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This paper proposes a damage detection procedure based on neural networks that is
able to account for the model error in the network training. Vibration-based damage
detection procedures relied onmachine learning techniques hold great promises for
the identification of structural damage thanks to their efficiency even in presence of
noise-corrupted data. However, it is rarely possible in the context of civil engineering
to have large amount of data related to the damaged condition of a structure to train
a neural network. Numerical models are then necessary to simulate damaged
scenarios. However, even if a finite element model is accurately calibrated,
experimental results and model predictions will never exactly match and their
difference represents the model error. Being the neural network tested and
trained with respect to the data generated from the numerical model, the model
error can significantly compromise the effectiveness of the damage detection
procedure. The paper presents a procedure aimed at mitigating the effect of
model errors when using models associated to the neural network. The proposed
procedure is applied to two case studies, namely a numerical case represented by a
steel railway bridge and a real structure. The real case study is a steel braced frame
widely adopted as a benchmark structure for structural health monitoring purposes.
Although in the first case the procedure is carried out considering simulated data, we
have taken into account some key aspects to make results representative of real
applications, namely the stochastic modelling of measurement errors and the use of
two different numerical models to account for the model error. Different networks
are investigated that stand out for the preprocessing of the dynamic features given as
input. Results show the importance of accounting for themodel error in the network
calibration to efficiently identify damage.

KEYWORDS

damage detection, data-driven methods, artificial neural networks, principal component
analysis, model error

1 Introduction

The knowledge of the actual structural health condition of the built heritage is a key aspect
for its preservation andmaintenance. Several factors, such as ageing, seismic events, exposure to
adverse environmental conditions and so on, can cause damage to a structure. The lack of
knowledge or the underestimation of the structural damage may lead to a progressive or an
abrupt decline of the structural health that may prevent its serviceability or cause collapses. The
monitoring of the structural health over time enables to recognize critical situations and carry
out effective countermeasures to prevent collapses. The structural health monitoring (SHM) is
that branch of research aimed at developing different solutions, in terms of sensor equipment
(Savoia et al., 2014; Castagnetti et al., 2019) and procedures, to detect changes and abnormalities
in the structural response to different sources of excitation (Bassoli et al., 2015; 2018a; Vincenzi
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et al., 2019). Typical SHM systems are designed to investigate the
dynamic behaviour of a structure (Bassoli et al., 2018b), being it
directly related to the global structural integrity. The dynamic
properties of a structure, indeed, depend on its stiffness, that
typically reduces when damage occurs. Despite the possibility of
artificially excite a structure, most common and less invasive
monitoring approaches rely on the measurement of the vibration
response to unknown environmental source of excitation and the
subsequent identification of the structural dynamic features (Brincker
et al., 2001; Rainieri and Fabbrocino, 2010). Modal properties are often
assumed as representative features of the structural health state, since
they can provide information about both the global (e.g. natural
frequencies) and the local (e.g. mode shapes or modal curvatures)
structural behaviour (Doebling et al., 1996; Sohn et al., 2002;
Comanducci et al., 2016).

Damage detection methods are commonly divided in two main
groups: model-based and data-driven methods. The first group
directly adopts numerical models to describe the structure and
identify, localize and quantify damage (Hosamo et al., 2022). The
stiffness reduction of an element or a group of elements, representing
the damage severity, can be detected by repeating the model
calibration for different measurement epochs (Friswell, 2008; Alves
et al., 2020; Rosati et al., 2022). Model updating allows to reduce as
much as possible the discrepancy between the experimental
observations and the same quantities predicted by the numerical
model by adjusting suitable model parameters (Ponsi et al., 2021;
2022). This discrepancy is expressed by means of specific functions
that, in the case of modal properties, are related to frequency andmode
shape residuals. The efficiency and accuracy of the damage detection
procedure strongly depend on several aspects, such as the quality and
the quantity of available experimental observations, the model
parametrization, the definition of the optimization problem and the
algorithm employed for its resolution (Mthembu et al., 2011;
Reynders, 2012; Bianconi et al., 2020; Standoli et al., 2021). The
quantification of the uncertainty affecting the updated parameters
can be performed with a Bayesian approach (Monchetti et al., 2022),
thus allowing the detection to be performed in stochastic terms
(Bartoli et al., 2019).

Model based damage detection methods are usually time-
consuming and do not enable the real-time identification of a
damaged condition. On the contrary, data-driven methods are
based on the extraction of damage-sensitive features directly from
the measured response, without needing to develop and calibrate a
structural model. As a consequence, the computational effort required
by these methods is strongly reduced and a real-time identification of
the structure condition can be carried out. In this context, the choice of
the damage-sensitive features plays a fundamental role.

Early data-driven methods adopted natural frequencies and mode
shapes as damage-sensitive features (Doebling et al., 1996). However,
the low sensitivity to local damage and the high sensitivity to
environmental conditions of natural frequencies and the
uncertainty in the identification of mode shapes make the use of
these parameters not particularly suited for damage identification
purposes. Trying to overcome these limitations, other damage-
sensitive features related to modal properties have been proposed
in literature, such as the mode shape curvature (Pandey et al., 1991),
the modal strain energy and the modal flexibility (Pandey and Biswas,
1994). However, being these indices related to mode shapes, their
computation magnifies the effect of noise and errors and they require a

dense sensor network. In contrast to modal data, damage detection
methods based on frequency response functions (FRF) (Limongelli,
2010), operational deflection shapes (ODF) and transmissibility
(Ribeiro et al., 2000) have been proposed. The main drawbacks
related to FRF application involve the choice of the optimum
frequency range and the need to measure excitation force and
structural response simultaneously.

Studies and results presented in literature highlight the necessity to
develop statistical models for feature discrimination, since the effect of
noise or other external factors on the selected features may lead to false
alarms or mask damage effects (Sohn et al., 2002). Machine learning
(ML) techniques represent an effective solution to this problem since
they are capable of working with uncertain and noise-corrupted data
(Khan and Yairi, 2018; Klepac and Subgranon, 2022). The application
of these techniques to the field of damage detection is quite recent, but
a vast amount of works have been produced. The widespread adoption
of ML techniques is due to the great computational development in
recent years that enables collecting, handling and elaborating a huge
amount of data. In this context, damage detection procedure is
addressed as a pattern recognition problem, whose main phases are
data acquisition, feature extraction and classification. The last task is
usually accomplished by ML classifiers, among which artificial neural
networks (ANN) are the most diffused (Luleci et al., 2022). Review
works that aim at the classification of ML-based damage detection
techniques are those of Avci et al. (2021) and Hou and Xia (2021). ML
damage detection methods can be distinguished depending on the
employed feature extraction technique (Avci et al., 2021). Parametric
methods use structural dynamic parameters to determine the
presence, location and severity of damage. These parameters are
physical parameters like modal frequencies, masses, dampings and
mode shapes. In this case, modal identification techniques are
employed for feature extraction. Some examples of the parametric
ML methods for damage detection that can be found in literature are
Lam and Ng (2008), Bakhary et al. (2010) and Betti et al. (2015). On
the other hand, non-parametric methods detect damage directly from
the acquired accelerations by means of statistical tools. Time series
modelling and signal processing techniques are employed to extract
damage sensitive features that are then provided to a classifier
(Figueiredo et al., 2010; Osama and Onur, 2016). Numerical
models are not directly involved in the identification of a damaged
state with data-driven methods, but they may be employed to create
data related to damaged scenarios that cannot be reproduced in a real
situation. Several methods, indeed, have been developed starting from
information generated by models, like the integrated use of spatial
Fourier analysis and artificial neural networks of Pawar et al. (2006) or
the two-phase detection method of Yuen and Lam (2006).

This paper proposes a complete procedure for damage detection
that exploits ML techniques, in particular artificial neural networks. In
the context of civil engineering applications, it is possible to measure a
large amount of data related to the undamaged condition of a
structure, while it is basically impossible to measure the structural
response in damaged conditions. This means that experimental data
relative to different damage scenarios required to train and test the
neural network cannot be available. This is the reason why FE models
are widely employed to generate data relative to different damage
scenarios. To this purpose, a FE model of the structure should be built
and calibrated with reference to the experimental measurements
acquired from the monitoring system installed on the structure.
However, even if the FE model is accurately calibrated,
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experimental results and model predictions will never exactly match
and their difference represents the model error. Being the neural
network tested and trained with respect to the data generated from the
numerical model, the model error can significantly compromise the
effectiveness of the damage detection procedure. Taking into account
and mitigating the effect of the model error is the key aspect of the
proposed procedure. To show the effectiveness of the presented
procedure and its suitability to different applications, both a
numerical and a real case study are presented. The numerical case
study is a railway bridge for which real experimental data are replaced
by pseudo-experimental data generated by a numerical model. The
real case study is the widely adopted ASCE benchmark structure
described in Dyke et al. (2001, 2003), namely a steel braced frame.
Although in the first case the proposed procedure is presented with
simulated data only, we have accounted for critical aspects to ensure
that the results are representative of real situations, namely the
stochastic modelling of measurement errors and the use of two
different numerical models to account for the model error. In the
paper, the response of an accurate model (called the “reference”
model) is considered in place of the experimental data while a
simpler model (called the “support” model) is used to train the
network. This allows us to account for the fact that simulated data
never exactly reproduce the reference results even if the numerical
model is well calibrated with respect to the experimental data.
Moreover, different networks are studied, each of one taking as
input modal properties that have been elaborated in different ways.
A proposal is presented in order to prevent the misclassification of the
undamaged condition due to the model error. In particular, the
residual error obtained at the end of the calibration procedure is
added to the modal properties computed by the reference model. As
concerns the ASCE benchmark structure, only the “support”model is
developed, and the model error is computed with reference to the
experimental modal features.

The paper is organized as follows. Section 2 briefly describes the
neural network adopted in the damage identification procedure, while
Section 3 outlines the proposed procedure. The application of the
procedure to the numerical and the real case study and the
corresponding results are presented in detail in Section 4 and
Section 5, respectively. Finally, conclusions are drawn in Section 6.

2 Multi-layer perceptron for
classification

Multi-layer perceptron (MLP) is surely the most popular kind of
ANN that applies supervised training. It is composed of neurons
arranged into layers. Each neuron in a given layer is connected to all
the neurons in the following layer (Rosenblatt, 1963; Murtagh, 1991;
Ramchoun et al., 2016). The connections between neurons do not
form cycles, therefore the information elaborated by the systemmoves
only in the forward direction, from the input layer to the output one
(Haykin, 1999). For this reason, the MLP is also denoted as feed-
forward neural network.

In general terms, the connection between the output ai,j of ith
neuron belonging to the jth layer and the output ai,j+1 of the ith neuron
belonging to the j+1-th layer is expressed by:

ai,j+1 � f xi,j+1( ) (1)

xi,j+1 � bi,j+1 +∑
Nj

i�1
wi,j+1ai,j (2)

where bi,j+1 and wi,j+1 are the bias (or threshold) coefficient and the
weight coefficient, respectively, that characterize the connection. Nj is
the number of neurons composing the jth layer. The function f (xi,j+1)
is the so-called transfer function that introduces non-linearity in the
process. Being the network employed for classification, a common
choice for the transfer function of the output layer is the soft-max
function, suggested, for instance, by Bishop (2006). Considering a
vector x that has a number of components Nc equal to the number of
classes, the value of the soft-max function for the component xi is:

f xi( ) � âi � exp xi( )
∑Nc

j�1 exp xj( ) (3)

This value represents the probability that the sample represented by x
belongs to the ith class. The transfer function of the hidden layers is
generally chosen among the Sigmoid logistic function, the hyperbolic
tangent function and the rectified linear unit (ReLU) function. The
reader is referred to Bishop (2006) for the expressions of these
functions.

Network training is the process where the network coefficients are
tuned in order to increase the ability of the network to make correct
predictions on the basis of the available data and to prevent their over-
fitting. The ability of a network in classification problems is quantified
by the average cross-entropy loss function E, that measures the
discrepancy between the prediction vectors sn and the corresponding
targets tn related to the training set. This function is expressed as:

E � − 1
Nt

∑Nt

n�1
∑Nc

j�1
tj,n logâj,n (4)

where Nt is the number of samples that constitute the training set.
The optimization of the network coefficients can be performed with

different gradient-based algorithms. In this work, the scaled conjugate
gradient back-propagation algorithm (Møller, 1993) is adopted. This
algorithm is particularly suitable for problems with a large number of
neurons. The problem of data over-fitting has been addressed by
providing a sufficient number of data that allows the generalization
of the network (Ying, 2019), as detailed in Sections 4.2 and 5.3 for the
numerical case study and the ASCE benchmark structure, respectively.

3 The proposed damage detection
procedure

This paper outlines a complete damage detection procedure relied
on MLP. All the major aspects that impact on the MLP-based damage
detection procedure are addressed and characterized in this work. The
damage detection is based on the variation of modal properties
induced by damage. The aim of the MLP is to classify the structure
in an undamaged, lightly damaged or severely damaged condition on
the basis of the modal properties given as input. For this kind of
problems, as for all the problems addressed by ML algorithms, there
are a series of aspects to be investigated and fixed that are crucial for
the achievement of good performance. They mainly involve the
creation or the collection of a database which is subsequently
provided to the MLP for its training. The quality and the size of
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the database must be adequate to characterize the problem under
consideration and to train the MLP in an accurate way.

It has already been pointed out that is common to have a large
amount of data related to the undamaged condition of a structure
but it is rarely possible to measure the structural response in
damaged conditions. To this purpose, a FE model of the
structure is built and calibrated with reference to the
experimental measurements acquired from the monitoring
system installed on the structure and the neural network can be
trained with respect to the data generated from the numerical
model. However, even if the FE model is accurately calibrated,
experimental results and model predictions will never exactly
match and their difference represents the model error. In this
research, both a numerical and a real case study are considered. In
particular, the numerical case study is represented by the steel
railway bridge shown in Figure 1A, while the real case study is the
ASCE benchmark structure of Figure 1B. As far as the numerical
case study is concerned, we have taken into account some key
aspects to make results representative of real applications, namely
the stochastic modelling of measurement errors and the use of two
different numerical models to account for the model error. In
particular, a “reference” FE model (called model R) is created to
represent the real structure and generate the pseudo-experimental
response of the structure. The modal properties of model R are
assumed as reference to calibrate a “support” model (model S),
whose modal features obtained for different damage scenarios are
adopted to train the neural network. As concerns the ASCE
benchmark structure, only the “support” model is developed,
and the model error is computed with reference to the
experimental modal features.

Once the dataset of modal features has been generated, another
important aspect is to tune the hyper-parameters of the network such
as to guarantee its best performance. In this regard, the choice of
suitable approaches for the hyper-parameter search and for the dataset
subdivision is motivated and described.

ANN have been proved to be capable of working with uncertain
and noise-corrupted data (Khan and Yairi, 2018). However, when the
level of noise is such to cover the effect of the systemmodification over
the input features, a rapid decrease of performance is expected. For

this reason, a white noise process with a significant noise level is added
to the structural response of both models. At the same time, a
multivariate statistics technique, namely the PCA, is applied for
noise-filtering and a comparison between networks that use noise-
corrupted data and filtered data is performed. In summary, to calibrate
the network and to test the effectiveness of the neural network for
damage detection, the fundamental steps of the proposed procedure
are the following.

• Select the case study, obtain the reference dataset of modal
properties in the undamaged condition (from the response of
model R for the numerical case study and from the experimental
measures for the real case study) and built the support model
(model S);

• Generate the dataset for the network training from the
numerical model (model S) and collect the dataset for the
network test from the real structure (experimental data) or
from the model R (in the case of pseudo-experimental data);

• Apply noise filtering of the data with principal component
analysis to obtain a cleaned database;

• Perform the hyper-parameters tuning and the training of the
final networks;

• Test the networks with new data (simulated or measured) to
assess the effect of model and measurements errors.

All the procedure details are presented in the next section with
reference to the numerical case study.

4 Numerical case study

In this section, the proposed procedure, described in Section 3, is
applied to a numerical case study. The case study is a steel railway
girder bridge approximately 40 m long and 4.3 m wide. Two simple
supported steel girders carry a concrete slab 34 cm thick. The slab is
connected to the top flanges of the girders through pegs that prevent
the slip between the adjacent surfaces. The two steel girders are
connected to each other by a complex bracing system. It is a three-
dimensional system composed of a basic 3D truss, whose dimensions

FIGURE 1
View of (A) the steel railway bridge representing the numerical case study and of (B) the ASCE benchmark steel braced frame. For the sake of clarity, the
concrete slab is not shown in (A).
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are 3.5 m × 2.4 m × 2.4 m, that recurs for the whole length of the
bridge. A 3D view of the girders and of the bracing system is reported
in Figure 1A.

4.1 Numerical modelling and calibration

A detailed FE model of the railway bridge is developed using the
FE softwareMIDAS CIVIL. This model is adopted to create the dataset
replacing the experimental observations in the undamaged state as
well as to test of the networks in the last phase of the procedure.
Flanges and webs of the steel girders and the concrete slab are
modelled with shell elements, while beam and truss elements are
used for the bracing system. The top flanges of the girders are
connected to the concrete slab through rigid links. Thicknesses of
the plate elements are chosen according to the dimensions of the
modelled member. The value of the elastic modulus assumed for

concrete and steel is 31475 MPa and 210000 MPa, respectively. The
typical restrain condition of a bridge involves the use of hinges and
rollers in order to allow the thermal deformations of the bridge in the
two horizontal directions, while the displacement in the vertical
direction are prevented. When the amplitude of the excitation is
small, as in the case of environmental excitation, the displacement
of the rollers are expected to be negligible due to the friction within the
support system. For this reason, the restrain conditions are imposed at
the extremal sections of both the girders by preventing the
displacements of the nodes of the bottom flanges in all directions,
while rotations are allowed.

A simpler model (model S) has been developed for the generation
of the network training dataset. The model S is a simply supported
beam with 100 finite elements characterized by an equivalent
rectangular cross section. Each beam element has both flexural and
shear deformability. The properties of the cross section are defined
through the calibration procedure described below.

TABLE 1 Numerical case study: comparison between natural frequencies of model S and R after calibration.

Freq. 1 [Hz] Freq. 2 [Hz] Freq. 3 [Hz] Freq. 4 [Hz]

Model S 1.680 6.102 12.079 18.713

Model R 1.697 5.859 12.958 18.193

Difference .017 −.243 .879 −.519

FIGURE 2
Numerical case study: comparison between mode shapes computed by model S (black asterisks) and model R (red asterisks); (A) mode no. 2 and (B)
mode no. 3.

TABLE 2 Numerical case study: description of the damage scenarios of model R.

Identifier Damaged part Location along the bridge length Extension

S1 Undamaged condition - -

S2 Steel flange One-fourth Element strip

S3 Steel flange Middle Element strip

S4 Steel flange Three-fourth Element strip

S7 Concrete slab One-fourth Element strip

S5 Concrete slab Middle Element strip

S6 Concrete slab One-third Nearly semi-circular area

Frontiers in Built Environment frontiersin.org05

Ponsi et al. 10.3389/fbuil.2022.1109995

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2022.1109995


Natural frequencies and mode shapes of both FE models are
obtained performing modal analysis and modifying the exact values
of the structural response by adding noise with the aim to reproduce
measurement errors and uncertainties characterizing the modal
identification procedure. A dynamic monitoring system is assumed
to be installed on the bridge. The measurement equipment is supposed
to be composed of five accelerometers (A1-A5) connected to the
structure and placed along the bridge length at specific locations.
With respect to the numeration A1-A5, the locations are at 6, 13,
20, 27 and 34 m from the left extremity of the bridge. Therefore, the
mode shape components are available only for the points corresponding
to the sensor locations. A Gaussian noise with a coefficient of variation
depending on the property type is added to the exact values computed
by the models. It is assumed that the temperature effects on modal
properties have been filtered out through, for instance, the procedure
presented in Comanducci et al. (2016), Maes et al. (2022). Therefore, the
introduced Gaussian noise represents the residual variability. The
coefficient of variation is set to .01 for frequencies and .05 for mode
shapes. Moreover, to introduce non-negligible uncertainties also for
near-zero components of mode shapes, a further specific source of error
is introduced by adding a noise extracted from a uniform distribution.

The values of the elastic and shear modulus of model S are calibrated
with respect to the response ofmodel R. In particular, these parameters are
chosen with the aim to minimize the discrepancy function eF, that reads:

eF θ( ) � ∑M
m�1

fS,m θ( ) − fR,m

fR,m
( )

2

(5)

where fR,m denotes themth frequency of the model R in its undamaged
condition and fS,m denotes the corresponding frequency of model S

computed for the values of the updating parameters collected in the
vector θ. M is the number of considered natural frequencies, in this
case the frequencies of the first four vertical bending modes. The
function eF thus represents the discrepancy between the frequencies
computed by the two models. Mode shapes have not been included in
the calibration since they are not sensitive to the modification of the
chosen structural parameters, which are uniform along the bridge
length. The calibration procedure has been carried out with a
surrogate-assisted evolutionary algorithm that employs an
improved sampling strategy (Vincenzi and Gambarelli, 2017; Ponsi
et al., 2021). The calibrated natural frequencies of model S are
compared to the frequencies of model R in Table 1. As a
consequence of the different modelling strategies adopted, a
residual discrepancy persists also after the calibration. The same
goes for the mode shapes as shown in Figure 2, where the
comparison for mode two and three is presented.

4.2 Damage scenarios

Damage is simulated in both models through the reduction of the
elastic modulus of one or more finite elements. Considering the elastic
modulus Eu of an undamaged element and the reduced elastic
modulus Ed of a damaged element, it is possible to define the
damage severity r as:

r � Eu − Ed

Ed
· 100 (6)

As concerns model S, several damage scenarios are created by varying
damage severity and location of a single damaged element, that may
assume different values. In detail, damage location varies with a step-
size of 5% of the bridge length over the whole structure, while its
severity varies from 0% to 40% with a step-size of 2.5%. The structure
condition is considered as lightly damaged if the severity of damage is
lower than 15%, otherwise it is considered as severely damaged.
Considering the stochastic modelling of measurement errors,
200 samples compose the dataset for each damage scenario. The
single sample is obtained by adding the randomly extracted values
of noise to the exact value of the modal response. The response of the
model for the undamaged scenario is repeated a number of times equal
to 1/3 of the number of simulations in the damaged conditions. In this
manner, the sizes of the datasets related to the three classes are
comparable.

Finally, seven further scenarios are created for model R. The first
represents the undamaged state of the model, while the remaining six
are the damage scenarios described in Table 2. For each damage
scenario, Table 2 defines the damaged element and the damage
location and extension. Damage in the steel beam (with reference
to scenarios S2, S3 and S4) is introduced by decreasing the elastic

TABLE 3 Numerical case study: studied networks and their optimal architecture.

Network identifier Damage features Transfer function Layer size (number of neurons for each layer)

N1 Noised modal properties Hyperbolic tangent [24, 21]

N2 Denoised modal properties (14 comp.) Sigmoid logistic [17, 22]

N3 Denoised modal properties (15 comp.) Hyperbolic tangent [23, 14]

FIGURE 3
Numerical case study: cumulative percentage of total variance
explained by the principal components of the mode shape baseline. Red
dashed line: threshold value of 95%.
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modulus of an element row of the bottom flange to a quasi-zero value,
aiming at simulating material discontinuity. For scenarios involving
damage of the concrete slab, i.e. S5, S6, and S7, the elastic modulus of
concrete is reduced by 50% to simulate a cracked condition. In S5 and
S6 a whole element row along the slab width is damaged, while in S7 a
nearly semi-circular area of the concrete slab is damaged.

4.3 Network definition

This section describes the networks employed in the procedure,
with reference to the construction of the input vector of the MLP.
These networks, together with their identifiers and main features, are
listed in Table 3. All these networks have an input vector composed of
the natural frequencies of the four bending modes followed by the
corresponding mode shape components. Only the mode shape
components corresponding to the five sensors of the monitoring
system (A1-A5 defined in Section 4.1) are considered, resulting in
a input vector of dimensions 24 × 1. As explained in the same section,
noise is added to the exact values of the modal features to account for
measurements errors and uncertainties in the identification
procedure. Thus, the network input becomes a 24 × N matrix,
being N the number of modal parameter sets considered.

In this work, three different networks are investigated that stand
out for the preprocessing of the dynamic features given as input. The
network N1 takes as input noise-corrupted modal properties, while for
network N2 and N3 a noise filtering is performed through the PCA
(see Table 3).

The PCA is a well-known technique of multivariate statistics that
is usually employed for data compression or noise filtering. First, a
large set of variables is transformed into a smaller one that contains
most of the information stored in the large set. The loss of information
is accepted in order to visualize and analyse data in a simpler manner.
Principal components are linear combinations of the original
variables, realized in such a way that the new variables are
uncorrelated and most of the information contained in the original
variables is compressed into the first new variables. By reversing the
transformation and retaining only the most important components, it
is possible to filter the noise affecting the original variables. The
fundamental steps of PCA are briefly described in the following.

• Normalization of data in order to avoid that variables characterized
by larger standard deviations dominate the process. For a given
variable xi, that in this work is a component of the MLP input
vector, with mean μi and standard deviation σi, the normalized
variable zi (i = 1, . . . 24) is obtained as:

zi � xi − μi
σ i

(7)

Normalized data can be organized in columns forming the matrix Z.

• Identification of the correlations between variables through the
computation of the covariance matrix Σ(Z);

• Computation of the eigenvalues si and the eigenvectors li of the
covariance matrix Σ. The eigenvectors represent the principal
components, while the corresponding eigenvalues give the
amount of variance in each principal component.

• Discarding the components of lower significance on the basis of
the relative amount of variance rvi:

rvi � si∑nv
i�1si

(8)

In particular, the eigenvectors are ordered based on the descending
value of the corresponding eigenvalue. The matrix that stores the
eigenvectors as columns is denoted by L. There is no a fixed rule for
discarding the components of lower significance, since the operation
highly depends on the available data. A common practice is to keep the
first p principal components that allow to retain almost the 95% of
total amount of variance, namely

rv1 + rv2 +/ + rvp ≥ 0.95 (9)
The selected components organized by columns will form the loading
matrix LP.

• Transformation of the data along the principal component axes

T � LT
P Z (10)

After the transformation, most of the information contained in the
original data is described with a lower number of variables. Matrix T is
denoted as score matrix and its elements as principal component scores.

• Reconstruction of the original variables through the loading
matrix LP, discarding the last principal components whose
variability is associated to noise:

Ẑ � LP L
T
P( )Z (11)

A baseline set of frequencies and mode shapes is created
considering only data referred to the undamaged state. The
matrices Zf and Zϕ for frequencies and mode shapes have
dimensions Nf × Mund and Nϕ × Mund, respectively. Nf and Nϕ are
the number of frequencies and mode shape components considered,
while Mund is the number of samples composing the undamaged
dataset. Then, PCA is separately applied to the frequency and mode
shape sets in order to compute the loading matrices LP,f and LP,ϕ. At
the end, data are reconstructed in the original coordinate system using
Eq. 11. The core of the problem lies in the choice of the number of
principal components to retain. In this instance, frequency set is
analysed: each principal component describes about 25% of the
total variance. Consequently, all the four principal components are
retained and the original data are conserved. As concerns mode
shapes, the cumulative percentage of variance described by the
principal components is represented in Figure 3. The cumulative
percentage of variance described by retaining 14, 15 or 16 principal
components is 91.5%, 96.0%, and 99.9%, respectively. Since the value
of 99.9% is high and is likely that it includes the variability due to noise,
only the cases of 14 or 15 principal components are selected. In the
first case (14 components) the reconstructed data form the input
vector of network N2, while 15 components are selected for the
network N3. It is worth noticing that baseline sets are composed of
only data related to the undamaged scenario, but the operation of
noise filtering is applied also to the dataset of the damaged scenarios.

4.4 Architecture optimization

The architecture optimization involves the tuning of a series of
hyper-parameters in order to improve as much as possible the
performance of a network. The optimization is performed by
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means of Randomized Grid Search (Bergstra and Bengio, 2012) and k-
fold Cross Validation (Arlot and Celisse, 2009). They are described
referring to a generic network, but the procedure is applied to all the
networks defined in Section 4.3. Randomized Grid Search is a strategy
of hyper-parameter search that is very diffused in the Machine
Learning community. First, it is necessary to select the hyper-
parameters to be tuned and their range of variation. In this case
the hyper-parameters considered are the number of hidden layers,
their size and the type of transfer function used. The hidden layers can
be one or two, their size may vary between the dimension of the output
vector and the dimension of the input vector. In the present study, the
dimension of the output vector is 3, corresponding to the three
possible damage conditions, namely undamaged, lightly damaged
and severely damaged, while the dimensions of the input vector is
24. As introduced in Section 2, the possible transfer functions are: the
Sigmoid logistic function, the hyperbolic tangent function and the
rectified linear unit (ReLU) function. The combinations of all the
possible values that each hyper-parameter can assume, based on the

range of variation previously defined, are realized by creating a grid.
Trying out all the possible combinations of the grid can be very time-
consuming so a randomized strategy is used instead. The Randomized
Grid Search algorithm randomly extract a triplet of values for the
hyper-parameters from the grid and evaluates the related network
performance. This operation is repeated for a fixed number of times
and the optimal hyper-parameter combination will be the one that
provides the best network performance.

The network performance is evaluated by means of k-fold Cross
Validation. This approach represents an evolution of the classic
approach based on the simple split of the whole dataset in training,
validation and test subset. These subsets remain unchanged once they
have been defined. However, the network performances are highly
dependent on the training and the validation set. The network may
perform very differently when it is trained and evaluated on a different
subset of data. The idea behind k-fold Cross Validation is to repeat
training and validation on different subsets of the data. Initially, the
whole dataset is split into a subset dedicated to the cross validation and

FIGURE 4
Numerical case study: performance of the networks with a single hidden layer in function of the number of neurons and the transfer function type; (A)
Network N1 and (B) Network N2. Black •: ReLU transfer function; blue +: Sigmoid logistic transfer function; red p: hyperbolic tangent transfer function.

FIGURE 5
Numerical case study: performance of the networks with two hidden layers in function of the number of neurons in each layer and the transfer function
type; (A) Network N2 and (B) Network N3. •: ReLU transfer function; +: Sigmoid logistic transfer function; p: hyperbolic tangent transfer function.

Frontiers in Built Environment frontiersin.org08

Ponsi et al. 10.3389/fbuil.2022.1109995

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2022.1109995


an hold-out subset. The latter is not involved in cross validation and it
will be employed after the tuning to assess the network generalization.
With reference to the dataset described in Section 4.2, the 2% of the
undamaged dataset and of the damaged dataset are used to construct
the hold-out set, while the remaining data of the undamaged and
damage scenarios compose the cross validation subset. This subset is
further split into k folds. The evaluation of the network performance
consists of k iterations: at each iteration the kth fold is used as
validation set and all the remaining folds are used as training set.
The process is repeated until every fold has been used as validation set.
At each iteration, a performance score is obtained. It is the value of the
network loss function (Eq. 4) computed on the validation set. The

overall performance score is given by the average value of all the k
scores. By training and testing a network with the k-fold cross
validation, we get a more accurate representation of how well the
network might perform on new data. Once the optimal hyper-
parameters values are found, they are employed to construct the
final network that is subsequently trained on the whole cross
validation set. Finally, the trained model is tested on the hold-out set.

Results of the architecture optimization for the numerical case
study are shown in the following. The optimization has been
performed in accordance with the Randomized Grid Search and k-
fold Cross Validation approach, both of them described in Section 4.4.
The Randomized Grid Search has been implemented by extracting

FIGURE 6
Numerical case study: confusion matricies of the trained final networks N1, N2, and N3 computed for (A,C,E) the training dataset and (B,D,F) the test
dataset. U, undamaged; LD, light damage; SD, severe damage.
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100 random triplets of hyper-parameter values from the grid, namely
the number of layers, their size and the transfer function, for each
network type. First, some qualitative observations about the influence
of the hyper-parameters on the network performance are drawn.
Focusing on the samples characterized by a single layer, Figure 4
shows the loss function of the networks N1 (Figure 4A) and N2
(Figure 4B) based on the number of neurons in the layer. In both cases,
regardless of the transfer function type, the loss function value
decreases with the number of neurons increment. For a fixed
number of neurons, the performance obtained with a Sigmoid
logistic function and hyperbolic tangent function are better than
those obtained with a ReLU function. In the case of network N2
(Figure 4B) the difference is more marked compared to network N1
(Figure 4A). No result is shown for network N3 since the behaviour is
very similar to that of N1.

Figure 5 shows the loss function values for the cases where the
networks are characterized by two hidden layers. In general, the use of a
second hidden layer improves the performance of all the networks: it can
be easily noted comparing the minimum values of Figure 4 and Figure 5.
For network N3 (Figure 5B) the performance score obtained with the
ReLU function is always larger than the scores obtained with sigmoid
logistic and hyperbolic tangent function. The same considerations are
valid for N2 (Figure 5B) even if the differences in terms of performance
scores are reduced. The optimal architectures found are indicated in
Table 3. According to the previous observations, for all the networks they
are composed by two hidden layers and they are not characterized by the
ReLU transfer function.

4.5 Training and test of the final networks with
the dataset of model S

Once the optimal architecture has been found, the final networks
N1, N2, and N3 are trained over the whole cross validation set and
tested over the hold-out set, that has not been part of the dataset used
for hyper-parameter tuning. The trained networks are compared in
terms of accuracy and percentage of uncertain predictions. The
accuracy is a measure of the errors that a network commits and it
derives from the comparison between network predictions and the
associated target class. The accuracy of each network is calculated with
reference to two different criteria, namely a “strict” and a “soft”
accuracy.

The strict accuracy is obtained when the predicted output exactly
corresponds to the target. The analysis of the strict accuracy of the final
networks N1, N2, and N3 can be performed thanks to the confusion
matrices that are shown in Figure 6. For each network, the confusion
matrix is computed with reference to the training dataset (Figures
6A,C,E) and to the test dataset (Figures 6B,D,F). The overall strict

accuracy value of each matrix can be seen in the matrix corner located
in the right-bottom angle. The same values are summed up in Table 4.
Analysing a generic matrix along columns, it is possible to see how the
subset of data that has a specific target class, identified by the column,
has been classified by the network. Conversely, along a row it is
possible to see which are the target classes of the data that have been
classified in that way by the network. Combining the information
along the columns and rows, it follows that the main diagonal of the
matrix contains the samples correctly recognized in each class.

As a general observation valid for all the networks, the difference
between the matrices computed for the training and the test dataset is
very limited. This confirm the high level of generalization reached by
the networks and it excludes over-fitting of data. Matrices of networks
N2 and N3 are similar (Figures 6C–F), so the same considerations can
be formulated: a practically zero percentage of samples whose target
class is the undamaged condition is mistakenly classified in a damaged
condition, while the principal error source is due to the classification of
samples whose target class is the low damage condition in the severe
damage condition, or vice versa. The analysis for N1 is different, since
the predominant error committed is the classification as undamaged
of samples with low damage target condition. This is the main reason
of the bad accuracy of N1.

According to the criterion of the soft accuracy, a tolerance of 5%
to the damage severity boundaries reported in Section 4.2 for the
three classes is applied. If the classification output is not correct but
the damage severity is included in the tolerance range, the mistake
made is considered light. Therefore, the “soft accuracy” takes into
account only errors that are out of the tolerance range. The values of
the “soft accuracy” are summed up in Table 4. For all the networks,
this value is larger than the “strict accuracy” value, confirming how a
fraction of mistakes committed by the networks are light in the sense
that has been previously explained. The increment obtained moving
from “strict accuracy” to “soft accuracy” is more marked for
network N1.

The percentage of uncertain predictions is computed considering
the probability expressed by the output layer of theMLP. Let yord = [p1,
p2, p3] be the output vector of the network with probabilities ordered
in descending order (i.e. p1 > p2 > p3) associated to each class. If a small
gap is found between the probability p1 and p2, the damage class is
defined with higher uncertainty with respect to the case when p1 ≫ p2.
For this reason, a threshold value μ equal to .33 is defined, which
discriminates certain predictions from uncertain ones. When p1 −
p2 < μ the result is considered uncertain. The percentage of uncertain
predictions listed in Table 4 agree with the considerations formulated
focusing on the accuracy values: the performance of network N1 is the
worst, since it has a percentage of almost 50% of uncertain predictions.
On the contrary, N2 and N3 are characterized by values equal or
smaller than 10%.

TABLE 4 Numerical case study: performances of networks N1, N2 and N3 for the dataset of model S.

Performance N1 N2 N3

Train Test Train Test Train Test

Strict accuracy [%] 68 66 93 92 92 91

Soft accuracy [%] 84 83 97 96 96 96

Uncertain predictions [%] 50 48 7 8 9 10
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In conclusion, the noise-corrupted modal properties taken as
input by N1 do not allow to clearly identify damage because the
effect of noise covers the variation of modal properties caused by
damage. When PCA is applied to filter noise, as in the case of N2 and
N3, very good values for accuracy and percentage of uncertain
predictions are obtained. The choice between 14 or 15 principal
components for the construction of the loading matrix does not
produce substantial differences in this phase.

4.6 Test with the dataset of model R

Test with model R is realized with the aim to investigate the effect
of the model error on the accuracy of networks N1, N2, and N3. First,
the exact values of modal properties computed by model R, thus
without introducing measurement errors, are provided to the
networks. The first part of Table 5 collects the classification results
of the seven scenarios listed in Table 2. All networks identify all
scenarios as damaged, including the scenario S1 that corresponds to
the undamaged state of the detailed model R. The model error is
evidently the cause of these bad results. Although model S has been
calibrated based on the response of model R, residual errors still
remain both for natural frequencies (Table 1) and mode shapes, as
highlighted in Figure 2 for mode 2 and 3. These residual errors are
interpreted by the networks as variations of the modal properties with
respect to the target undamaged condition.

A proposal is here presented in order to prevent the
misclassification of the undamaged condition due to the model
error. The residual error obtained at the end of the calibration
must be added to the modal properties computed by the reference
model (model R or, in real case studies, the experimental modal
properties). The residual error has to be applied for all the structural
conditions, both undamaged and damaged, despite it was computed
referring only to the undamaged state. There is no guarantee that the
residual error does not change when the structure is damaged, but its
computation for different damage scenarios is not feasible in almost all
real applications. Moreover, the proposal to adjust the network input
data by adding the residual term aims to cut down the effect of model
error for the undamaged condition. In the authors’ opinion, it is of less
relevance if it slightly alters the prediction of modal properties in the
damaged condition.

The classification results obtained accounting for the model error
are presented in the second part of Table 5. As concerns N1 and N2,

the first four scenarios are correctly identified. Scenarios involving
damage in the concrete slab (S5, S6, and S7) are correctly identified by
the network N1 except for S6, while the network N2 identifies all of
them as undamaged. This result confirms that identifying local
damage of the concrete slab is not an easy task. There is no
improvement in the predictions of network N3, since they are
basically the same of the first part of Table 5. The false alarm
related to the misclassification of scenario S1 is not avoided.

The behaviour of the networks with reference to the identification
of the undamaged condition is analysed also by adding the
measurement noise. In particular, the exact values of modal
properties computed by model R are corrupted by a Gaussian
noise. The frequency and the mode shape coefficients of variation
(CVs) varies in the range [1%, 10%]. For each value of the CVs,
100 samples of pseudo-experimental data are extracted and the
predictions of networks N1 and N2 are computed. Network N3 is
not considered in this analysis since it is not able to correctly identity
the undamaged condition also when exact modal properties are
employed. The plots of the network accuracy in function of the
frequency and mode shape CVs are illustrated in Figure 7. Both the
plots are not smooth but a clear trend can be detected. An increase in
the frequency and mode shape CVs, namely an increase of the noise
amplitude, determines a reduction of the accuracy of N1 and N2.
However, the entity of this reduction is very different. The accuracy of
N1 is insufficient for a large part of the domain of Figure 7A and the
minimum value is around 10%. On the other hand, the accuracy of
N2 is larger than 70% for almost the entire plot, with the only
exception of the part of the domain characterized by the highest
values of both frequency and mode shape CVs (see Figure 7B). Finally,
the accuracy of both N1 and N2 has proved to be more sensitive to the
increment of mode shape CV, even if it is not completely insensitive to
the frequency CV. This behaviour could be caused by the fact that the
input vector of the networks is composed in largest part by the mode
shape components (20) compared to the natural frequencies (4).

5 ASCE benchmark structure

In this section, the damage detection procedure described in
Section 3 is applied to a real case study, namely the steel braced
frame employed as benchmark problem for SHM purposes by the
IASC-ASCE SHM Task Group in the early 2000s (Dyke et al., 2001;
2003).

TABLE 5 Numerical case study: results of the test with model R considering or not the model error. U: undamaged condition; SD: severe damage; LD: light damage.

Model error Net. ID Scenario

S1 (Undam.) S2 (Dam.) S3 (Dam.) S4 (Dam.) S5 (Dam.) S6 (Dam.) S7 (Dam.)

Neglected N1 SD SD LD SD SD SD SD

N2 SD SD SD SD SD SD SD

N3 SD SD SD SD SD SD SD

Accounted N1 U SD LD LD LD U LD

N2 U SD SD LD U U U

N3 SD SD SD LD SD SD SD

Frontiers in Built Environment frontiersin.org11

Ponsi et al. 10.3389/fbuil.2022.1109995

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2022.1109995


5.1 Description of the structure and the
experimental test

The structure has four stories with an overall height of 3.6 m and a
2-bay by 2-bay plan of dimension 2.5 m × 2.5 m. The structural
elements are composed of columns, floor beams and braces, while
each floor is composed of four slabs, one for each bay. A schematic plan
view where the orientation of the column section is delineated with
respect to a x-y coordinate system can be found in Figure 1B. Further
details about the properties of the structural element sections, that are
unusual because they have been designed for a scale model, and the
values of the floor masses can be found in Johnson E. et al. (2004).

This structure was located at the Earthquake Engineering Research
Laboratory at the University of British Columbia and was subjected to
several experimental tests. The different tests are characterized by
different structural configurations. The first one is the fully braced
configuration described in the previous paragraph, while the remaining
configurations can be considered as damaged scenarios of the first
structural condition since specific braces are removed. Five damage
configurations are the object of this study. They are denoted with the
numbers 2–6. In configuration two the braces located at all floors in the
East side are removed. For the configurations three to five the focus is
addressed to the braces located in the South-East corner. Braces of all
floors are removed for configuration 3, braces of the first and fourth
floor are removed for configuration 4, while only those of the first floor
are removed for configuration 5. Finally, configuration 6 is characterized
by the removal of the braces of the second floor on the North side.

For each configuration, the structure has been tested exploiting an
environmental source of excitation. For each frame floor, including its
base, three accelerometric sensors were employed and disposed in almost
the same positions. With reference to the plan view represented in
Figure 1B, sensors are located in proximity of the central alignment of
columns that is parallel to the y-axis. The central sensor measures
accelerations along the y direction, while the other two measure
accelerations along the x direction. More details about the specifics of
the instrumentation and the tests can be found in Dyke et al. (2003).

The dynamic identification of the frame modal properties for all
the configurations has been performed by the authors of this work.
The modal extraction has been carried out with the Stochastic

Subspace Identification (SSI) method (Overschee and Moor, 1996;
Peeters and De Roeck, 1999). The identified modes and their natural
frequency are listed in Table 6 for all the configurations.

5.2 Numerical modelling and calibration

The FE model of the frame adopted for ANN dataset generation is
obtained thanks to the MATLAB based FE code released by the IASC-
ASCE SHM Task Group and available at the web site http://
datacenterhub.org/. The columns and the beams are modelled as
Euler-Bernoulli elements and the braces as truss elements. The
connections among columns and beams are able to transfer the
bending moment. The in-plane rigid floor behaviour has been
considered by constraining the horizontal translations and the
rotation in the floor plane of the nodes in each floor to be the
same. In total, the model has 120 degrees of freedom. The FE code
allows computing compute mass and stiffness matrices and provides
the implementation of a lumped mass matrix.

If the nominal values of material and geometrical properties of the
elements are used for the model, as provided in the Matlab code, there is a
remarkable difference between the experimental and numerical frequencies.
For this reason, a calibration procedure has been implemented in order to
reduce as much as possible the differences. The elastic modulus of the
elements, whose value is the same for columns, beams and braces, is tuned
with this aim. In this way, only the natural frequencies can be adjusted,
while mode shapes are insensitive to a uniform modification of a stiffness
property in the whole structure. Other strategies could be adopted in order
to increase the correlation between experimental and numerical mode
shapes [see for instance Ponsi et al. (2021; 2022)]. In this work, the authors
aim at showing that the proposed procedure is effective also in the case of
residual differences between the modal parameters after the calibration
procedure. For this reason, a more complex calibration strategy is not
adopted. The comparison between the calibrated modal properties and
their experimental counterparts is shown in Table 7. It can be seen how
there is an almost exact correspondence for the frequencies of the first
two modes, while larger errors are obtained for the last three
modes, with a maximum of 11% for the torsional mode. As
regard mode shapes, a good correlation is found for all the modes.

FIGURE 7
Numerical case study: plot of the accuracy of the network (A) N1 and (B) N2 for different values of the frequency and mode shape coefficient of
variation (CV).

Frontiers in Built Environment frontiersin.org12

Ponsi et al. 10.3389/fbuil.2022.1109995

http://datacenterhub.org/
http://datacenterhub.org/
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2022.1109995


5.3 Dataset generation

The calibrated FE model of the frame is used for the generation of
the dataset dedicated to the network training and test. The dataset is
composed of the modal properties computed by the model in its
undamaged condition, namely the condition characterized by the
values of the model parameters that have been found thanks to the
calibration, and by the modal properties related to different damage
scenarios. The scenarios have been created by simulating damage on
each brace of the frame. Only the braces are considered as possible
damaged elements since the experimental damaged configurations are
limited to these elements. Damage is simulated by reducing the elastic
modulus of a brace of a specific quantity expressed by the damage
severity (see Eq. 6). The latter ranges in the interval [0%, 90%] with
step size 10%. For each damage scenario, 200 samples are generated by
adding measurement noise (Gaussian noise) to the exact values of
modal properties. The coefficients of variation for frequencies and
mode shapes are set to 1% and 5%, respectively. The same operation is
performed for the undamaged condition of the model, but in this case
the number of sample is greater, in such a way that the size of the
undamaged scenario is about 1/3 of the size of the whole dataset.

5.4 Network definition, training, and test

As a fist trial, only a single network is studied for the ASCE
benchmark. This network has an input vector composed of the natural
frequencies of the five modes described in Section 5.1, followed by the
corresponding mode shape components. Only the mode shape
components corresponding to the sensors of the monitoring system
are considered, resulting in a input vector of dimensions 80 × 1. No
filtering technique has been applied to the data before network
training and a single network architecture has been considered.
The network has two hidden layers, each of them composed of

30 neurons and characterized by a hyperbolic tangent function.
The results of the k-fold cross-validation, that has been performed
in compliance with the description of Section 4.4, are very satisfactory.
Indeed, for each of the five iterations where one of the five fold is
alternately selected as validation set, the accuracy is larger than 98%.
Due to the excellent results, PCA (Section 4.3) is not applied to filter
noise and the architecture optimization (Section 4.4) is not performed.
Nevertheless, if the accuracy values were unsatisfactory, the previous
techniques could be applied without further complications compared
to the numerical case study of Section 4.

As a last step, the final network has been trained on the whole set
used for cross-validation and tested on the hold-out set. The accuracy of
the training set is very high, namely 99.8%, and also for the test set an
excellent value is obtained (98.7%). A very small percentage of samples
whose target class is the severe damage condition are misclassified in the
light damage condition, and vice versa. On the other hand, the target
undamaged samples are almost always classified in a correct way. The
results of the test with the experimental data described in Section 5.1 are
presented in Table 8. The behaviour is the same observed in Section 4.6,
i.e. when model error is neglected the network classifies all the
configuration, including the undamaged one, in the severe damage
condition. Conversely, the addition of model error to the experimental
data enables to correctly classify the undamaged configuration (1) and
the damaged configurations (2–6) as severe damage conditions.

6 Conclusion

This paper presented a neural network-based damage identification
procedure that employs modal properties as damage sensitive features.
Particular emphasis is given to the importance of accounting for the
model error in the damage detection procedure. In civil engineering
applications, indeed, it is not feasible to obtain large amount of data
relative to damaged conditions to train the network. As a consequence,
finite element models need to be employed to simulate damaged
scenarios. The unavoidable differences between the real structure and
the numerical model, although small, compromise the efficiency of the
damage detection procedure. Two case studies are analysed with the aim
of showing both the effectiveness and the suitability to different
applications of the proposed procedure. The first case study is a steel
railway bridge and in this case only simulated data are considered. The
second case study is the ASCE benchmark steel braced frame. Although
the analyses related to the first case study are based on simulated data
only, a series of key aspects are taken into account to ensure that results
are representative of real applications. In particular, a Gaussian noise is

TABLE 6 ASCE benchmark structure: natural frequencies in Hz of the identified modes for the different configurations. B1: first bending mode; B2: second bending
mode; T: torsional mode; x or y: mode direction.

Config Mode Fr. [Hz] Mode Fr. [Hz] Mode Fr. [Hz] Mode Fr. [Hz] Mode Fr. [Hz]

1 B1y 7.49 B1x 7.76 T 14.48 B2y 19.89 B2x 21.03

2 B1x-T 5.18 B1y 7.76 T-B1x 12.60 B2x-T 15.03 B2y 20.12

3 B1x-T 6.61 B1y 7.63 T-B1x 13.48 B2x-T 18.93 B2y 19.98

4 B1x-T 7.34 B1y 7.60 T-B1x 13.97 B2x-T 19.71 B2y 20.11

5 B1x-T 7.45 B1y 7.60 T-B1x 14.03 B2y 19.90 B2x-T 20.67

6 B1y 5.96 B1x 7.79 T 13.15 B2y 19.90 B2x 21.02

TABLE 7 ASCE benchmark structure: comparison between the experimental and
the calibrated numerical modal properties of the steel braced frame. B1: first
bending mode; B2: second bending mode; T: torsional mode; x or y: mode
direction.

Mode B1y B1x T B2y B2x

Exp. Fr. [Hz] 7.49 7.76 14.48 19.89 21.03

Num. Fr. [Hz] 7.48 7.75 12.92 21.48 22.86

MAC [%] 87 90 91 78 79
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added to simulate measurement errors and identification uncertainties
and two numerical models are developed to account for model error.
Model R is a detailed finite element model of the bridge that is adopted
to represent the real structure and generate the pseudo-experimental
observations, while model S, simpler than model R, is calibrated with
respect to model R and employed to create datasets relative to different
damage scenarios to train the networks.

Dealing with the numerical case study, damage detection has been
performed adopting three different networks, one assuming as input
noise-corrupted modal properties (network N1) and the others using
noise-filtered modal properties (networks N2 and N3). Noise filtering
has been carried out by means of the Principal Component Analysis
technique. As concerns the training and test phase with model S,
network N1 has shown the worst performances, while N2 and
N3 have presented large values of accuracy and low percentages of
uncertain predictions. The test phase with model R has highlighted the
need to account for the model error. Being the networks calibrated with
reference to data generated from model S, they are not able to identify
the undamaged condition when dealing with data frommodel R, as they
recognize the difference between themodal properties of the twomodels
as damage. On the contrary, if the input data are corrected with the
residual error obtained after the model calibration, networks N1 and
N2 correctly identify the healthy state and the presence of damage on
the steel beam. Damage on the concrete slab has been more difficultly
identified. Finally, results obtained by also adding measurement noise
have shown for N2 a limited reduction of the accuracy with an increasing
level of noise. Results obtained for the ASCE benchmark structure are
consistent with those obtained from the numerical case study. In this case,
a single network was defined, that assumed non-filtered modal properties
as input. The great level of damage introduced in the experimental tests
and for the creation of the network dataset, namely the damaging or the
complete removal of a single or a group of braces, made the noise effect on
the modal properties negligible compared to the effect of damage.

To sum up, presented analyses highlighted the importance of
accounting for the model error in the damage identification
procedure. If neglected, the model error is identified as damage due to
the unavoidable differences between the real structure and the finite
element model required to train the network. The procedure proposed in
this paper is well suited to real-time damage identification. This is made
possible by the use of black box modelling such as neural networks, as in
this case the time-consuming part of the procedure (namely the network

training) is performed in a preliminary phase before the actual
monitoring. This would not be possible with damage identification
methods based on physical modelling, being them very time
consuming in real applications. Moreover, the use of noise-free data is
often essential to avoid false identification of damaged scenarios,
especially when the amplitude of noise is comparable to that of the
changes induced by damage. In this context, Principal Component
Analysis is one of the simplest, efficient and fast numerical method to
achieve these goals and define a truly real-time procedure.
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