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1.  Introduction

Off-axis electron holography is a powerful technique for 
measuring projected electrostatic potentials in materials in 
the transmission electron microscope (TEM) [1–5]. It makes 
use of the superposition of an object wave and a reference 
wave to form an interference pattern in the image plane, from 
which the phase of the object electron wavefunction can be 
recovered. For a non-magnetic material, in the absence of 
dynamical diffraction the phase recorded using off-axis elec-
tron holography can be written in the form

( ) ( )∫ϕ =
−∞

+∞
x y C V x y z z, , , d ,E tot� (1)

where z is the incident electron beam direction, Vtot is the 
total electrostatic potential within and around the specimen 
(including contributions from both charge distributions and 
the mean inner potential) and CE is a constant that depends on 
the microscope accelerating voltage.

However, information about how charges (i.e. field sources) 
are distributed within the specimen is often more valuable 
than a measurement of the projected electrostatic potential, as 
the distribution of charges reflects the response of the object to 
an external stimulus and boundary conditions. Furthermore, 
once the distribution of field sources is known, the electro-
static potential or field can then be computed straightfor-
wardly, while the reverse approach requires solving an inverse 
problem.

The mapping of electrostatic potentials using off-axis elec-
tron holography has a long history [6, 7]. The technique has 
been successfully applied to study semiconductor p-n junctions 
[8–11], recently also in three dimensions [12, 13], electron 
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beam induced charging of TEM specimens [14–18], mean 
inner potentials of materials [19–21], electrically biased carbon 
nanotubes [22, 23], electrically biased metallic needles [24–
27], electron beam induced potentials [28] and the electrostatic 
Aharonov–Bohm effect [29]. For a recent review, see [30].

Many of these studies approach the interpretation of 
the measured projected electrostatic potential by fitting a 
recorded phase image to a model that depends on a number 
of unknown free parameters, including electron-optical para
meters (the interference distance, accelerating voltage, posi-
tion of the sample in the column, illumination characteristics, 
etc), geometrical parameters (the shape of the object, pres-
ence or absence of a support, distance to a grounded electrode, 
etc) and physical parameters (the properties of the material, 
temperature, environment, etc). The result of using such a 
fitting procedure is assumed to be representative of the true 
projected electrostatic potential within and around the object, 
subject to a given set of boundary conditions. However, the 
reliability of the result is as representative of reality as the 
model is and the solution is not necessarily unique as a result 
of the large number of free parameters involved. It is also 
the case that good models are often only available for simple 
geometries and basic responses (e.g. linear dielectric, ideal 
metal, etc). For most samples, a physical model that can be 
used to interpret a phase image simply does not exist, even for 
a relatively simple geometry such as a thin-film p-n junction 
with an unknown surface state, either because its construction 
requires the very same knowledge that needs to be determined 
from the experimental measurement or because the numerical 
tools that are required (e.g. finite element methods) produce 
only one model at a time, corresponding to a single point in a 
multi-dimensional parameter space.

Even if a perfect model that provides a best fit to a phase 
image can be found, it usually provides only a single projec-
tion of a three-dimensional electrostatic potential. Although 
electron holographic tomography is becoming a viable option 
for obtaining three-dimensional information about electro-
static potentials experimentally [31, 32] and although it is 
associated with additional technical challenges (e.g. missing 
wedge, alignment issues, diffraction contrast and stability 
of the charge state in the object with tilt angle and time), it 
does not require fitting of the data and therefore qualifies as 
a model-independent approach for measuring electrostatic 
potentials in three dimensions.

The ultimate goal, however, is the determination of field 
sources, i.e. charge distributions, in order to understand how 
a material reacts to a given external stimulus, how it polar-
izes under the influence of an electric field, how much charge 
is transferred from one object to another as a result of an 
electrochemical potential difference, how many dopants are 
active in a semiconductor, where do ions and charge car-
riers accumulate or deplete, why these phenomena happen 
and how they evolve and can be controlled. The target of any  
ab initio calculation of a material or structure is its charge den-
sity and the potential is considered as a ‘by-product’, which 
combines charge density and geometry in a way that can mask 
the underlying information. For example, as any radially sym-
metrical charge density that is associated with total charge Q, 

regardless of its functional form, produces the same Coulomb 
electric field in the space surrounding the charged object, 
the determination of how Q is distributed within the object 
based on a knowledge of the vacuum potential alone is impos-
sible. Similarly, the far field of any charged object loses any 
dependence on its dielectric characteristics, as these are solely 
responsible for the internal charge redistribution effected by 
self-polarization screening and never affect the total amount 
of charge that is present.

The determination of the local charge distribution is, there-
fore, essential in order to disentangle the complex interplay 
between physics, geometry and external stimuli and to under-
stand the link between structure and functionality of nanostruc-
tures in a quantitative fashion. Here, we discuss the reliability 
of charge measurements carried out using a recently proposed 
model-independent scheme based on the Gauss theorem [23]. 
We address partial charge measurements, for which the inte-
gration domain encloses only part of the object. We identify 
the combined influence of variations in mean inner potential 
and specimen thickness as the main source of artefacts and 
consider the influence of noise and finite spatial resolution. 
We perform calculations for spherical particles and highlight 
differences when dealing with other three-dimensional object 
shapes. Finally, we test our analysis using numerical simu-
lations and apply it to the interpretation of an experimental 
dataset recorded from a sapphire particle.

It should be noted that the primary focus of this paper is 
the analysis of phase images recorded using the off-axis mode 
of electron holography in the TEM. However, our conclusions 
are equally applicable to phase images retrieved using other 
approaches, such as ptychography [33] or the application of 
the transport of intensity equation to a defocus series of bright-
field images [34, 35], as well as to the interpretation of phase 
gradient images recorded using techniques such as Foucault 
imaging [36, 37] and differential phase contrast imaging in the 
scanning TEM [38–40].

2.  Electrostatics of charged dielectrics

We begin by considering a point charge Q located at =r r0 
within a linear dielectric object of relative dielectric constant 

/=ε ε εr 0. Inside the object, the potential V that results from 
the presence of the charge satisfies Poisson’s equation

ρ
δ∇ =− =− −V

Q
r r ,2 3

0
ε ε

( )� (2)

while outside the object the potential satisfies Laplace’s equa-
tion ∇ =V 02 . The interior and exterior solutions are con-
nected by standard boundary conditions (continuity of the 
perpendicular component of D and of the tangential comp
onent of E) across the object’s surface.

Poisson’s equation  (equation (2)), with ε in the denomi-
nator, is valid only for a linear dielectric for which χ= εP E0 , 
where χ = −ε 1r  is the dielectric susceptibility. In fact,

ε ε ε

ρ ρ ρ ρ
∇ =− =−

+
=−

−∇ ⋅
V

P
.2 tot

0

pol

0 0
� (3)

Hence,
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ε εχ χ−∇ ⋅ =− ∇ ⋅ = ∇ VP E0 0
2� (4)

and

χ
ρ

∇ + =−V 1 ,2

0ε
( )� (5)

which is equation (2). The derivation leading to equation (5) 
illustrates how the dielectric constant ε captures the polariza-
tion response of the object to the point charge.

At the object’s surface, where it has an interface with 
vacuum, surface polarization charges ˆσ = ⋅P npol  arise, so that 
a portion of the charge Q appears as if it were transferred to 
the surface, thereby affecting the potential in both the interior 
and the exterior region. Since polarization is simply charge 
displacement, the total charge in the object always remains 
Q, regardless of the value of εr. However, its distribution 
changes, such that the point charge Q located in the object’s 
interior appears to decrease to /εQ r and the remaining fraction 
( / )− ε1 1 r  is effectively brought to the object’s surface.

This situation is described in figure 1, in which equipoten-
tial contours have been sketched for a point charge located in 
a spherical object whose relative dielectric constant εr is (a) 
1, (b) 4 or (c) 100. Note that the potential in (a) is identical 
to that of a point charge in vacuum, since an object for which 
=ε 1r  does not polarize. The potential in figure 1(c) is iden-

tical to that generated by a uniform charge distribution on the 
surface of the object and the interior is at a constant potential 
of /( )πεQ R4 0 , where R is the radius of the sphere. When the 
dielectric constant is very large, the object therefore behaves 
as a metal, with any charge added to the interior being trans-
ported to the surface. The surface (as well as the whole object) 
then becomes an equipotential. In the intermediate case shown 
in figure  1(b), the surface becomes charged, but the charge 
distribution on the surface is in general non-uniform, so that 
the object is not equipotential and both the interior and the 
exterior field retain an impression of the location of the charge.

In order to further illustrate this concept, Gauss’ law can 
be applied to a Gaussian volume Vg that encloses the entire 
dielectric object. Such a Gaussian volume is represented by 
the larger green contour in figure 1(b). Then,

ε
ˆ∫ ∫ ∫− ∇ = ∇ ⋅ = ⋅ =V V V S

Q
E E nd d d ,

V V S

2
g g g

0g g g
� (6)

independent of the location r0 of the charge and of the dielectric 
constant. If, however, the Gaussian volume Vg is split into an 
interior part Vi (smaller green contour in figure 1(b) where 
the potential satisfies Poisson’s equation (equation (2))) and 
an exterior part Ve where the potential satisfies Laplace’s 
equation and equation  (2) is inserted directly into (6), then 
only the fraction of charge that has remained in the interior 
is captured:

V V V V
Q

V
Q

r rd d d .
V V V

2
g

2
i

3
0 i

g i i
∫ ∫ ∫ δ− ∇ =− ∇ = − =

ε ε
( )

�

(7)

The fraction ( / )− ε1 1 r  of charge that is effectively moved to 
the surface is then missed. This statement is independent of 
the object’s shape. However, the shape of the object deter-
mines how the charge is distributed on its surface.

3. Total charge measurement

In the absence of dynamical diffraction, a phase image 
retrieved from an off-axis electron hologram of a non-magn
etic charged dielectric object is proportional to the total elec-
trostatic potential = +V V Vtot M projected in the electron beam 
direction according to the expression

( ) ( ) ( )∫ϕ = +
−∞

+∞
x y C V x y z z C V t x y, , , d , ,pE E M� (8)

where VM is the mean inner potential (MIP) of the object, 
tp(x, y) is its projected thickness and the potential V(x, y, z) is 
related to the unknown charge distribution in the sample by 
Poisson’s equation

ρ
∇ =−V .2 tot

0ε
� (9)

In equation (9), ρtot includes all of the physical charges that 
are present, including charges that have been added to the 
object (the quantity of primary interest), volume and surface 
polarization charges and, if applicable, induced (bound and/or 
mobile) charges on, e.g. the part of the support film that lies 
within the field of view.

The application of a two-dimensional Laplacian operator 

∇ =∂ +∂ =∇ −∂x y z2
2 2 2 2 2 to the phase image then gives

Figure 1.  Schematic diagrams showing equipotential contours (thin black lines) for a point charge located in a spherical object whose 
relative dielectric constant εr is (a) 1, (b) 4 and (c) 100. The boundary of the object is marked by a dashed black line in (a). In each diagram, 
the charge density in the object is shown in red. The green lines and symbols in (b) mark Gaussian volumes (see text for details).
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ε
( ) ( ) ( )ϕ σ∇ =− + ∇x y

C
x y C V t x y, , , ,p p2

2 E

0
E M 2

2
� (10)

where

( ) ( )∫σ ρ=
−∞

+∞
x y x y z z, , , dp tot� (11)

is the projected total charge distribution. In deriving equa-
tion (10), the term arising from the −∂z

2 derivative

( ) ( )∫− ∂ =− ∂
−∞

+∞

=−∞
=+∞C V x y z z C V x y z, , d , ,z z z

z
E

2
E� (12)

disappears because the electric field generated by any local-
ized charge distribution (i.e. one that does not extend to 
infinity) vanishes at infinity.

By integrating the Laplacian of the phase over a surface 
S that encloses the entire object, which is initially imagined 
to be floating in vacuum, the charge Q is retrieved precisely 
through the relation

ε
( )∫ ϕ∇ =−x y x y

C
Q, d d

S
2
2 E

0
� (13)

because neither the MIP term nor the polarization charge dis-
tribution bear a net charge. Since ϕ ϕ∇ =∇ ⋅ ∇2

2
2 2  by virtue of 

the two-dimensional Green’s theorem

∫ ϕ ϕ∇ = ∇ ⋅S nd d ,
S

2
2

2 �
�

∮ ˆ� (14)

the same total charge Q can be measured equivalently by 
contour integration of the phase gradient over the boundary 
� of the chosen integration domain S (an approach adopted 
in [41]). As we discuss below, surface integration of the 
Laplacian of the phase and contour integration of the phase 
gradient perform identically with respect to the influence of 
noise on the measurement uncertainty—the two approaches 
are completely equivalent.

If the object is supported by a conducting substrate that 
is kept at ground potential, then the induced charge distri-
bution on the support film will compensate the charge Q on 
the object exactly, yielding a null measurement of the charge 
if the support film is underneath the object. If, however the 

induced charges are displaced laterally, as may happen if the  
object protrudes from a vertical support that lies outside the 
integration domain, then the measurement yields the correct 
value of Q. These situations are sketched in figure  2 for a 
spherical dielectric particle that is charged uniformly (before 
considering the effect of the polarization) and supported either 
from underneath or laterally by a grounded conducting film.

3.1.  Influence of the support on the charge density

In figure 2, a passive support whose role was mainly to pro-
vide a platform for induced charges to accumulate was con-
sidered. However, if an object is in the vicinity of a grounded 
electrode or in contact with it, the induced charge distribu-
tion will affect the charge density on the object as a result 
of image forces. The scenario of a charged metallic spherical 
particle approaching a grounded plane was explored in [42]. 
The analysis then revealed that the surface charge distribution, 
which is uniform at large distances from the grounded plane, 
evolved towards a state where charge accumulated at the pole 
closest to the electrode. The potential of the sphere decreased 
logarithmically to zero upon contact. All of the charge then 
condensed to a point that overlapped with the induced charge, 
which also decreased to a point. A similar scenario will occur 
in the case of a dielectric particle that has a finite value of εr, 
although only the polarization charges will rearrange them-
selves over the surface, while the underlying charge distribu-
tion will remain frozen in place if the material is a perfect 
insulator.

By adopting the same computational framework as in [42], 
the effect on the charge distribution in a dielectric sphere of 
its proximity to a grounded plane can be assessed. We con-
sider two dielectric spheres with =ε 10r  and =ε 3r  displaced 
from a grounded plane by half their radius. When the object 
is isolated, as shown in figures  3(a) and (g), we expect the 
unperturbed charge configuration with a fraction /ε1 r of 
charge uniformly distributed through the volume, and the 
remaining fraction uniformly distributed through the surface. 
The resulting potential distribution, shown in figures 3(d) and 
( j), confirms that the surface is equipotential (black lines in 
figures 3(d) and ( j)), and the surface charge density uniform 

Figure 2.  Schematic diagrams showing a spherical dielectric particle supported by a conducting substrate that is kept at ground potential. 
The support, whose surface is indicated by the thick grey line, is located either underneath the object (left) or to one side of it (right). The 
electron beam direction is vertical. In the diagrams, red colouring denotes physical charges, while blue colouring indicates induced charges 
(fading thick blue line on the grounded plane) or their equivalent image charge distribution mirroring the physical charges (blue dashed 
lines and circles). The black dashed lines show the boundaries of the integration domain. (See text for details.)

J. Phys. D: Appl. Phys. 49 (2016) 294003
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(blue lines in figures 3(d) and ( j)). The profiles are taken as a 
function of the polar angle θ, which corresponds to any of the 
spheres’ meridians. However, the potential inside the objects 
is not constant, as indicated by the presence of internal equi-
potential contours. The presence of a ‘passive’ grounded plane 
with induced charges results in the potential distributions 
shown in figures 3(b) and (h), which now vary also over the 
surface of the objects, as shown in figures 3(e) and (k) (black 
curves), without, however, affecting the charge distribution of 
the object, as shown in figures 3(e) and (k) (blue lines). If the 
support becomes ‘active’, so that charges are allowed to relax, 
then the induced charges will polarize the region near the south 
pole of the spheres more than the rest of the object, due to 
proximity. The surface then develops a dipole term, with the 

upper hemisphere less positively charged than the bottom half. 
In turns, this changes the induced charge distribution, which 
will be more concentrated beneath the object. Relaxation con-
tinues until an equilibrium is found between all the multipole 
terms involved. The calculations shown in figure 3 required 20 
multipoles. Once charges settle, we find that the surface charge 
distribution is non-uniform, with accumulation of charge at the 
south pole as shown in figures 3(f ) and (l) (blue curves) and 
a residual potential variation along the meridians, figures 3(f ) 
and (l) (black curves), which is allowed by the assumed insu-
lating behavior of the objects. The integrated charge density 
is always equal to the expected amount ( / )− ε1 1 r , indicating 
that there is no transfer of net charge between the bulk and the 
surface. The relative similarity of the potential contours shown 

Figure 3.  Calculations of the effect on the charge distribution on a dielectric sphere of its proximity to a grounded plane located at the 
bottom edge of ((b), (c)) and ((h), (i)). Top ((a)–(f )): dielectric sphere with =ε 10r ; bottom ((g)–(l)): dielectric sphere with =ε 3r . From left 
to right: isolated object (no support), passive support, active support. Equipotential contours in ((a)–(c)) and ((g)–(i)) are drawn at  
0.1 V/V0 intervals on a meridian section of the sphere, where /( )π= εV Q R40 0 , Q is the amount of net charge on the sphere, and R is the 
sphere radius. Profiles in ((d)–(f )) and (( j)–(l)) are taken along any of the spheres’ meridians, and indicate potential (black) and surface 
charge density (blue) from the north pole θ = 0 to the south pole θ π= . The surface charge density curves are normalized to /( )σ π= Q R40

2 .

J. Phys. D: Appl. Phys. 49 (2016) 294003
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in figure 3 illustrates how difficult it is, in general, to draw con-
clusions about surface charge distributions directly from maps 
of (projected) potential. Figure 3 highlights once more the fact 
that materials with large dielectric constants behave effectively 
as metals, with charge distributions that evolve so as to make 
the body, as well as its surface, equipotential.

4.  Partial charge measurement using electron 
holography

If the chosen integration domain S does not enclose the entire 
object, then an attempt to measure the charge generally dif-
fers from the true amount of charge that is physically present 
within the fraction of the object that is enclosed by S. This 
discrepancy results from the combined effects of the MIP 
contribution to the phase shift and induced charges on the 
supporting film (if one is present). We consider these contrib
utions separately, focusing on a uniformly charged sphere for 
illustrative purposes.

4.1.  Effective charge density of a uniformly charged dielectric 
sphere

When charge Q is distributed uniformly throughout the 
volume of a sphere of radius R, polarization effectively lowers 
the volume charge density by a factor /ε1 r and brings the 
remaining fraction of the charge to the surface. In the pres-
ence of a grounded conducting substrate, induced charges will 
be attracted onto the substrate, resulting in a planar surface 
charge distribution adjacent to the object.

As discussed above, the induced charges are also respon-
sible for polarizing the dielectric. However, in order to avoid 
excessive complexity, here we consider only a ‘passive’ sup-
port, as previously defined.

Furthermore, the step in MIP at the object’s surface cor-
responds to an additional effective charge distribution that can 
be treated as a dipole layer [43, 44].

Therefore, the total charge density that an electron effec-
tively encounters when crossing a charged sphere is

ε ε

ε

( ) ( ) ( ) ( ) ( )

( )

⎛
⎝
⎜

⎞
⎠
⎟ρ

ρ
σ δ σ δ= Θ − + − − +

− ∇ Θ −

⊥r R r r R r z

V R r

1
1

,

r r
i

0
0

0 M
2

�

(15)

where /( )ρ π= Q R3 40
3  is the volume charge density that 

results from distributing Q throughout the volume of the 
sphere, /( )σ π= Q R40

2  is the surface charge density that 
results from distributing Q through the surface of the sphere, 

= +⊥r x y2 2  is the modulus of the projection of the position 
vector r onto the z  =  0 plane, ( )Θ x  is Heaviside’s theta func-
tion, equal to 1 when x  >  0 and equal to 0 when x  <  0, and ( )δ x  
is the Dirac delta distribution. The two functions ( )Θ x  and ( )δ x  
are connected by a distributional derivative: ( )/ ( )δΘ =x x xd d . 
In equation  (15), the first term indicates the volume charge 
density reduced by the dielectric constant, the second term 
captures the fraction of charge brought to the surface by 
the polarization, the third term describes the induced planar 

charge density that develops at the surface of the grounded 
support, and the last term represents the effective charge den-
sity associated with the MIP potential step across the object’s 
interface with vacuum.

Since the external potential of a radially symmetrical 
charge distribution that bears a net charge Q is always a pure 
Coulomb potential and the MIP is confined to the object, the 
induced charge distribution can be calculated simply by using 
a single point image charge located a distance of one radius 
below the grounded plane (located at z  =  −R), if the support 
is considered passive and the sphere is touching it. The poten-

tial of the image charge is then /( ( ) )π− + +⊥εQ r z R4 20
2 2 , so 

that the discontinuity of the electric field at the ground plane 

/σ∆ = εEz i 0 is

( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟π

−
∂
∂ +

−
+ +⊥ ⊥ =−

ε
Q

z r z r z R4

1 1

2
.

z R
0 2 2 2 2

� (16)

Therefore:

σ
σ

=−
+

⊥
⊥

r
r R

2

1
.i

0
2 3 2

( )
( ( / ) ) /� (17)

The last term in equation  (15), representing the effective 
charge distribution associated with the MIP, can be expressed 
formally as

σ δ
σ
δ− ∇ Θ − = − + −′V R r r R

R
r R

2
,0 M

2
M

Mε ( ) ( ) ( )
�

(18)

which stems from the curvature of the object, and can be 
interpreted as an additional positively charged spherical shell 
( /σ = ε V R2M 0 M  is positive since VM is positive) enclosed 
within a spherical dipole layer, which can be imagined as a 
spherical capacitor with an infinitesimal gap. The derivative 
of the Dirac delta can be imagined as two oppositely charged 
spherical shells separated by an infinitesimal distance h, 
according to the expression

( ) ( ( ) ( ( )))
→

σ
δ

σ
δ δ− = − − − +′

R
r R

R

h
r R r R h

2
lim

2
.

h

M

0

M
� (19)

The charge density on the two ‘electrodes’ of this spherical 
capacitor naturally diverges as →h 0, since 1/h is a measure 
of its capacitance per unit area.

The fact that the total charge on the sphere remains Q and 
is compensated by  −Q on the support film can be verified 
explicitly by integrating ( )ρ r  throughout space. Then:

∫π ρ = + − + − − =
∞

ε ε
( )

⎛
⎝
⎜

⎞
⎠
⎟r r r

Q
Q Q Q Q4 d 1

1
0

r r0

2
M M

�

(20)

since

( )∫ ∫πρ πρΘ − = =
∞

r r R r r r Q4 d 4 d
R

0
0

2
0

0

2� (21)

( )∫πσ δ − =
∞

r r r R Q4 d0
0

2� (22)
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( )∫πσ δ π σ π− = = =
∞

εr r r R R V R Q4 d 4 8M
0

2 2
M 0 M M� (23)

( )∫πσ δ − =−′
∞

R r r r R Q2 dM
0

2
M� (24)

( )
( ( / ) ) /∫ ∫πσ

δ
+

=
−∞

+∞ ∞

⊥ ⊥
⊥

z r r
z

r R
Q4 d d

1
.0

0 2 3 2� (25)

Equation (24) is obtained by using the definitory property 
of ( )δ′ x , i.e.

∫ δ =−′ ′x f x x fd 0( ) ( ) ( )� (26)

and suggests that the dipole layer that ( )δ′ x  represents is not, 
by itself, charge neutral. This is because the outer ‘electrode’ 
is slightly larger than the inner ‘electrode’ and therefore car-
ries more charge. By using equation (19) once more, we find 
that the inner layer has an amount of charge

→
Q

R

h
lim

2
,

h
M

0
� (27)

while the outer layer has an amount of charge

→
⎜ ⎟
⎛
⎝

⎞
⎠− +Q

R

h
lim 1

2
,

h
M

0
� (28)

illustrating how the outer negative layer compensates both the 
finite layer of positive charge resulting from the curvature of 
the object (equation (23)) and the divergent amount of charge 
present in the inner positive layer.

The resulting picture of the total effective charge den-
sity is sketched in figure  4. Although the drawing is not to 
scale, it reflects the relative magnitudes of the charges that are 
involved. In general, even the apparent charge QM resulting 
from the object’s curvature can be much larger than the typical 
amount of charge that is embedded in a small dielectric nano-
particle. For example, a value for VM of 15 V effectively corre-
sponds to an amount QM of approximately 2000 e of positive 
charge on the (inner) surface of a sphere with R  =  100 nm. If 
the same amount of charge were to be physically deposited on 
the same spherical surface, it would result in a surface poten-
tial of 2 =V 30M  V, which seems unlikely.

4.2. The resulting effective projected charge density

Projecting the volume charge term in ( )ρ r  leads to

( ) ( )
ρ

Θ −
ε

t r R r ,
r

p
0

� (29)

where ( ) = −t r R r2p
2 2 (dropping the ⊥ subscript on r for 

ease of notation, so that from now on = +r x y2 2 ) is the 
projected thickness of a spherical particle. Projection of the 
induced charge distribution just drops its ( )δ z  and leaves ( )σ ri  
unaltered. Projection of a spherical shell of radius R with 
charge density ( / )σ σ= − ε1 1 rpol 0  gives

( )
( )

σ
Θ −

R

t r
R r

4
.

p

pol
� (30)

Therefore, the total projected physical charge distribution can 
be written in the form

( ) ( ) ( )
( )

( ) ( )σ
ρ σ

σ= Θ − + Θ − +
ε

r t r R r
R

t r
R r r

4
,p

r
p

p
i

0 pol
� (31)

which is shown in figure 5 for both a floating (or laterally sup-
ported, as in figure 2(b)) and a supported (as in figure 2(a)) 
sphere for several values of the relative dielectric constant. 
Figure 5 illustrates how surface polarization charges, which 
appear whenever >ε 1r , manifest themselves as a bright ring 
over the circumference that tends to overwhelm the projected 
volume charge.

4.3.  Partial charge measurement in the absence  
of the MIP contribution

Setting aside temporarily the influence of the MIP on the mea-
surement, we first address the question of how much charge is 
obtained if the Laplacian of the phase is integrated over only 
part of the object. We initially consider a rectangular integra-
tion domain that extends over the intervals (−L, x0) along x 
and (−L, L) along y, where it is assumed that �L R, as shown 
schematically in figure 6(a). The fraction of the total charge 
that is contained within the integration domain is then

∫ ∫ σ

π

= +

=
+

+
−

− +

− −

ε

( ) ( )

( ) ( )
⎜ ⎟
⎛
⎝

⎞
⎠

Q x

Q Q
x y x y

R x

R

x R x

R

x

R

1
d d

2 4

1

2

1
arctan ,

L

x

L

L

r

0 2 2

0 0
2

0
2

3
0

0

�

(32)

where  −R  <  x0  <  R. In equation  (32), the first term (which 
is linear in x0) represents a pure surface charge distribution, 
the second term captures the charge redistribution between the 
volume and the surface that occurs as a result of polarization 
and the third term describes the induced charge on the support 
(if one is present).

Figure 6(b) shows plots of Q(x0)/Q for both a floating 
and a supported sphere for =ε 1r  (only volume charges) and 
=ε 100r  (only surface charges).

Figure 4.  Schematic diagram showing the contributions to the 
total effective charge density on a dielectric sphere adjacent to a 
grounded plane. See text for details.
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If the integration domain is changed to a concentric circle 
of radius r0, then

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Q r

Q Q
r r r

R r
R

r

R

R

R r

2
d

1
1

1 ,

r

r

0

0

2
0
2 0

2

3 2
0
2

0

∫
π

σ=

= − − − − −
+ε

( ) ( )

�

(33)

as shown in figure 7. The relatively large difference between 
the =ε 1r  and =ε 100r  curves suggests that it may be possible 
to estimate the dielectric constant of the material by exam-
ining the trend of the fractional charge curve in detail. In fact, 
as →r 00 , Q(r0)/Q becomes quadratic in r0:

( → ) ⎛
⎝
⎜

⎞
⎠
⎟∼ + −

ε
Q r

Q

r

R

0 1

2

1 1

2
,

r

0 0
2

2� (34)

where the  −1/2 appears only in the case of the supported 
sphere. Therefore, an evaluation of the initial curvature of the 
fractional charge curve would yield either / /+ ε1 2 1 r or /ε1 r for 
the floating and supported particle, respectively.

4.4. The effect of the MIP on partial charge measurement

Projection of the MIP contribution to the charge density in 
the electron beam direction requires great care, as infini-
ties abound. According to equation  (10), the effective MIP 
contribution to the projected charge density is

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟r V t r V t r

t r

r
,p p

p
MIP 0 M 2

2
0 M ″σ =− ∇ =− +

′
ε ε( ) ( ) ( )

( )
� (35)

which is not problematic in the interior (r  <  R), as

( )
( ) /σ =

−
−

εr V
R r

R r
2

2
.MIP 0 M

2 2

2 2 3 2� (36)

According to equation  (36), the curvature of the sphere 
corresponds to a positive charge density ( )σ σ=0 2MIP M at its 
center in projection (with the factor of 2 arising from the fact 
that electrons pass through the upper and lower interfaces with 
vacuum). The interior region then appears positively charged 
overall. The apparent MIP contribution to the charge distrib-
uted in the interior is, however, infinite, as

Figure 5.  Calculations of the projected charge distribution for a dielectric sphere that is either floating (top) or supported (bottom) for four 
values of εr. See text for details.

Figure 6.  Calculation of the charge that would be measured if the Laplacian of the phase were integrated over only part of a floating or 
supported dielectric sphere for =ε 1r  and =ε 100r , for a rectangular integration domain that extends over the intervals (−L, x0) along x and 
(−L, L) along y where �L R.
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( )
→∫π σ =r

Q R

h
2 lim

2 2
,

R

h0
MIP

0

M

� (37)
because of the diverging amount of charge present in the vir-
tual electrodes of the spherical capacitor that represents the 
MIP potential discontinuity. As discussed above, the charge 
is compensated by an opposite infinite amount located on the 
outer layer of the capacitor, but this picture is unsatisfactory.

We now consider three approaches for eliminating the infin-
ities that prevent an assessment of the result of partial charge 
measurement in the presence of the MIP term: (1) applying a 
numerical finite difference Laplacian filter to the MIP contrib
ution to the phase shift; (2) working at finite spatial resolution 
by introducing a point spread function that smooths the phase 
shift; (3) representing the MIP discontinuity using finite-
thickness spherical shells with volume charge densities (i.e. 
creating a spherical p-n junction).

4.4.1.  Numerical Laplacian.  Since experimental data always 
take the form of a digital matrix and differential image alge-
bra involves the use of finite-difference approximations to 
differential operators, it makes sense to analyze how the MIP 
contribution to the effective projected charge density appears 
when the Laplacian of the phase is evaluated numerically. If 
the MIP contribution to the phase shift ( ) ( )ϕ =r C V t rpMIP E M  
is sampled on a square grid with pixel size �h R, then in 
the interior region (r  <  R), where ( )ϕ rMIP  is continuous and 
differentiable, the numerical Laplacian works very well and, 
when rescaled by the factor /−ε C0 E, reproduces equation (36) 
if the sampling is adequate. However, as r approaches R, the 
slope of ( )ϕ rMIP  increases in magnitude, eventually diverging 
as ( )ϕ =−∞′−> − rlimr R MIP . Focusing on the four pixels across 
r  =  R, i.e. r  =  [R  −  2h, R  −  h, R, R  +  h] where the projected 
specimen thickness has values of [ ]Rh Rh16 , 8 , 0, 0  to first 
order in h/R, respectively, the finite-difference Laplacian of 
the projected thickness

( )
( ) ( ) ( ) ( )

( ) ( )
→

″ + ∼
+ + − −

+
+ − −

′
t r

t r

r

t r h t r h t r

h
t r h t r h

hr

lim
2

2

p
p

h

p p p

p p

0 2
�

(38)

yields the values [ ] /− − −R h8 0.096, 0.58, 1, 0 3 2 in the four 
pixels. The dipole layer is then captured by the numer
ical Laplacian as a very large negative charge density at the 

r  =  R pixel with value ( / ) / σ− R h2 3 2
M, surrounding a posi-

tive charge density at the r  =  R  −  h pixel with a value that is 
approximately 40% smaller. As discussed earlier, the negative 
layer has to compensate for the positive layer, as well as the 
apparent charge present in the interior due to the curvature of 
the object.

4.4.2.  Finite-spatial-resolution Laplacian.  The easiest way 
to account for a signal that has finite spatial resolution is to 
convolve it with a normalized Gaussian point spread function. 
Evaluation of the convolution and then the Laplacian opera-
tion in Fourier space results in the expression

( ) ( ) ( / )
⎛

⎝
⎜

⎞

⎠
⎟∫σ σ= −

∞
r r q j q J qr R

q r

R
q, exp

2
d ,s

s
MIP
FR

M
0

2
1 0

2 2

2

�

(39)

where j1(x) is a spherical Bessel function of the first kind 
and J0(x) is a Bessel function of the first kind. Setting 

/ π= ∼r h h2 0.4s  ensures that the area under the point spread 
function equals the pixel size squared. With this choice, σMIP

FR  
appears as a smoothed version of the numerical Laplacian.

4.4.3.  Spherical p-n junction Laplacian.  A charge distribu-
tion of the form

( )ρ
ρ
ρ

= <
=+ < <

=− < <

= >

r r R

R r R

R r R

r R

0

0 ,

MIP
pn

1

pn 1

pn 2

2

� (40)

where /( )ρ = − −ε V R R R2 2pn 0 M
2

1
2

2
2  and R2 is chosen so as to 

satisfy the relation − − =R R R2 03
1
3

2
3 , results in a step in MIP 

that has a magnitude of VM between the r  <  R1 and r  >  R2 
regions and is connected smoothly by a cubic spline in the 
< <R r R1 2 ‘depletion region’.
Projection of ( )ρ rMIP

pn  then yields the expression

r
R r R r R r r R

R r R r R r R

R r R r R

r R

2
2

2

0 .

MIP
pn

pn

2 2
1
2 2

2
2 2

1

2 2
2
2 2

1

2
2 2

2

2

σ
ρ

= − − − − − <

= − − − < <

= − − < <
= >

( )

� (41)

Figure 7.  Calculation of the charge that would be measured if the Laplacian of the phase were integrated over only part of a floating or 
supported dielectric sphere for =ε 1r  and =ε 100r , for a circular integration domain.
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Figure 8 shows the effective projected charge density that 
appears due to the MIP. The red curve accompanied by the 
red arrow pointing downwards at r  =  R represents the ana-
lytical expression, equation (36), together with the negatively 
charged outer layer. The black dots indicate the pixel values of 
the numerical Laplacian operation with h  =  0.1 R sampling. 
The sampling might appear relatively coarse (10 pixels on a 
distance equal to the sphere radius), but it could represent a 
realistic experimental setup with a R  =  10 nm sphere sampled 
with 1 nm pixel size. The purple curve, from equation  (39), 
represents the finite-resolution effective charge density, evalu-
ated for rs  =  0.04 R. The blue curve represents the spherical 
p-n junction model, from equation  (41). All curves overlap 
almost exactly in the interior, and start to deviate from the ana-
lytical expression only two pixels away from the surface. The 
exterior pixel at r  =  R  +  h is zero for the numerical Laplacian 
and the spherical p-n junction model, and very close to zero 
for the finite-spatial-resolution Laplacian model. The peak 
value of the charge density at r  =  R  −  h remains finite, but 
diverges as h−3/2 in the limit →h 0. Regardless of the choice of 
h, the integrated charge in the interior always equals the inte-
grated charge in the exterior, and yields the effective charge 
density value of /σ = ε V R2 4M 0 M  at r  =  0.

The MIP contribution to the effective projected charge den-
sity ( )σ rMIP  can now be integrated over the rectangular and 
circular domains used earlier to calculate the apparent charge 
associated with the MIP. Choosing the finite-spatial-resolution 
model in the limit →r 0s  and the rectangular domain for inte-
gration yields the expression

( ) ( )∫ λ= ′ ′
−∞

Q x x xd ,
x

MIP MIP� (42)

where

( ) ( ) ( / )∫ ∫λ σ= +
−∞

∞ ∞
x y q j q J q x y R qd d .MIP M

0

2
1 0

2 2� (43)

Since

( / ) ( / )∫ + = | |
−∞

∞
J q x y R y

R

q
q x Rd

2
cos ,0

2 2� (44)

it follows that

( ) ( ) ( / )∫λ σ= | |
∞

x R qj q q x R q2 cos d .MIP M
0

1� (45)

By making use of the relation ( ) ( ) ( )= −x j x xj xcos 0 1 , a tabu-
lated integral and the orthogonality of Bessel functions, this 
expression becomes

( ) ( ( ) ( ))λ π σ δ= Θ − | | − | | −x R R x R x R .MIP M� (46)

Finally, we have the result

( ) ( )= Θ − | |
Q x

Q

x

R
R x

4
.MIP

M

0
� (47)

According to equations (46) and (47), the effective linear 
charge density resulting from the integration of ( )σ rMIP  along 
one axis is a positive constant surrounded by two negative 
deltas representing the compensating charge on the ‘outer 
electrode’ of the spherical capacitor that describes the MIP. 
Partial charge measurement then gives a linear function in the 
interior, with finite discontinuities at the edge. The two func-
tions ( )λ xMIP  and ( )Q xMIP  are plotted on the same graph in 
figure 9(a).

It is now possible to quantify the influence of the MIP on a 
partial charge measurement. For simplicity, a floating spher-
ical object with pure surface charge and Q(x)/Q  =  (x  +  R)/
(2R) (corresponding to the limit →∞εr  in equation (32)) is 
considered. As shown in figure 9(b), the MIP affects the slope 
of the partial charge curve, while carrying the two edge dis-
continuities. As a consequence, as the boundary of the integra-
tion domain is moved to intercept spherical caps of increasing 
height, the object first appears to be negatively charged, then 
neutral at =− −x R Q Q1 1 2M/ /( /( )), then by symmetry cor-
rectly charged with Q/2 at x  =  0 (corresponding to a half 
sphere intercepted). Finally, just before sweeping over the 
entire object, the measurement is overcharged by an amount 

/+Q 2M , but as soon as the integration domain boundary is out-
side again the measured charge drops back to the expected 
value of  +Q.

5.  Geometries other than a sphere

5.1.  Nanowires and nanotubes

For a nanowire or nanotube, it is not easy to calculate the way 
in which an initial (e.g. uniform) charge distribution relaxes 
to accommodate polarization, or how charge redistributes in 
response to an applied electric field or to boundary condi-
tions. For example, if charge Q is placed on a dielectric wire, 
a fraction of it is expected to be brought to the surface (both 
lateral and end caps) as a result of polarization. However, this 
fraction depends on the length/diameter ratio of the wire, as 
well as on the shape of its terminations. In the extreme case of 
a metallic wire, for which charges can only be distributed on 
the surface of the object in such a way as to make the surface 
equipotential, the concept of self-capacitance can be used 

Figure 8.  Effective MIP projected charge density according to the 
analytical model (red curve plus red arrow), numerical Laplacian 
(black dots), finite-resolution Laplacian (purple curve), spherical 
p-n junction model (blue curve). The plots are calculated with 
sampling h  =  0.1 R, and are normalized to /σ = ε V R2M 0 M .
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to determine the surface potential. However, this approach 
does not provide much information about the charge distribu-
tion itself. Without being able to model the expected charge 
distribution properly, it is left unspecified and only the MIP 
contribution to its measurement in this geometry is consid-
ered here.

If x is chosen as the symmetry axis of the cylinder, then the 

projected thickness ( ) = −t y R y2p
2 2  does not depend on x. 

The effective MIP contribution to the charge distribution in 
the interior  −R  <  y  <  R is given by the expression

″σ =− =
−

y V t y V
R

R y

2
,pMIP 0 M 0 M

2

2 2 3 2
ε ε( ) ( )

( ) /� (48)

which differs from the spherical geometry in that there is no 
effect of curvature along x. The magnitude of the effective 
charge density involved is therefore halved. (Compare equa-
tions (48) and (36) at y  =  0 and r  =  0, respectively).

For a cylinder, the step in MIP can be imagined as the 
potential of a cylindrical capacitor, where the effective nega-
tive charge density on the outer electrode is slightly greater 
than the positive charge density on the inner electrode (the 
dipole layer is still asymmetrical, since the object’s surface 
is curved) and the amount of effective charge involved still 
diverges as the two electrodes approach each other. The 
(linear) charge density of the negative layer can be repre-
sented in projection in the form

( )δ
−

| | −

−
ε V R

y R

R y
2 ,0 M

2 2� (49)

which is the correct infinite amount needed to compensate the 
charge density that has moved to the interior.

The positive implication of the lack of curvature along the 
symmetry axis of the cylinder is that, as long as one boundary 
of the integration domain cuts through the wire, it is certain 
that a partial charge measurement corresponds precisely to 
the amount of charge that is physically present within the 
domain. This statement validates the experimentally deter-
mined charge density profile along a carbon nanotube bundle 
reported in [23].

5.2.  Samples with flat surfaces

For a specimen that has flat top and bottom surfaces, the MIP 
contribution to the charge density is a symmetrical dipole layer 
above and below the object (which is invisible when viewed in 
projection) and similar dipole layers at its edges. Whether the 
dipoles at the edges are symmetrical or asymmetrical depends 
on the edge curvature. In the absence of edge curvature, 
the dipole layer is symmetrical and its effects are absorbed 
as soon as the integration domain crosses the edge. For an 
ideal sample that takes the form of a prism with a rectangular 
cross-section and is oriented with two axes perpendicular to 
the electron beam direction, the effect of the MIP is confined 
to the edges of the sample, with no apparent charge brought 
into the interior region. This is the only conceivable scenario 
when the Laplacian of the phase is directly and meaningfully 
interpretable in terms of a physical charge density anywhere 
in the interior and where integration of the Laplacian over 
a domain that intercepts a portion S of the projected object 
yields precisely the amount of charge that is present within the 
volume St, where t is the specimen thickness in the electron 
beam direction.

Figure 10 illustrates schematically the MIP charge densities 
associated with wires of various cross sections. Figure 10(a) 
represents a wire with rectangular cross section, observed at 
zero tilt, where the projected thickness is a top-hat function 
and, therefore, the MIP effective charge is present only where 
the thickness changes abruptly from t to zero. Figure 10(b) 
represents the same wire observed with some tilt, where the 
projected thickness has a trapezoidal shape. In this case, the 
dipole layer splits into a negative charge line at the position 
where the thickness starts increasing, and a positive charge 
line at the position where the thickness stabilizes to the value 
/ αt cos , if α is the tilt angle. In general, for faceted objects 

with no curvature, a negative charge line forms whenever 
the thickness gradient increases abruptly, compensated by a 
positive charge line when the thickness gradient decreases 
abruptly. Figure 10(c) shows a wire with cylindrical cross sec-
tion, discussed earlier. The two negative charge lines can be 
described by equation (49), while the continuous charge den-
sity in the interior is captured by equation (48). The effective 

Figure 9.  (a) The two functions ( )λ xMIP  and ( )Q xMIP  plotted on the same graph. (b) The influence of the MIP on a partial charge 
measurement for a floating spherical object with pure surface charge and Q(x)/Q  =  (x  +  R)/(2R) (corresponding to the limit →∞εr  in 
equation (32)). See text for details.
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MIP charge density for a hypothetical wire with a cross sec-
tion that involved a faceted left-hand side and a rounded right-
hand side is shown in figure 10(d), and reflects a combination 
of the previous cases.

In the presence of edge curvature, the dipole layer is asym-
metrical and the effect of the MIP has to be taken into account 
just as for a spherical object, although no effective charge is 
present in the interior. For example, for an object that has the 
shape of a disk of radius R and thickness t, the MIP contrib
ution to the projected effective charge density is

σ
δ

δ=− ∇ Θ − =
−

+ −′ε ε( ) ( ) ( ) ( )⎜ ⎟
⎛
⎝

⎞
⎠r V t R r V t

r R

r
r R ,MIP 0 M 2

2
0 M

�
(50)

which is confined to the edge and brings no effective charge 
into the interior. For a circular integration domain of radius rc, 
the MIP is invisible, as

( ) ( )⎜ ⎟
⎛
⎝

⎞
⎠∫

δ
δ

−
+ − =′r

r R

r
r R rd 0

r

0

c

�
(51)

equally for rc  <  R (where both integrands are zero) and rc  >  R 
(where the ( )δ x  and ( )δ′ x  terms are 1 and  −1, respectively).

If, instead, the integration domain is rectangular, then the 
asymmetry of the dipole layer manifests itself as soon as a 
projection is taken along one direction. Then,

∫λ σ

δ δ

= +
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− + + −
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∞
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(52)

leading to an apparent cumulative charge of

( ) ( )∫ λ= =
−

′ ′
−∞

εQ x x x V t
x

R x
d 4

x

MIP MIP 0 M
2 2� (53)

for | | <x R, while ( ) =Q x 0MIP  for | | >x R. Whereas the mag-
nitude of the MIP contribution to the partial charge measure-
ment on a disk is proportional to the t/R aspect ratio, which 
is generally small, the apparent charge displacement is part
icularly strong at the edge of the disk, where ( )Q xMIP  diverges.

Figure 11 shows results obtained from a numerical test 
carried out on a t  =  10 nm, R  =  10 nm disk, which is charged 
uniformly with | |e100  and has a MIP VM of 10 V. The phase 

shown in figure  11(a) was sampled over a ×128 128 pixel 
square grid (with a pixel size p of 0.39 nm). A normally-
distributed noise pattern (with a standard deviation ϕ∆  of 63 
mrad) was superimposed onto the phase image. The Laplacian 
of the phase, which is shown in figure 11(b), is dominated by 
the dipole layer associated with the MIP, which overwhelms 
the mean intensity change between the interior and exterior, 
as expected. The noise level in the Laplacian of the phase is 
1.83 rad nm−2 (standard deviation), which is precisely 20 
times the phase noise divided by the pixel size squared. This 
is due to the numerical filter operating by adding the values of 
the four pixels on the left, on the right, above and below the 
target pixel (i, j), and subtracting from it four times the value 
of the target pixel itself. Since noise adds in quadrature, the 
Laplacian of a noisy image with unit standard deviation will 

have × + =4 1 4 202 2  standard deviation.
When it is converted into a charge density by incorpo-

rating the factor /−ε C0 E, the noise corresponds to fluctuations 
in the measured charge density of approximately     −e15 nm 2, 
or     −e2.4 pixel 1. This value is much greater than the physical 
charge density present of     −e0.3 nm 2. Although great care 
is therefore needed when interpreting charge density maps 
derived from the Laplacian of the phase, a positive aspect of 
such measurements is that the noise in the Laplacian of the 
phase has a mean value of zero and so, to an extent, can be 
‘integrated away’. This point is illustrated in figure 11(c), in 
which the cumulative charge Q(x) obtained by integrating the 
Laplacian of the phase over the expanding rectangular domain 
sketched in figure 11(b) is plotted in yellow. The purple curve 
in figure 11(c) shows the MIP contribution to the charge pro-
file derived from a noise-free phase image, which exhibits 
oscillations that are comparable to the noise as a result of 
the mismatch between the circular edge and the square grid 
employed for sampling. This mismatch is a numerical artefact 
that is equivalent to an edge roughness of the order of the pixel 
size, and is highlighted in figure 11(b).

For a rectangular contour of ×N M pixels, the integrated 
noise yields a random number at every pixel, which is dis-
tributed normally about zero with a standard deviation of 

( ) /ϕ∆ = + − ∆εQ N M C2 2 0 E. In the example considered 

here, this value corresponds to a fluctuation in the cumula-
tive charge curve ranging from approximately 12 electrons on 

Figure 10.  Schematic view of the effective MIP charge densities from wires of various cross sections: (a) rectangular cross 
section observed with no tilt, (b) rectangular cross section observed with some tilt, (c) circular cross section, (d) composite cross 
section with a faceted side and a rounded side.
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the left side of the object to approximately 17 electrons on 
the right side. The noise fluctuations increase with the size 
of the integration domain because the procedure does not 
simply involve averaging, but adds statistically independent 
random pixel values. It therefore appears to be advantageous 
to use integration domains that are as small as the size of the 
object allows. However, if the cumulative charge curve could 
be fitted with a constant, for example in the vacuum area on 
the right side of the object, then one would effectively average 
the curve, thereby removing the dependency of ∆Q on the 
number of pixels.

6.  Experimental results

A sample suitable for studies of electron beam induced 
charging was fabricated using focused ion beam (FIB) 
milling. A FIB-milled lamella of sapphire was initially welded 
onto a Cu grid. Two trenches were then cut at opposite sides 
of it until a tip-like shape was obtained. An off-axis electron 
hologram and a vacuum reference electron hologram were 
recorded at 300 kV on an FEI Titan TEM using a holographic 
interference fringe spacing of 2 nm (resulting in a spatial reso-
lution in reconstructed phase images of approximately 6 nm). 
The complex exit wave was reconstructed from each recorded 
electron hologram using a standard Fourier-transform-based 
algorithm.

A representative experimental phase image of the sap-
phire tip is shown in figure 12(a). The image is sampled on 
a ×128 128 pixel grid with a pixel size of 3.5 nm. The pres-
ence of a phase contour in vacuum immediately suggests that 
the tip has been charged by the electron beam. This observa-
tion is confirmed by the presence of a slope in vacuum in line 
profiles generated from the phase image, which are shown in 
figure 12(b). The change in slope in vacuum on each side of 
the green profile confirms that the tip is charged, while the 
sense of the change in slope confirms that it is charged posi-
tively. The slight difference in slope on each side of the tip 

is likely to originate from perturbation of the reference wave 
[6], although it may also be affected by non-uniformity of the 
object’s charge density. The phase image and the line profiles 
reveal that the tip has an irregular shape, with an almost flat 
side (perhaps a facet) oriented in the electron beam direction 
at its upper edge, a rounded end and a wedge-shaped lower 
edge.

Without a knowledge of the MIP contribution to the phase 
and of the perturbation of the vacuum reference wave, it is 
impossible to relate the details of the internal and external 
phase contours to the charge distribution and the only une-
quivocal determination that can initially be made is that the 
tip is charged.

However, the Laplacian of the phase image, which is shown 
in figure 13(a), provides more information about the charge in 
the tip. Feature A takes the form of two almost overlapping 
dipole layers, which are likely to correspond to the projected 
thickness changing abruptly twice, perhaps at a two-step 
terrace. This observation is consistent with the green phase 
profile shown in figure 12(b) at a position of approximately 
300 nm. Feature B, where the dipole layer is well separated 
into negative and positive charged lines, is a clear fingerprint 
of a wedge, in which the thickness increases linearly with 
distance with little or no curvature. See also figure  10(b). 
Feature  C highlights a region where a distinct positively 
charged arc fades away, with a clear negatively charged line 
following the curved edge of the tip. This behavior suggests 
that the apex may have an additional small protrusion, similar 
to a small spherical cap attached to a more faceted terminating 
region. Another possibility is that feature C is related to phys-
ical charge accumulating at the apex. Without a knowledge 
of the MIP contribution to the phase shift, it is not possible to 
discriminate between these two hypotheses.

Figure 13(b) shows a cumulative charge curve, which is 
generated from the region marked in figure 13(a) and illus-
trates how dominant the MIP contribution to the charge profile 
can be. Without considering the effect of the MIP, it would be 

Figure 11.  (a) Phase image calculated for a t  =  10 nm, R  =  10 nm disk, which is charged uniformly with | |e100  and has a MIP of 10 V. 
The image is sampled over a ×128 128 pixel square grid with a pixel size p of 0.39 nm and with normally-distributed noise superimposed 
onto it. The phase image is plotted over the range (−3.4, 0.8) rad, and the phase contours are drawn every 0.5 rad. (b) Laplacian of the 
phase, which is dominated by the dipole layer associated with the MIP. The semi-transparent purple rectangle denotes one of the integration 
domains, 55 pixels wide, which yields the cumulative charge value indicated by an arrow in (c). (c) Cumulative charge curves obtained by 
integrating the Laplacian of the phase over the expanding rectangular domain sketched in (b). The blue curve is the expected cumulative 
charge in absence of noise and MIP; the purple curve represents the expected cumulative charge from the noise-free image; the yellow 
curve is the cumulative charge measured from the noisy phase image shown in (a).
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possible to conclude that the tip is negatively charged until 
about 70 nm from its end and then only becomes positively 
charged afterwards. Instead, for the present sample morph
ology, before the cumulative charge profile begins to reflect 
the presence of physical charges it is also affected by the pres-
ence of edges and curved portions of the sample, even though 
the contribution from the MIP is charge-neutral overall. This 
transition, where the curve stabilizes to a constant value, 
occurs approximately 160 nm from the end of the tip, or 
approximately 50 nm from the apparent ‘charge-neutrality’ 
position.

Linear interpolation suggests that the tip interior is associated 
with a constant charge density of approximately     −e1.53 nm 1. If 
the cross-section of the tip is treated as a circle of radius 100 nm, 
then this value corresponds to either a surface charge density 
of approximately    µ −e2400 m 2, or a volume charge density of 
approximately    µ −e50 000 m 3, or a combination of the two, 
depending on the dielectric constant of the material (which 
cannot be estimated from this dataset). Regardless of the value of 
εr, the electric field that is generated in vacuum by a cylindrical 

wire that has a linear charge density of 1.53   −e nm 1 is approxi-
mately 44   −mV nm 1. The measured charge density is low, but 
well above the noise level and clearly detectable.

7. The effect of magnetic perturbations

An illustration of a final possible source of error is provided by 
the fact that if a spherical object is magnetized uniformly with 
saturation magnetization MS, in addition to being charged by 
an amount Q, then it will have both a uniform surface distribu-
tion of electrical charge /( )σ π= Q R40

2  and a dipolar surface 
distribution of magnetic charge σ θ= M cosmag S . If it is not 
known that the object is magnetic and the Laplacian of the 
phase is calculated by multiplying it by the factor /−ε C0 E that 
is needed to convert it into a charge density, then the apparent 
charge density is

( )

⎛

⎝
⎜

⎞

⎠
⎟σ

π
φ

+
R

t r C c

x

R
M

4
,

p
0

E 0
2 S� (54)

Figure 12.  (a) Representative experimental electron holographic phase image recorded from a sapphire tip, sampled on a ×128 128 pixel 
grid with a pixel size of 3.5 nm; phase contours are spaced by 5 rad. (b) Phase profiles extracted along the lines shown in (a).

Figure 13.  (a) Laplacian of the phase image shown in figure 12(a), with the rectangular region of integration marked as a red line; the 
integration domain for each partial charge measurement is indicated by the semi-transparent rectangle of width x, and spans the integration 
region from left to right. (b) Cumulative charge curve obtained as a set of partial charge measurements over rectangular domains of width  
x (see (a)), for 0  <  x  <  255 nm.
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where /    φ = = × −h e2 2.07 10 T m0
15 2 is the flux quantum 

and c is the speed of light. The factor /π φC cE 0
2 has units of 

inverse velocity and is equal to 2.58 ns m−1 at 300 kV. In fact, 
considering that / β= �C e cE , it can also be written very simply 
as / /β =c v c2, where v is the velocity of the beam electrons. 
For a typical value of MS of 480 kA m−1 (for magnetite), the 
effective charge density is 1.2 mC m−2 or     −e0.008 nm 2. For 
comparison, the same charge density results from the pres-
ence of 10 electrons of charge distributed over the surface of a 
non-magnetic sphere with R  =  10 nm.

Another comparison can be made by considering a spherical 
particle that carries a single flux quantum. If π µ φ=R M2

0 S 0, 
then the equivalent charge is /β α electrons, where α is the fine 
structure constant. In this very special context, the presence of 
one flux quantum is equivalent to approximately 137 electrons 
at a high enough accelerating voltage (i.e. when →β 1).

Figure 14(a) shows the phase image, ×128  amplified, 
corresponding to a R  =  10, =ε 100r  dielectric sphere charged 
with = | |Q e10  and magnetized at    = −M 480 kA mS

1 along 
the direction indicated by the green arrow. The magnetiza-
tion breaks the circular symmetry of the phase image, which 
could be misinterpreted as charge accumulation towards the 
right-hand side of the image, or, equivalently, as a net elec-
trical polarization of the dielectric object towards the right. 
The phase Laplacian converted into charge density is shown in 
figure 14(b) for the electrostatic phase shift, and in figure 14(c) 
for the magnetic phase shift. Their diametral profiles are 
shown in figure 14(d), and illustrate how, in this example, the 
two charge densities have a similar magnitude.

8.  Conclusions

The factors that influence the measurement of the local charge 
inside a specimen in the transmission electron microscope 
from the Laplacian of the electron-optical phase measured 
using off-axis electron holography have been presented and 
discussed. It has been shown that the approach can be reli-
able for determining the total charge in an object of interest. 
However, care is required when the integration boundary 
spans only part of the object, both as a result of the presence 
of an apparent surface charge density arising from the mean 
inner potential and specimen thickness profile and as a result 

of induced charges in nearby substrates and electrodes. The 
influence of noise and magnetization on the measured charge 
density was also discussed.
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