211.26

30-c-0-c 10 4 82.15* 82.15 60.08 82.15 82.15 82.15*

30-c-0-e 10 4 150.44* 150.44 103.78 150.44 110.23 150.44

30-c-0-r 10 4 112.72* 112.72 83.08 112.72 91.44 112.72

30-c-1-c 10 4 39.98* 39.98 39.98 39.98* 39.98 39.98*

30-c-1-e 10 4 172.49 172.49 97.03 172.49 83.94 172.49

30-c-1-r 10 4 61.28* 61.28 61.28 61.28* 61.28 61.28*

30-c-2-c 10 4 77.00* 77.00 77.00 77.00* 77.00 77.00*

30-c-2-e 10 4 166.82 166.82 98.49 166.82 95.89 166.82

30-c-2-r 10 4 88.81* 88.81 59.65 88.81 80.22 88.81

30-rc-0-c 10 4 81.06* 81.06 81.06 81.06* 74.47 81.06
30-rc-0-e 10 4 181.89 181.89 111.08 181.89 115.78 181.89
30-rc-0-r 10 4 146.73 146.73 88.40 146.73 98.85 146.73

30-rc-1-c 10 4 56.48* 56.48 56.48 56.48* 56.48 56.48*

30-rc-1-e 10 4 176.57 176.57 115.70 176.57 118.09 176.57

30-rc-1-r 10 4 97.91* 97.91 97.91 97.91* 71.96 97.91

30-rc-2-c 10 4 77.00* 77.00 63.74 77.00 77.00 77.00*

30-rc-2-e 10 4 187.18 187.18 71.50 187.18 104.96 187.18

30-rc-2-r 10 4 94.21* 94.21 77.67 94.21 86.67 94.21
* Optimality proven.

to what was observed in Section 4.1 for the Minimum Time instances, but an
explanation can be given. For the Minimum Cost problem, both the models
require variables and constraints to handle capacity and load balancing con-
straints. This makes the MC-3IDX model less attractive, since the simplicity
that characterized it for the Minimum Time problem (see Section 2) is partially
compromised here. For this reason, the command “MultipleCircuit” becomes
attractive on these small/medium instances, and the results show that the choice
pays off.

The results summarized in Tables 6, 7 and 8 do not include the results of
the MILP model, since these larger instances with 100, 200 and 400 customers
were out of reach for it. The RR heuristic produces good-quality solutions, as
we were able to certify here with the first lower bounds ever produced on these
instances. On the other hand, the relatively small gaps between upper and lower
bounds on some of the instances, also suggest that the quality provided by the
CP models are good. In details, MC-2IDX scaled up well, while MC-3IDX
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Table 5: MC-PDSVRP - Instances with 50 customers from Nguyen et al. [11].

Instances Nguyen et al. [11] MC-3IDX MC-2IDX
MILP (3600 sec) RR (30x3600 sec) (1800 sec) (1800 sec)

Name |T | |D| UB UB LB UB LB UB

50-r-0-c 10 4 161.13* 161.13 110.62 161.13 131.27 161.56
50-r-0-e 10 4 - 310.50 129.68 310.50 151.57 310.50
50-r-0-r 10 4 - 246.53 110.02 246.53 137.85 246.53
50-r-1-c 10 4 177.21 177.21 103.69 177.21 135.27 177.21
50-r-1-e 10 4 216.97 216.97 129.97 216.97 153.12 216.97
50-r-1-r 10 4 - 228.11 116.45 228.11 148.57 228.11
50-r-2-c 10 4 182.09 181.49 108.59 182.62 145.83 182.62
50-r-2-e 10 4 - 375.05 127.88 375.05 153.27 375.05
50-r-2-r 10 4 - 313.32 109.95 313.32 162.11 313.32
50-c-0-c 10 4 89.04 89.04 47.73 89.04 78.64 89.04
50-c-0-e 10 4 183.26 182.91 78.01 182.91 105.82 182.91
50-c-0-r 10 4 112.17 112.17 85.09 112.17 89.09 112.17

50-c-1-c 10 4 81.76* 81.76 39.38 81.76 75.97 81.76
50-c-1-e 10 4 133.57 133.57 81.44 133.57 92.35 133.57
50-c-1-r 10 4 149.24 148.86 56.78 149.06 83.95 149.06

50-c-2-c 10 4 77.16* 77.16 54.26 77.16 75.31 77.16
50-c-2-e 10 4 214.25 214.25 74.24 214.66 112.86 214.66
50-c-2-r 10 4 136.60 136.51 67.30 136.51 90.66 136.51

50-rc-0-c 10 4 116.80* 116.80 70.01 116.80 107.92 116.80
50-rc-0-e 10 4 - 242.02 74.24 242.02 124.28 242.02
50-rc-0-r 10 4 217.87 217.87 95.88 217.87 109.28 217.87

50-rc-1-c 10 4 110.44* 110.44 82.98 110.44 104.16 110.44
50-rc-1-e 10 4 201.62 201.62 112.97 201.62 124.27 201.62
50-rc-1-r 10 4 173.16 173.16 90.57 173.61 116.16 173.61
50-rc-2-c 10 4 129.82 129.65 64.33 129.82 104.74 129.65
50-rc-2-e 10 4 - 383.49 109.51 383.49 129.50 383.49
50-rc-2-r 10 4 197.20 186.31 108.11 196.97 108.82 186.31
* Optimality proven.

15



Table 6: MC-PDSVRP - Instances with 100 customers from Nguyen et al. [11].

Instances Nguyen et al. [11] MC-3IDX MC-2IDX
MILP (3600 sec) RR (30x3600 sec) (1800 sec) (1800 sec)

Name |T | |D| UB UB LB UB LB UB
100-r-0-c 10 5 - 272.77 143.76 - 222.27 277.90
100-r-0-e 10 5 - 506.07 206.21 - 250.30 -
100-r-0-r 10 5 - 325.29 140.62 - 226.44 -
100-r-1-c 10 5 - 302.46 167.13 - 240.03 -
100-r-1-e 10 5 - 470.06 198.41 - 251.18 -
100-r-1-r 10 5 - 350.97 179.63 - 230.43 -
100-r-2-c 10 5 - 284.77 169.39 288.00 232.12 -
100-r-2-e 10 5 - 435.91 208.16 - 265.24 -
100-r-2-r 10 5 - 320.98 162.92 361.47 226.69 -
100-c-0-c 10 5 - 218.59 92.16 221.59 170.73 -
100-c-0-e 10 5 - 315.84 93.02 - 175.48 -
100-c-0-r 10 5 - 252.39 81.02 276.95 161.81 -
100-c-1-c 10 5 - 154.61 87.41 179.75 112.94 -
100-c-1-e 10 5 - 222.15 103.33 236.44 119.22 -
100-c-1-r 10 5 - 110.95 64.71 110.95 98.77 110.95
100-c-2-c 10 5 - 108.35 73.34 108.35 95.81 -
100-c-2-e 10 5 - 118.71 70.71 132.28 103.69 -
100-c-2-r 10 5 - 86.28 49.08 102.47 86.00 88.01
100-rc-0-c 10 5 - 252.37 128.09 254.03 199.69 -
100-rc-0-e 10 5 - 472.95 168.08 - 233.41 -
100-rc-0-r 10 5 - 337.61 157.65 339.09 205.28 -
100-rc-1-c 10 5 - 276.78 152.69 305.51 209.72 -
100-rc-1-e 10 5 - 432.44 190.81 490.66 246.80 -
100-rc-1-r 10 5 - 423.33 163.48 426.76 220.13 -
100-rc-2-c 10 5 - 260.45 125.31 286.73 198.66 -
100-rc-2-e 10 5 - 358.24 174.37 406.12 228.51 -
100-rc-2-r 10 5 - 331.97 138.87 345.25 207.27 -

was not able to produce significant bounds, due to the very large number of z
variables necessary to model these instances with 10 trucks and many customers.
Unfortunately, the good performance of the model MC-2IDX in terms of lower
bounds did not get reflected on the quality of the heuristic solutions: very often
the method was not capable of producing any feasible solution at all in the
given computation time. We believe this is due to the troubles encountered
by the “MultipleCircuit” command to handle instances approaching (and going
beyond) the limits in terms of number of customers and trucks for which it has
been designed.

5. Conclusions

In this paper we have discussed some different Constraint Programming
models to describe two versions of the Parallel Drone Scheduling Vehicle Routing
Problem that were recently proposed in the literature.

Experimental results suggest that solving these models can lead to improved
state-of-the-art results. In particular, the new models appear to be the new
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Table 7: MC-PDSVRP - Instances with 200 customers from Nguyen et al. [11].

Instances Nguyen et al. [11] MC-3IDX MC-2IDX
MILP (3600 sec) RR (30x3600 sec) (1800 sec) (1800 sec)

Name |T | |D| UB UB LB UB LB UB
200-r-0-c 10 5 - 430.42 134.99 - 353.51 -
200-r-0-e 10 5 - 728.00 0.00 - 368.88 -
200-r-0-r 10 5 - 528.29 102.71 - 355.73 -
200-r-1-c 10 5 - 434.66 228.69 - 348.04 -
200-r-1-e 10 5 - 601.06 0.13 - 369.88 -
200-r-1-r 10 5 - 481.83 128.30 - 349.86 -
200-r-2-c 10 5 - 446.15 0.00 - 357.04 -
200-r-2-e 10 5 - 606.05 0.00 - 374.19 -
200-r-2-r 10 5 - 497.72 0.00 - 350.49 -
200-c-0-c 10 5 - 234.40 0.00 - 184.05 -
200-c-0-e 10 5 - 442.74 0.00 - 189.35 -
200-c-0-r 10 5 - 270.76 0.00 - 173.94 -
200-c-1-c 10 5 - 225.55 78.21 - 186.77 -
200-c-1-e 10 5 - 461.57 0.00 - 211.23 -
200-c-1-r 10 5 - 239.91 0.00 - 198.22 -
200-c-2-c 10 5 - 263.26 0.00 - 193.47 -
200-c-2-e 10 5 - 486.05 0.00 - 212.55 -
200-c-2-r 10 5 - 322.61 0.00 - 189.90 -
200-rc-0-c 10 5 - 354.23 0.00 - 280.87 -
200-rc-0-e 10 5 - 575.94 0.00 - 297.83 -
200-rc-0-r 10 5 - 484.66 0.00 - 293.68 -
200-rc-1-c 10 5 - 370.01 0.00 - 280.68 -
200-rc-1-e 10 5 - 591.58 0.00 - 296.25 -
200-rc-1-r 10 5 - 411.34 0.00 - 267.01 -
200-rc-2-c 10 5 - 372.30 0.00 - 299.35 -
200-rc-2-e 10 5 - 534.45 0.00 - 330.13 -
200-rc-2-r 10 5 - 432.17 0.00 - 299.16 -

reference for producing high quality lower bounds on the optimal solution costs,
but they are also able to produce several new best-known heuristic solutions,
and even to close for the first time several of the instances considered. Some
scalability issues however emerge on the larger instances, for which the tools
provided by the solver to represent truck tours likely reach the limits for which
they have been designed. Future work should try to overcome this phenomenon,
and to make the models we propose more robust.

In our opinion the flourishing literature on specialization of Parallel Drone
Scheduling Vehicle Routing Problems, aiming at introducing more and more
realistic aspects could be greatly benefit from our contributions, given the high
flexibility provided by Constraint Programming, and the likely assumption that
the results we have obtained here could be replicated. This is material for future
work.
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Table 8: MC-PDSVRP - Instances with 400 customers from Nguyen et al. [11].

Instances Nguyen et al. [11] MC-3IDX MC-2IDX
MILP (3600 sec) RR (30x3600 sec) (1800 sec) (1800 sec)

Name |T | |D| UB UB LB UB LB UB
400-r-0-c 10 5 - 604.94 0.00 - 500.91 -
400-r-0-e 10 5 - 801.45 0.00 - 518.74 -
400-r-0-r 10 5 - 626.46 0.00 - 518.62 -
400-r-1-c 10 5 - 578.77 0.00 - 487.76 -
400-r-1-e 10 5 - 772.30 0.00 - 445.80 -
400-r-1-r 10 5 - 584.07 0.00 - 477.13 -
400-r-2-c 10 5 - 587.88 0.00 - 483.98 -
400-r-2-e 10 5 - 771.16 0.00 - 510.02 -
400-r-2-r 10 5 - 692.91 0.00 - 454.20 -
400-c-0-c 10 5 - 271.82 0.00 - 207.27 -
400-c-0-e 10 5 - 378.98 0.00 - 253.55 -
400-c-0-r 10 5 - 403.85 0.00 - 248.69 -
400-c-1-c 10 5 - 187.20 0.00 - 136.34 -
400-c-1-e 10 5 - 249.01 0.00 - 142.46 -
400-c-1-r 10 5 - 219.23 0.00 - 146.12 -
400-c-2-c 10 5 - 152.79 0.00 - 141.57 -
400-c-2-e 10 5 - 245.54 0.00 - 145.22 -
400-c-2-r 10 5 - 231.89 0.00 - 154.86 -
400-rc-0-c 10 5 - 497.90 0.00 - 420.36 -
400-rc-0-e 10 5 - 700.96 0.00 - 456.69 -
400-rc-0-r 10 5 - 604.38 0.00 - 437.29 -
400-rc-1-c 10 5 - 518.40 0.00 - 395.26 -
400-rc-1-e 10 5 - 784.02 0.00 - 424.46 -
400-rc-1-r 10 5 - 531.44 0.00 - 396.43 -
400-rc-2-c 10 5 - 510.64 0.00 - 424.09 -
400-rc-2-e 10 5 - 723.63 0.00 - 449.39 -
400-rc-2-r 10 5 - 625.31 0.00 - 448.43 -
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and-cut algorithm for the parallel drone scheduling traveling salesman prob-
lem. 4OR, 2022.

[13] A. Otto, N. Agatz, J. Campbell, B. Golden, and E. Pesch. Optimization
approaches for civil applications of unmanned aerial vehicles (uavs) or aerial
drones: A survey. Networks, 72(4):411–458, 2018.

19



[14] J. Pasha, Z. Elmi, S. Purkayastha, A. M. Fathollahi-Fard, Y.-E. Ge, Y.-Y.
Lau, and M. A. Dulebenets. The drone scheduling problem: A systematic
state-of-the-art review. IEEE Transactions on Intelligent Transportation
Systems, 23(9):14224–14247, 2022.

[15] L. Perron and V. Furnon. Google OR-Tools, 2023.
https://developers.google.com/optimization/ [Accessed: 2023-03-03].

[16] R. Raj, D. Lee, S. Lee, J. Walteros, and C. Murray. A Branch-and-
Price Approach for the Parallel Drone Scheduling Vehicle Routing Problem.
SSRN Electronic Journal, 2021.

[17] G. Reinelt. TSPLIB – A Traveling Salesman Problem Library. ORSA
Journal on Computing, 3(4):376–384, 1991.

[18] Statista. E-commerce. https://www.statista.com/markets/413/

e-commerce/, 2022. [Accessed: 2023-02-05].

[19] R. Wolleswinkel, V. Lukic, W. Jap, R. Chan, J. Govers, and S. Banerjee.
An onslaught of new rivals in parcel and express, volume Travel, Transport
and Logistics. Boston Consulting Group, 2018.

20



Constraint Programming models for the parallel drone scheduling vehicle routing problem 
R Montemanni, M. Dell’Amico 
 
Declaration of interests 
 
☒ The authors declare that they have no known competing financial interests or personal relationships 
that could have appeared to influence the work reported in this paper. 
 
☐The authors declare the following financial interests/personal relationships which may be considered 
as potential competing interests:  
 

 
 
 
 

 


